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Abstract: In this paper, we study the inflationary scenario in logarithmic f (R) gravity, where the
rate of inflation roll is constant. On the other hand, our gravitational f (R) model is a polynomial
plus a logarithmic term. We take advantage of constant-roll conditions and investigate the cosmic
evolution of the logarithmic f (R) gravity. We present a numerical and a graphical study using the
model parameters. Additionally, we obtain the corresponding potential by using the constant-roll
condition. We obtain the exact value of the potential satisfying the constant-roll conditions. Next, we
challenge it with refined swampland conjecture with respect to the Planck data. Finally, we compare
our results with the latest observable data.

Keywords: inflation; f (R) gravity; cosmology; swampland conjecture

1. Introduction

Recently, inflation has been considered as an important concept to describe the early
cosmology. Experiments in the cosmic microwave field have established several constraints
on the physics of inflation. However, despite the enormous progress, a convincing and
theoretically well-motivated model of inflation still lacks, in spite of the vast array of current
inflation models. Furthermore, in some cases, observables are insufficient to distinguish
between different models. By defining new inflation models, it was found that inflation can
be implemented by a (scalar) field that rolls down on its potential under certain conditions.
It is important to emphasize that the exponential expansion of the scale factor leads to an
exponential temperature decreasing. Furthermore, an exponentially growing scale factor
also leads to an exponentially decreasing energy density, so that at the end of inflation, the
universe is extremely cold and filled only by inflation. For this reason, right after inflation
ends, we need to have a phase transition where the inflation decays into other species
(matter and radiation) that reassemble the universe.

Inflationary models have been proposed to address and solve several problems, such
as the horizon, flatness, and the absence of magnetic monopoles [1–6]. The inflationary
paradigm in cosmology is one of the plausible scenarios that describe the universe’s early
evolution; indeed, different inflationary models have been studied in various conditions,
such as slow-roll, constant-roll, and many other structures in the literature. Several theories
can describe inflation of the universe, such as modified f (R) gravitational models [1,2].
Modified gravity appears in different forms and generally plays a vital role in describing
the universe’s evolution [4–7]. In particular, many phenomena related to different stages
of evolution associated with the present universe can be investigated using modified
gravity theories [8]. Recent studies in cosmology and other sciences, such as particle
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physics, have led to remarkable developments. Cosmic microwave background (CMB)
measurements show that fluctuations in matter and energy are always unstable on a large
scale. The leading cause of these fluctuations is still unknown. Researchers have provided
explanations for these fluctuations, as for all cosmological questions and problems, such as
the inflationary universe. Thus, the cosmic inflation has been proposed as a great pattern for
these problems. To solve these problems, the universe has gone through an early phase of
accelerated expansion. It also plays a fundamental role in explaining the origin of anisotropy
in the cosmic microwave background radiation and large-scale structures. Inflation models
are placed in different forms and categories, and according to specific characteristics, each
inflation model is classified into a particular class. The famous classification of inflation
in two groups are standard inflation (cold inflation) and warm inflation. There are also
several independent methods for classifying inflation models. Another type of inflationary
model category is based on the initial conditions of inflation and different areas possible
during the inflation, such as quasi-potential inflation, power law inflation, etc. Another
possible classification is based on the end of the inflation. Various theories related to
modified gravity, such as f (R), lead us to find the unifying description of some periods
associated with the universe as an early-time and late-time acceleration era [9–11]. The
inflationary scenario has been studied from different modified gravity structures such
as f (R), f (R, T), and f (G), also with various conditions such as constant-roll, slow-roll,
and ultra-slow roll [12–45]. Recently, a new idea which is called the swampland program
was introduced. The swampland program includes several conjectures, such as the weak
gravity conjecture (WGC), swampland dS conjecture, swampland distance conjecture, trans-
Planckian censorship conjecture (TCC), etc. In the last decade, swampland conjectures
have been studied in various concepts such as inflation, the physics of black holes, dark
energy, etc. In physics, swampland refers to the effective low-energy physical theories
incompatible with string theory, in contrast to the so-called “string theory landscape” of
compatible ideas. In other words, the swampland is the set of consistent-looking theories
with no consistent ultraviolet completion in string theory. Developments in string theory
suggest that the string theory landscape of false vacua is vast, so it is natural to ask if the
landscape is as vast as allowed by consistent-looking effective field theories. Some authors
suggest that that is not the case and that the swampland is, in fact, much larger than the
string theory landscape [46–64].

This paper will investigate the constant-roll evolution of modified f (R) gravity, a
polynomial plus a logarithmic term. Here, we aim to analyze and evaluate the scalar index
spectrum ns, and tensor-to-scalar ratio concerning n and β of this f (R) gravity. We briefly
explain and then examine our inflationary model. Therefore, in Section 2, we will first
introduce the concepts and relations related to the gravitational model’s evolution. In
Section 3, we present the modified gravitational model and examine some corresponding
relations discussed in the previous section. In this section, we also analyze the above model
with some different figures. In Section 4, we investigate the potential of our logarithmic
inflation model by applying the constant roll condition, and we challenge it with refined
swampland conjecture. Finally, in the last section, we will explain the paper’s results.

