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Abstract: The correspondence between the shadow radius and the real part of the quasinormal
modes (QNMs) of a Kerr–Sen black hole is studied. By using the equation of the shadow radius
of Kerr–Sen black hole and the angular separation constant of the QNMs, the expression of QNMs
related to shadow radius is established in the eikonal limit. We found that, our formula can reduce to
the previous result of Kerr black hole when Kerr-Sen parameter b sets to zero.
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1. Introduction

In 2019 the Event Horizon Telescope (EHT) Cooperation released the first black hole
shadow image of M87* [1–6], and later in 2022 the EHT Cooperation further released its
image for SgrA* [7]. In addition to the influence of the observer’s angle, the shadow also
contains information such as the mass and the rotating parameters of the black holes.
Moreover, the black hole shadow can serve as a tool to test the theory of gravity and
thus receives increasing attention. On the other hand, the first gravitational wave event
was observed by the LIGO Scientific Collaboration in 2015 [8]. This is the first time
that gravitational waves have been observed in history, which cast a great influence and
promotion on science. The characteristic modes of an exponentially decaying ringdown
phase of the gravitational waves are described by quasinormal modes (QNMs), and can
be decomposed as ωQNM = ωR − iωI where the real part represents the frequency of the
wave, and the imaginary part represents the damping.

Though the QNMs and the black hole shadow seem irrelevant to each other at the
first glance, they in fact have a deep connection. In 2009, by using the WKB approximation
method [9–11] to calculate of QNMs, V. Cardoso et al. [12] established the first concrete cor-
respondence between QNMs and the black hole shadows for a static spherically symmetric
asymptotically flat black hole in the eikonal limit, `� 1 (` is the integer angular number).
Their results [12] show the real part of the QNMs corresponding to the frequency of the
circular null geodesic, while the imaginary part corresponds to the Lyapunov constant
that determines the scale of orbital instability. However, although such a correspondence
formula looks very elegant, it was soon to be found not applicable to some modified gravity
theories [13]. Another question is how to extend the correspondence to the rotational
black hole case, since most astrophysical real black holes process rotation. More recently,
the relation between the QNMs and black hole shadow for rotating black hole are proposed
by H. Yang et al. [14] and K. Jusufi [15,16] respectively. Their results coincide at the large `
limit. For examples, they study the Kerr, Kerr–Newman, as well as the five-dimensional
Myers–Perry black holes [14–17]. However, generalizing this correspondence to the more
general case to test its domain of validation is still crucial, especially for the black hole in
modified gravity theory.

The Kerr–Sen (KS) black hole [18] is an exact black hole solution in the low-energy
effective field theory of the heterotic string theory. It represents a charged and rotating
black hole. Many aspects of KS black holes have been investigated in the past three
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decades [19–24]. Particularly, the shadow of the KS black hole has been calculated in
Refs. [25–27]. Since in the modified gravity theories, the quasi-normal modes and the black
hole shadow will both be changed, the KS black hole serves as an ideal extension to further
verify the correspondence between the shadow of the rotational black hole and its QNMs.
For the motivations given above, we are going to study the connection between the shadow
radius and the QNMs in the KS spacetime.

This article is organized as follows. Section 1 is an introduction. Then we give the
basic equations of motion for KS black hole in Section 2. We further calculate the shadow
radius by using the unstable photon orbit in Section 3. In Section 4, after analyzing the
perturbations of the massless scalar field and discussing the angular separation constant,
we establish the relation between the QNMs and the shadow radius of the KS black hole.
The conclusion is given in Section 5. Throughout this paper, we adopt the geometric units
such that G = c = h̄ = 1.