2. f (R) Gravity and Constant-Roll Evolution

In this section, we assume that a constant-roll era occurred during the period of
inflation. The inflationary paradigm of constant-roll has been used in the content of scalar-
tensor theories [36–43] as well as in the generalized range of f (R) modified gravity [65–67]
and many have examined it in previous works. We first briefly explain f (R) gravity, and
then we study our inflationary model [30,33,68–72]. We assume c = h̄ = Mpl = 1, so we
consider the action which is given by

SJ =
∫

d4X
√
−g

f (R)
2

. (1)
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The Friedmann–Lemaître–Robertson–Walker metric is as follows:

ds2
J = −dt2 + α2(t)(dx2 + dy2 + dz2), (2)

where the above relations were in the Jordan frame, but we can transfer these relations
to the Einstein framework by a conformal transformation such as gE

µν = FgJ
µν. Therefore,

using these conformal transformations, the above action, which is given by,

SE =
∫

d4X
√
−g(−1

2
R +

1
2

gµν∂µφ∂νφ−V(φ)), (3)

where J is the symbol of the Jordan frame, and subscript E denotes the Einstein frame.
Additionally, we will have

V(φ) =
1
2

RF− f
F2 , (4)

and
F =

d f
dR

. (5)

We want to describe the modified f (R) gravity, which has an important role in de-
scribing dark energy and cosmic acceleration. The most natural extension constant-roll
condition considered in most works is usually in the following form,

Ḧ
2HḢ

' β, (6)

where β is a constant parameter that can have positive or negative values. Equation (6) can
be written by,

φ̈

Hφ̇
= β. (7)

Moreover, the second slow-roll condition is η ∼ − Ḧ
2HḢ . We assume a theory described

by f (R) gravity and that the background is a flat FRW metric. According to variation f (R)
gravity concerning metric, one can have the following equation of motions,

3FH2 =
FR− f

2
− 3HḞ, (8)

and
− 2FḢ = F̈− HḞ, (9)

where F = ∂ f
∂R , and a dot denotes a derivation with respect to t. The dynamics of f (R)

gravity inflation with the four inflation indicators εi, i = 1...4 expressed as follows [73–78],

ε1 = − Ḣ
H2 , ε2 = 0, ε3 =

Ḟ
2HF

, ε4 =
Ė

2HE
, (10)

where E = 3(Ḟ)2

2κ2 . It is necessary to calculate the Qs to compute the tensor-to-scalar ratio r,
which is also expressed as the following:

Qs =
E

FH2(1 + ε3)2 . (11)

The spectral index of curvature perturbations ns, is as follows [74–76],

ns = 4− 2

√
1
4
+

(1 + ε1 − ε3 + ε4)(2− ε3 + ε4)

(1− ε1)2 , (12)
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where ε̇i ' 0 is assumed. The tensor-to-scalar ratio in the content of modified f (R) gravity
theory is expressed as follows,

r =
8κ2Qs

F
, (13)

the tensor-to-scalar ratio is rewritten as below,

r =
48ε2

3
(1 + ε3)2 , (14)

where we used Equation (11), and Equation (13).
We can obtain the new relations for the εi with respect to Equations (6) and (10) [66],

ε1 = − Ḣ
H2 , ε2 = 0, ε3 =

Ḟ(1)

2HF
(24HḢ + Ḧ), ε4 =

F(2)

HF
Ṙ +

R̈
HṘ

, (15)

where F(1) and F(2) are ∂2 f
∂R2 and ∂3 f

∂R3 , respectively. It can be seen that inflationary dy-
namics are related to f (R) gravity. We are studying the modified f (R) gravity; as we
will show in the next section, this model has successfully described the late acceleration
period. Additionally, the primordial power spectrum of the curvature perturbation ζ is
described from,

〈ζ̂(k)ζ̂(k′)〉 = (2π)3Pζ(k)δ3(k− k′),

where ζ̂(k) is the three-dimensional Fourier transform of ζ(x). The spectral index of this
power spectrum ns is defined as

ns ≡ 1 +
d ln

(
k3Pζ(k)

)
d ln k

∣∣∣∣
k∗

,

where k∗ is a pivot scale in the observable range, k∗ = 0.05Mpc−1 for Planck, a power
spectrum increasing on large angular scales (ns < 1) is called red-tilted, if it rises with
small scales, it is called blue-tilted, deviation from a scale invariant primordial power
spectrum have been detected by recent CMB experiments, the power spectrum is observed
to be red-tilted, and the case ns = 1 is today ruled out. The 1− σ bound on the spectral
index measured by WMAP was [34,79–82] were ns = 0.968± 0.012. Planck has improved
by roughly a factor of two in the measurement of the spectral index [2], resulting in
ns = 0.9649± 0.0042. On the other hand, the power spectrum amplitude measured by
Planck is

As ≡ Pζ(k∗) ≡
k3
∗

2π2 Pζ(k∗) = 2.196+0.051
−0.06 × 10−9.

Therefore, this structure can be used for deeper investigations, since the amplitude of
scalar perturbations As is an observation parameter and can apply additional restrictions
on the model parameters. The motivation for slow-roll inflation is that it produces a nearly
scale-invariant spectrum of perturbations, compatible with the CMB observations [2,3],

As = 2.1× 10−9, ns = 0.9649± 0.0042 αs = −0.0045± 0.0067, r < 0.036,

where αs running of the scalar spectral index, and r is the tensor-to-scalar ratio at the CMB
pivot scale k∗. In the slow-roll limit, the perturbations can be computed using the standard
formalism, giving

As =
V

24π2εV
=

H2

8π2εH
.

By using the given power spectrum, the scalar spectral index can be obtained as follows,

ns = 1− 2ε− 1
H

d
dt

ln ε = 1− 6εV + 2ηV = 1− 4εH + 2ηH , r = 16εV = 16εH ,
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where we also gave the forms based on the Hubble slow-roll parameters,

εH ≡
φ̇2

2H2 ' εV , ηH ≡ −
φ̈

Hφ̇
' ηV − εV ,

where the approximations apply during slow-roll. The expression for αs depends on higher-
order slow-roll parameters, which we omit for brevity. According to the presented concepts,
this time, by using the mentioned limitations, two of the most important parameters of
cosmology can be obtained according to the values and free parameters mentioned in the
text. Therefore, the scalar spectrum index and tensor-to-scalar ratio, which is obtained as
(ns = 0.9651, r = 0.00125), are compatible with the latest observable data [2,3]. Further-
more, the power spectrum is evaluated at the horizon crossing time, Csk = aH (with k
being the comoving wave number) and given by,

As =
H2

8π2WsC3
s

,

where, by definition,Ws ≡ φ̇2

2H2 , and C2
s = 1. Additionally, the tensor-to-scalar ratio, which

takes the following form,

r =
At

As
= 16ε.

Up to this point, we obtained the main equations of this inflationary setup. In what fol-
lows, performing analysis of their behavior, we obtain some constraints on these parameters
through confrontation with the observational viable values of some parameters.

3. Logarithmic f (R) Gravity

The conditions and restrictions applied to gravitational models always lead to changes
in the features of these models. For example, the constant-roll conditions change the
durability of the f (R) gravitational model [66]. The aim of this section is to provide a closer
look at our inflationary model as a modified f (R) gravitational model with polynomial
plus logarithmic terms and see what happens for the corresponding model. As you know,
this kind of f (R) inflationary model has the following form [29,46,70,71],

f (R) = R + αR2 + θRn + γR2 ln γR. (16)

Here, we note that the logarithmic f (R) gravitational model describes neutron stars,
cosmological models, and gluon effects [29–34], where n, α, θ, and γ are constant parameters.
The appropriate values of these components lead to solving dimensional problems of the
model. It would be reasonable to assume that inflation was predominant in the early
universe; thus, we could ignore the contributions of matter and its radiation. According to
the above relation, we have,

f ′(R) = 1 + (2α + γ)R + 2γR ln γR + nθRn−1, f ′′(R) = 2α + γ + 2γ ln γR + n(n− 1)θRn−2. (17)

We can explain the importance of this model according to the above two equations. In
the mentioned model, the parameters α 6= θ 6= 0 and only the parameter γ is zero, the model
examined in Ref. [30]. With θ = 0, the model is reduced to the famous Starobinsky model.
A special investigation was also performed with γ = 0 and n = 4 in Ref. [69]. The f (R)
also satisfies the conditions f (0) = 0 that lead to a flat space-time without a cosmological
constant. Additionally, the stability of this model is thoroughly investigated by Ref. [70].
Another critical point is the review of this model in connection with investigating the
logarithmic form of the f (R) gravity model from a brane perspective and swampland
criteria, which has exciting results that you can see in more detail in Ref. [71]. This model
has also been studied in examining a specific type of traversable wormholes concerning
various shape and redshift functions. Its exciting results were also investigated in Ref. [72].
In addition, its inflation model has been challenged with the special conditions, i.e., slow-
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roll and weak gravity conjecture; the details of this study can be seen in [46]. According to
the above model, quantum stability conditions are obeyed by f (R), and also according to
the above equations, classical stability conditions also lead to,

f ′(R) = 1 + (2α + γ + 2γ ln γR)R + nθRn−1 > 0.

Now, we consider Equation (8), which for the above inflationary model, it can be
approximated as follows,

− 3H2
[

1 + 18(2 + β)αH2 + θ6n−1((2 + β)H2)n−1n + 12(2 + β)H2γ ln
(
6(2 + β)H2)γ]

+
1
2

[
− 6(2 + β)αH2 − 36(2 + β)2H4 − θ6n((2 + β)H2)n − 36(2 + β)2H4γ ln

(
6(2 + β)H2)γ]

+ 6(2 + β)αH2
[

1 + 18(2 + β)H2θ6n−1((2 + β)H2)n−1n + 12(2 + β)H2γ ln
(
6(2 + β)H2)γ]

− 3H
[

1 + 36(2 + β)αHḢ + 12n−1nθ
(
(2 + β)HḢ

)n−1
+ 24(2 + β)HḢγ ln

(
12(2 + β)HḢ

)
γ

]
= 0.