2. Basic Equations

The author in [18] constructs an exact classical black hole solution in the low-energy
effective field theory of the heterotic string theory. Note that the low-energy effective action
of heterotic string theory in four dimensions can be expressed as

S = −
∫

d4x
√
−g̃e−Φ

(
−R +

1
12

HµνρHµνρ − gµν∂µΦ∂νΦ +
1
8

FµνFµν

)
, (1)

where g̃ is a determinant of metric tensor g̃µν, R is the Ricci scalar, Φ is the dilaton field,
Fµν = ∂µ Aν − ∂ν Aµ corresponding to the Maxwell field. Moreover, Hµνρ is the third-rank
field defined as

Hµνκ = ∂κ Bµν + ∂µBνκ + ∂νBκµ −
1
4
(

Aκ Fµν + AµFνκ + AνFκµ

)
, (2)

with Bµν being a second-rank antisymmetric tensor field.
By rescaling the metric gµν = e−Φ g̃µν, such a theory admits a four dimensional black

hole solution in Einstein frame usually referred to as KS black hole [18,28,29]. Since in
an Einstein frame, the gravity and matter fields (including the dilaton field and tensor
field) are minimally coupled to each other, and therefore many familiar properties about
gravity are still valid. For instance, in the Einstein frame, we observe that the black hole
entropy product is universal [28]. This solution is characterized by its mass M, charge Q
and rotating parameter a. In Boyer–Lindquist coordinates (t, r, θ, ϕ), the metric of KS black
hole reads [18,28,29]

ds2 = −
(

1− 2Mr
ρ2

)
dt2 + ρ2

(
dr2

∆KS
+ dθ2

)
− 4Mra

ρ2 sin2 θdtdϕ +(
r(r + 2b) + a2 +

2Mra2 sin2 θ

ρ2

)
sin2 θdϕ2, (3)

where

∆KS = r2 − 2Mr + 2br + a2, ρ2 = r2 + 2br + a2 cos2 θ. (4)

Here the relation between the parameter b and charge Q is b = Q2/2M. The horizon
of the KS black hole is determined by ∆KS = 0, and therefore is given by r± = M− b±√
(M− b)2 − a2.

The geodesic Hamilton–Jacobi equation of a KS black hole reads [30]

∂S
∂σ

= −1
2

gµν ∂S
∂xµ

∂S
∂xν

, (5)



Universe 2022, 8, 604 3 of 10

where S, σ is the principal function and an affine parameter, respectively. For the null
geodesics, the corresponding principal function S reads [30]

S(t, r, θ, ϕ) = −Et + Sr(r) + Sθ(θ) + Lz ϕ, (6)

Combining Equation (6) with Equation (5), we obtain two separated parts of the
Hamilton–Jacobi equation [30,31]

Sr(r) = ±
∫ R(r)

∆KS
dr, Sθ(θ) = ±

∫ √
Θ(θ)dθ, (7)

where

R(r) = (aLz − E(r(r + 2b) + a2))2 − ∆KS((Lz − aE)2 +D), (8)

Θ(θ) = D − cos2 θ

(
L2

z

sin2 θ
− a2E2

)
. (9)

The constants E and Lz are the energy and the angular momentum of the photon,
respectively, and D is commonly referred to as the Carter separation constant [30,32,33].

Considering the Hamilton–Jacobi Equation (5), the equations of motion of particles
in the KS spacetime are determined by the following four first order linear differential
equations

ρ2 ṫ =
E(r(r + 2b) + a2)2 − 2MraLz

∆KS
− a2E2 sin2 θ, (10)

ρ2 ϕ̇ = −aE +
Lz

sin2 θ
+

a
∆KS

(r(r + 2b) + a2E− aLz), (11)

ρ2θ̇ = ±
√

Θ(θ), (12)

ρ2ṙ = ±
√

R(r), (13)

3. Shadow Radius of the Kerr–Sen Black Hole

The size and shape of the shadow of a black hole are determined by the unstable
circular photon orbit. For the observer at infinity, the observed shape is also affected by
the inclination angle θ0 of the observer. Consider the circular unstable photon orbit in the
equatorial plane (θ = π/2). The appropriate Lagrangian is

L =
1
2

gµν ẋµ ẋν. (14)