(18)

We have used the constant-roll conditions in the above calculations, Equation (6). By
performing a series of manipulations and straightforward computations, and with a series
of simplifications, we obtain the final relation by solving the differential equation for the
Hubble parameter H. The general form is as follows:

H(t) =
A

B + C
, (19)

where

C = exp

(
γnt
[
24 + 12αβ + θ12n(2 + β)nn

][
1 + 144(2 + β)2(22n+1θ3n(2 + β)n + 3n

)
c1
]

144(2 + αβ)2γ
(
22n+13n(2 + β)nα + 3n

) )
,

A = n
[
24 + 12αβ + θ12n(2 + β)nn

]
γ, (20)

B = 24n + 2
[

6αβn + θ6n(2 + β)nγt
(
− 36αβ(2 + β)2 + (2 + β)n− (1 + β)n2)].

Here, we note that c1 is an arbitrary integration constant not affected by inflation
dynamics. Using the above equation, i.e., the Hubble rate, we can quickly obtain the
slow-roll indices, εi, i = 1...4. Then, using Equation (15), the indices of slow-roll for our
inflation model will be the following,

ε1 =
Ḣ
H2 , (21)

and
ε2 = 0, (22)

while
ε3 =

A
B , (23)

and
ε4 = C +D, (24)

where
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A =
(
2βHḢ + 24HḢ

)
α +

[
5 + 12n−2θ(n− 1)n

(
(2 + β)HḢ

)n−2
+ 2γ ln

(
12(2 + β)HḢ

)
γ

]
,

B = 2H
(
1 + 18α(2 + β)

)
H2 + θ6n−1((2 + β)H2)n−1n + 12(2 + β)H2γ ln

(
6(2 + β)H2γ

)
,

C =
2βH2Ḣ + Ḣ2

HḢ
, (25)

D =

12(2 + β)

[
α

3(2+β)H2 + θ6n−3((2 + β)H2)n−3
(n− 2)(n− 1)n

]
Ḣ

1 + 18α(2 + β)H2 + θ6n−1
(
(2 + β)H2

)n−1n + 12(2 + β)H2γ ln(6(2 + β)H2γ)
.

Furthermore, using the values obtained for slow-roll indices, εi, i = 1...4 and according
to the Hubble rate given in Equation (19) and with straightforward calculations as well
as simplifications, the values of these indices can be obtained. Additionally, by using
the values of slow-roll indices and even the Hubble rate, we obtain the scalar spectrum
index (12) and the tensor to the scalar ratio (14). By performing some manipulations and
then calculations, the variation rate of these variables concerning n and β are shown in the
figures. We also describe these results. As you can see in Figure 1, we plot the rate of change
of the scalar-spectrum-index (ns) in terms of the β, concerning the different values for the
component of (n) and concerning the constant values of the parameters such as (α), (θ), and
(γ). These free parameters (α, β, γ) associated with the model have already been calculated
by Ref. [46]. Additionally, they obtained the slow-roll parameters and the most important
cosmological parameters, such as the scalar spectrum index and tensor-to-scalar ratio,
in Einstein’s frame according to the slow-roll conditions. The cosmological parameters
were a coefficient of n, and applying the latest observable data challenged the changes
of these important cosmological parameters according to the swampland conjectures. It
was found that the logarithmic model is aligned with the latest observable data. Here
too, we studied the compatibility of the scalar spectrum index in terms of parameter β
and for different values n. The compatibility points are specified for specific ranges in the
figures. Of course, the changes of these parameters in terms of parameter n and with respect
to β are also plotted, which shows an acceptable range for this cosmological parameter.
This consistency was determined for different values of the parameter n in [46] for the
Einstein frame. Of course, the acceptable range for other cosmological parameters, i.e.,
the tensor-to-scalar ratio r for various values of n in [46] and also for the desired model in
Jordan’s frame in the upcoming work, is also discussed in separate figures. It is possible to
compare the compatibility of these two important cosmological parameters according to
two different frameworks. In general, in both frames, a specific range is specified for the
constant parameters that are consistent with the observable data. Additionally, the changes
in this index in terms of (n) are well defined according to the parameter (β) in Figure 2. As
shown in Figure 2b, for (β = −1), the correct range of this index is displayed, which can be
compared with the observable data.
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n = 1

n = 2

n = 3

n = 4

n = 5

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

4

ns

(a)

n = 1

n = 2

n = 3

n = 4

n = 5

-3 -2 -1 1 2 3

β

15

-10

-5

5

ns

(b)

n = 1

n = 2

n = 3

n = 4

n = 5

-3 -2 -1 0 1 2 3

β

0.92

0.94

0.96

0.98

ns

(c)

Figure 1. The plot of the variation of ns in terms of 0 < β < 3 in the plot (a), −3 < β < 3 in the
plots (b,c) with respect to different values of n and the constant parameter α = 0.15, θ = 0.009, and
γ = 0.01.

β = -1

β = 0

β = +1

2.5 3.0 3.5 4.0 4.5 5.0

n

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

ns

(a)

0 1 2 3 4 5

n

0.92

0.94

0.96

0.98

1.00

ns

(b)

Figure 2. The plot of the variation of ns in terms of n and −1 < β < 1 in the plot (a) and β = −1 in
the plot (b) with respect to constant parameter α = 0.15, θ = 0.009, and γ = 0.01.

To understand the physical phenomena in the corresponding model, we took advan-
tage of Equations (12), (18), and (21)–(24), and we plotted the different values of scalar
spectrum index ns concerning various parameters such as β and n. Here, we note that the
variation rate in the above figures is comparable to the experimental data, especially Planck
2018 [2]. Additionally, with respect to the above statement, as can be seen in Figure 3, we
also plot the rate of change of the tensor-to-scalar ratio (r) in terms of the β concerning the
different values for the component of (n) and with respect to the constant values of the
parameters such as (α), (θ) and (γ). The allowable range for this parameter is displayed
in Figure 3a for different values of n and it can be seen that it is consistent with Planck’s
observable data. Of course, the importance of these constant parameters is plotted in each
case by keeping the other constant parameter. Furthermore, as you can see in Figure 4, we
plot the rate of change of these two cosmological parameters, i.e., the scalar-spectrum-index
(ns) and the tensor-to-scalar ratio (r) to each other for different values of the parameters
(β) and (n) for constant values (α), (θ), and (γ). In Figure 4a,b are well determined the
allowable range of these two cosmological parameters (ns) and (r) proportional to each of
the different values (n) and (β) are well specified. The changes of these two parameters
about each other in the Einstein frame were also examined in Ref. [46], which shows the
changes of two parameters in terms of constant parameters such as n. More precisely,
the changes of these two parameters in both forms are very similar, and according to the
changes of the free parameters, each of these important cosmological parameters is within
the permissible range of the latest observable data. These significant cosmological changes
in each diagram can be seen with the changes in free coefficients.



Universe 2022, 8, 623 9 of 18
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(b)

Figure 3. The plot of r in terms of 0 < β < 3 in the plot (a) and −3 < β < 3 in the plot (b) with
respect to various values of n and constant parameter α = 0.15, θ = 0.009, and γ = 0.01.
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2
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(c)

Figure 4. The (ns− r) plan with respect to different values of n and β (a–c) and the constant parameter
α = 0.15, θ = 0.009, and γ = 0.01.

Of course, as mentioned above, the modified f (R) gravitational model has been
studied under different constraints and conditions, such as the constant-roll and slow-roll
conditions. In this article, we take the general form f (R) gravity. It has two exciting terms,
polynomial and logarithmic form. It means that we examined the evolution of this model
with several parameters. The logarithmic model is one of the essential inflation models
that cosmologists have worked on in the last few years. As mentioned above, the scalar
spectrum index and the tensor-to-scalar ratio are only based on two constant parameters
β and n. A more detailed analysis shows that their values can be consistent with the
observations for many of these parameters. We have given some examples in the form of
the above figures.

As a result of cosmic acceleration, small initial velocities within a causally connected
patch become very large. In this way, the inflationary paradigm, where the universe under-
goes an early-time accelerated expansion, can explain the thermalization of our observable
universe and it solves some problems related to the initial conditions of Friedmann cos-
mology. Inflation can be described by a (quasi) de Sitter expansion where the Ricci scalar
is almost a constant and is near the Planck scale. A useful parameter to describe inflation
is the e-folds number left to the end of inflation. To examine the manners of the solution
during the departure from inflation, we present the e-foldings number as follows [83,84],

N = ln
[ a(t f )

a(ti)

]
≡
∫ t f

ti

H(t)dt =
∫ φi

φ f

H
φ̇

dφ, (26)

where a(t f ) is the scale factor at the end of inflation with t f —the related time. Therefore,
the total amount of inflation is provided by,
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N = N
∣∣
a(ti)

, (27)

where a(ti) is the scale factor at the beginning of inflation with ti the corresponding time.
To get the thermalization of our universe according to CMB data, one has to require
55 < N < 65. During the quasi-dS development of inflation, the Hubble parameter slowly
decreases. We defined the slow-roll parameters as follows,

ε = − Ḣ
H2 =

1
H

dH
dN

,

− η = β =
Ḧ

2HḢ
,

(28)

where we supposed that the constant-roll condition remains valid. At the beginning of
the early-time acceleration, the first slow-roll parameter is small. Thus, the slow-roll
approximation regime is realized. For the β parameter, one can obtain a constant value in
the following form [83,84],

β =
1

2N . (29)

This means that the model meets the condition for constant-roll inflation. This issue has
an important impact on the form of the spectral index of primordial curvature perturbations,
which will be independent of the total number of the e-foldings during inflation. The
inflationary paradigm suggests two important forecasts about the inhomogeneities of the
universe at a galactic scale. Specifically, the perturbations around the FRW metric conduct
a non-flat spectral index ns and also lead to a non-zero scalar-to-tensor ratio r. In the case
of f (R)-gravity, the inflationary indices have the following form,

(1− ns) '
2ε̇

Hε
= −2

ε

dε

dN
,

r ' 48ε2.
(30)

An inflation model must also contain a valid mechanism to depart from the accelerated
phase and to lead to the cosmological perturbations at the origin of the anisotropy of the
universe. To calculate such perturbations, one computes the spectral index ns and the
tensor-to-scalar ratio r. Their values are well determined by the last Planck data. These
indexes have to be derived in different ways depending on the theory under consideration,
and in what follows, we will furnish their correct expressions in modified gravity and
scalar field theories. We can write equations of motion in both scalar fields and modified
gravity theories in the following form [83,84],

3H2

κ2 = ρe f f ,

− (3H2 + 2Ḣ)

κ2 = pe f f ,
(31)

where κ2 ≡ 8πGN , G−1/2
N = Mpl = 1. ρe f f and pe f f stand for the effective energy density

and pressure of the universe (in the case of modified gravity they include gravitational
terms) fulfilling a continuity equation [83,84],

ρ̇e f f + 3H(ρe f f + pe f f ) = 0. (32)

For scalar theories, one can obtain

ρe f f =
φ̇2

2
+ V(φ),

pe f f =
φ̇2

2
−V(φ),

(33)
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while for f (R)-modified gravity, we find

ρe f f =
1

2κ2

(
(RF− f )− 6HḞ− 6H2(F− 1)

)
,

pe f f =
1

2κ2

(
( f − RF) + 4HḞ + 2F̈ + (4Ḣ + 6H2)(F− 1)

)
.

(34)

Additionally, we can introduce an effective equation of state (EoS),

pe f f = ωe f f ρe f f , (35)

where ωe f f is an effective EoS parameter. At the beginning of inflation, ωe f f must be close
to minus one, but not vanishing to depart from early-time acceleration [83,84]. Furthermore,
one may need −1 < ωe f f to bypass ωe f f = −1 at some time of inflation, since the pure dS
solution can be a final attractor of the system. Acceleration vanishes when −1/3 ≤ ωe f f ,
namely, the “strong energy condition” (SEC) is violated. Therefore, a suitable ansatz for the
effective EoS parameter of inflation in terms of the e-folds may be

1 + ωe f f '
ξ

(N + 1)σ
, 0 < σ, ξ, (36)

where ξ is a number on the order of the unit. The outcome, from (32) and (35), by consider-
ing that d/dt = −H(t)d/dN, is given by

ρe f f ' ρ f (N + 1)3ξ , σ = 1,

ρe f f ' ρ0 exp
(
− 3ξ

(σ− 1)(N + 1)σ−1

)
, σ 6= 1,

(37)

where ρ0, f stand integration constants. ρ f exists the effective energy density at the end of
inflation at N = 0 with respect to σ = 1, and ρ0 gives the effective energy density at the
beginning of inflation at 1� N with respect to 1 < σ. Starting from these results, we can
now reconstruct the spectral index and the tensor-to-scalar ratio which realize (36) and
the corresponding models in the different representations. Thus, the ns and the r can be
obtained as

ns ' 1−
(

3ξ + σ(N + 1)σ−1

(N + 1)σ

)
,

r ' 24ξ

(N + 1)σ
,

(38)

where the slow-roll parameters have been evaluated during inflation at N = N , where N
is the total e-folds number. Thus, with respect to the last Planck data, only the case σ = 2
with N ' 60 guides to viable values for the ns and the r. The case where σ = 1 exists is
also quite interesting, since it corresponds to power-law scalar potential [83,84], but, even
though it gives a correct value of the spectral index, the tensor-to-scalar ratio is in general
larger than the Planck result. For σ = 2 the EoS parameter (36) with (37) reads,

ωe f f ' −1 +
1

9ξ
log
[ρe f f

ρ0

]2. (39)

Now, we examine the different values of the Hubble parameter according to the
concepts mentioned in the text, so first, we calculate the Hubble parameter in terms of φ,
which is expressed in the following form,
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H(φ) =
{
+ 3γ2n2(24 + 12αβ + 12nθ(2β)nn)2 ×

{
10368(2 + αβ)4(21+2n × 3nα(2 + β)n + 3n)2

+ 24n + 2
(
6αβn + 6nθ(2 + β)nγ(−36αβ(2 + β)2n− (1 + β)(n)2)

)
/

exp
(n(24 + 12αβ + 12n(2 + β)nγn)(144(2 + β)2(21+2n × 3nθ(2 + β)n + 3n)φ)

72(2 + αβ)2(21+2n × 3nα(2 + β)n + 3n)
)}}

.

(40)

We know at φ = φe, if one of the slow-roll parameters is in the order one (that is),
inflation will end. Furthermore, here we note that in Equations (31) (ε > η with respect to
n). Therefore, for this case, we have the following equation,

X1 = 36γ ln(
n

n + 2
),

X2 = −2(2−
3n
2 )α× 31+ n

2 )γ(
n

1 + n
)(
−2

1+n )β(1 + n)(
−n

1 + n
)−n,

X3 = (4
√

6nθ ln(
n

n + 2
) + 4

√
6n2βγ ln(

n
n + 2

)),

φe = (
A

B× C
)

1
−n−3 .

(41)

Furthermore, according to Equations (29), (31), and (41), we obtain the number of
e-folds N, which is given by,

N =
−2

−1
2 α+ 3n

2 × γ3−
1
2−

n
2 ( n

1+n )
2

1+n (− n
1+n )

nβφ3+n
i

θ(3 + n)(γn + γn2)
+

4β(1 + n)
3(3 + n)

. (42)

With respect to the two above equations and according to the number of 50 ≤ N ≤ 60,
we can ignore the second term or the contribution of φe. Thus, we have the following equation,

φi =

(
Nαβ(3 + n)(γn + γn2)

−2
−1
2 θ+ 3n

2 β× γ3−
1
2−

n
2 ( n

1+n )
2

1+n (− n
1+n )

n

) 1
3+n

. (43)

According to the above equations, the value of the Hubble parameter can be obtained
at the beginning of inflation according to Equations (40) and (43) and at the end of inflation
according to Equations (40) and (41), which will be calculated very directly. Therefore, by
having the values of free parameters such as α, β, θ, γ, n, and the number of e-folds (N),
it is possible to obtain values of this parameter. In addition, it is possible to reconstruct
Starobinsky gravity models by vanishing the free parameters of the model. In fact, our
model is a generalized model of R2-Starobinsky model. Furthermore, according to all the
concepts above, our model can be compatible with the inflationary paradigm. Moreover,
according to Equations (31) and (43), each of the slow roll parameters can be calculated.
In addition, with these values, one can calculate each of the important parameters of
cosmology, i.e., the tensor-to-scalar ratio and the scalar spectrum index in Equation (33).
Similar to the calculations that we performed before for each of these parameters, and
according to the figures, we determined the areas compatible with the latest observable
data. Furthermore, as we said, by considering zero free parameters, the mentioned model
is reduced to the famous R2-Starobinsky and deformed Starobinsky models. Its results
are discussed in [26,29,31,32,32,34,85–87]. Therefore, our logarithmic model is a suitable
generalization of these models, which can be used in the study of various cosmological
structures, its applications and results can be compared with the latest observable data.
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4. RSC in Logarithmic Constant-Roll Inflation

We investigate the potential of this inflation model concerning the conjecture of the
swampland program from the point of view of constant roll. As we know, the swampland
dS conjecture is as follows [22–27,46],

|∇V| ≥ C1V, min(∇i∇jV) ≤ −C2V, (44)

where the above equations for the V > 0 can be rewritten in terms of the slow-roll parame-
ters as follows, √

2εV ≥ C1, or ηV ≤ −C2, (45)

where C1 and C2 are both positive and order of one, i.e., C1 = C2 = O(1). f (R) gravity
is used for dark energy studies and cosmological models. As it is known, f is a function
of the Ricci scale, in which f = F + R [85,86,88–90] is used in cosmological studies and
dark energy. Therefore, in this paper, we investigate this inflation model due to refined
swampland conjecture and from the point of view of the constant-roll condition. In this
case, we apply the modified f (R) gravity and investigate inflationary theory in light of the
above. Recently, several researchers have worked with the simple form of f (R), which you
can see in Refs. [6,22,91–99]. In general, the constant-roll condition for all inflation models,
such as scalar field coupled to gravity and f (R) gravitational models, has been investigated.
We aim to investigate the f (R) gravitational model using a constant-roll condition. There
will be a special inflation solution for common equations of motion, and we will briefly
describe this route. One can begin by considering the general solution for the constant-roll
condition in the context of scalar-tensor theory. For the constant roll, we have an important
condition in Equations (7). By using the FRW equations,

3
κ2 H2 =

φ̇2

2
+ V(φ), − 1

κ2 (3H2 + 2Ḣ) =
φ̇2

2
−V(φ), (46)

we will calculate,
2
κ2 Ḣ = φ̇2. (47)

In the Einstein frame, the Einstein and the Klein–Gordon equations in the lack of the
spatial curvature and other matter take the standard form:

H2 =
1
3

(
1
2
(

dφ

dt
)2 + V

)
,

dH
dt

= −1
2
(

dφ

dt
)2,

φ̈ + 3Hφ̇ +
∂V
∂φ

= 0.

(48)

From the above equations, we will obtain

dφ

dt
= −2

dH
dφ

,

d2φ

dt2 = −2
d2H
dφ2

dφ

dt
.

The second derivative φ̈ is negligible compared to the other equations above, which is
ignored. More precise approximations, and some more precise solutions that give more
accurate answers, have been used extensively in the recent examples, especially when we
are faced with the specific inflationary potentials V(φ) that have several non-analytical
features [100,101]. If ∂V

∂φ is retained for a long time, the second example refers to an
ultra-slow-roll model. In agreement with the above equations, Einstein–Hilbert action is
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investigated using a canonical scalar field as used in previous works [12,102,103]. Similarly,
in f (R), gravitational models are a natural generalization of the constant-roll condition,

F̈ = βHḞ, (49)

where β = −(3 + α). α is a non-zero parameter, and for α = −3, the model is reduced to
the standard slow-roll. Moving beyond the slow-roll approximation, we can consider an
ultra slow-roll regime where the φ̈ is finite in the Klein–Gordon equation as φ̈ = −3Hφ̇.
As we know, this condition is in complete agreement with the previous one used in GR
and is no different from the previous one. However, as stated in the preceding equation,
its generalization is very significant in many respects, and we only use the constant-roll
condition for f (R) gravitational models. Using the constant-roll condition concerning the
refined swampland conjecture and applying them, we investigate the coefficient of the
swampland conjecture with the logarithmic inflation model; we obtain some parameters,
such as the potential, by using the above equations, as well as experimental data and Planck
2018 data. Then, we analyze the result of the inflation model. Different inflation models
from several perspectives, such as slow-roll, ultra-slow-roll, constant-roll (using methods
such as beta and first-order function), and swampland program, including swampland
conjectures, etc., have been studied, and examples of them are mentioned in the above
remarks. First, we calculate the potential and then the upper bound n. We are comparing
our inflation model by plotting some figures. We also check whether this gravitational
model is consistent with swampland conjectures. Therefore, first, we calculate the potential
by using the Hubble parameter Equations (1), (2), and (19) concerning the f (R) constant-roll
condition. Thus, one can obtain the final relation for the potential, which is given by,

V(φ) =

{
− (γ2 exp

(n(24 + 12αβ + 12n(2 + β)nγn)(144(2 + β)2(21+2n × 3nθ(2 + β)n + 3n)φ)
72(2 + αβ)2(21+2n × 3nα(2 + β)n + 3n)

)
× n4(24 + 12αβ + 12nθ(2 + β)nn)2(24 + 12αβ + 12n(2 + β)nγn)2) + 3γ2n2(24 + 12αβ + 12nθ(2β)nn)2

×
{

10368(2 + αβ)4(21+2n × 3nα(2 + β)n + 3n)2
[
+ 24n + 2(6αβn + 6nθ(2 + β)nγ(−36αβ(2 + β)2n

− (1 + β)(n)2)) + exp
(n(24 + 12αβ + 12n(2 + β)nγn)(144(2 + β)2(21+2n × 3nθ(2 + β)n + 3n)φ)

72(2 + αβ)2(21+2n × 3nα(2 + β)n + 3n)
)]2}}

/(
10368(2 + αβ)4(21+2n × 3nα(2 + β)n + 3n)2

[
+ 24n + 2(6αβn + 6nθ(2 + β)nγ(−36αβ(2 + β)2n

− (1 + β)(n)2)) + exp
(n(24 + 12αβ + 12n(2 + β)nγn)(144(2 + β)2(21+2n × 3nθ(2 + β)n + 3n)φ)

72(2 + αβ)2(21+2n × 3nα(2 + β)n + 3n)
)]4)

.

(50)

After calculating the potential, using the constant-roll condition, we want to consider
two conditions of swampland conjectures. Following Equation (44), we aim to determine
whether the potential obtained from the above condition is in agreement with them or no.
Therefore, concerning Equation (31), we need the first and second derivatives of potential.
We challenge the potential changes and the swampland conjecture by plotting some figures,
and we will discuss the compatibility or incompatibility of the mentioned model with the
swampland conjecture. As shown in Figure 5, from left to right, the potential changes,
the first and the second component of the swampland conjecture as C1 and C2 are plotted
according to the scalar field φ and different values of the constant parameter α, θ, and γ.
The changes of each of these quantities regarding the constant-roll condition parameter β
are shown. In the literature, components C1 and C2 are usually constant and positive, and
the unit order is such that the second component C2 has smaller values than C1. As it is
clear from Figure 5, the first and second components of the swampland conjectures are in
their desired range, and also the change of these two components for the various values
of the scalar field φ and the constant parameter β is well known. Furthermore, as shown
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in Figure 5, the C2 has a smaller value than the C1, and a kind of optimal compatibility of
these different conditions is seen.

β = -2

β = -1

β = 0

β = 1

β = 2

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8

0.0
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1.5

2.0

2.5

ϕ

V

(a) (b) (c)

Figure 5. The plot of V (a), C1 (b) , and C2 (c) in term of φ with respect to different values of β, and
the constant parameter α = 0.15, θ = 0.009, and γ = 0.01.

Nevertheless, all the above calculations are helpful for these limits to calculations and
figures. In this article, we have used one of the conditions for the swampland program.
Today, other conditions related to the swampland are more powerful conjectures, such as
the trans-Planckian conjecture (TCC), used to investigate the inflation models with certain
restrictions. Each of the inflationary models can be examined and studied from the point of
view of these conditions.

5. Conclusions

A more general and special form of an inflationary model known as the constant-roll
condition had been replaced by two-parameter phenomenological inflationary models in
GR in the slow-roll condition, which was used to study generalized gravitational f (R)
models. In this paper, we studied the logarithmic f (R) cosmic evolution with respect to
refined swampland conjecture. To review the above, we first introduced our inflationary
model, i.e., logarithmic f (R) gravitational model, which is a polynomial function with
a logarithmic term. Then, we explained the constant-roll model. We investigated the
logarithmic inflation model using constant-roll conditions (constant rate of inflation) and
obtained values such as potential and Hubble parameters. We know that the potential value
obtained with this condition has an exact value. We examined the constant-roll evolution
with logarithmic f (R) gravity. With the constant-roll conditions (18) and performing some
manipulations with straightforward calculations and simplifications, we achieved the final
relation for the Hubble parameter H. This relation helped us to gather more information
about the corresponding system. After then, we plotted figures such as ns with respect to n
and β separately. Additionally, we plotted the figures r concerning n and β and the model’s
constant parameters, i.e., α, θ, and γ, respectively. In that case, we had some suitable results
explained by several figures. Furthermore, we challenged our inflation model with respect
to refined swampland conjectures. We concluded that these conditions challenged the
swampland conjecture. Finally, we analyzed the figures and evaluated the calculations
obtained concerning the experimental data, especially Planck 2018 [2].
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