Since the KS spacetime is stationary and axially symmetric, from the conserved quan-
tities of the test particle, we can conclude that

pt =
∂L
∂ṫ

= gtt ṫ + gtϕ ϕ̇ = E, (15)

pϕ =
∂L
∂ϕ̇

= gtϕ ṫ + gϕϕ ϕ̇ = −Lz, (16)

pr =
∂L
∂ṙ

= grr ṙ. (17)
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For the null geodesics in the equatorial plane, the corresponding Hamiltonian is

H = pt ṫ + pϕ ϕ̇ + pr ṙ−L = 0. (18)

Here we will introduce Ve f f as the effective potential of the photon [12] which is
defined as

Ve f f = ṙ2. (19)

Then combining the above definition with Equation (18), we can obtain

Ve f f = −
gtt ṫ2 + 2gtϕ ṫϕ̇ + gϕϕ ϕ̇2

grr
. (20)

For a circular photon orbit, it is required that [34]

Ve f f = 0, V
′
e f f = 0. (21)

By simplifying Equation (21) we can get the following two equations:(
a2(2b + 2M + r) + r(2b + r)2

)
E2 − 4aLz ME− L2

z(2b− 2M + r) = 0, (22)

and

−a2E2M + 2aELz M + 4b3E2 + 8b2E2r + 5bE2r2 + E2r3 − L2
z M = 0. (23)

Note that the black hole shadow radius Rs can be expressed as Rs = Lz/E [15]. Then
Equation (23) is equivalent equals to

(Rs − a)2M− (8b2r + 5br2 + r3 + 4b3) = 0, (24)

which implies that

R±s = a±

√
4b3 + 8b2r±0 + 5b(r±0 )2 + (r±0 )3

M
. (25)

Here r±0 are the solutions of Equation (22) by substituting Equation (25) into Equation (22).
When viewed from the equatorial plane (θ0 = π/2). The typical shadow radius for a
rotating black hole can be defined as [35,36]

Rs =
1
2
(x(r+0 )− x(r−0 )), (26)

here x(r±0 ) denoting the unstable photon orbits [15,35]. In such a situation the definition in
Equation (26) equals to

Rs =
1
2
(R+

s |r+0 − R−s |r−0 ). (27)

Then the typical shadow radius for KS black hole reads

Rs =
1
2

√4b3 + 8b2r+0 + 5b(r+0 )2 + (r+0 )3

M
+

√
4b3 + 8b2r−0 + 5b(r−0 )2 + (r−0 )3

M

. (28)

It is a function of the black hole mass M, the rotating and the charge parameter a, b
respectively. In this paper, we have set the black hole mass M = 1. From Figure 1 it can be
concluded that the shadow radius decreases with the increases of the charge parameter
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b, and for the same value of b, the larger of the rotating parameter a corresponds to the
smaller radius.
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3.8
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4.6

4.8

5.0
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5.4

R s

b

 a=0.2
 a=0.5

Figure 1. The shadow radius of KS black hole for different values of b when the rotating parameter
chosen as a = 0.2 or a = 0.5.

4. QNMs of the Kerr–Sen Black Hole
4.1. Perturbation of the Scalar Field

Considering a massless scalar field H in the KS spacetime, it satisfied the Klein–Gorden
equation

1√−g
∂α(gαβ

√
−g∂β H) = 0. (29)

Teukolsky’s work [37] shows that all the scalar fields which satisfied ∇2H = 0 are
separable in Boyer–Lindquist coordinates, such that from Equation (29) we can get the
master perturbation equation(

a2 sin2 θ − (r2 + 2br + a2)2

∆KS

)
∂2H
∂t2 −

4Mra
∆KS

∂2H
∂t∂ϕ

+

(
1

sin θ
− a2

∆KS

)
∂2H
∂ϕ2 +

∂

∂r

(
∆KS

∂H
∂r

)
+

1
sin θ

∂

∂θ

(
sin θ

∂H
∂θ

)
= 0. (30)

For the scalar field H(t, r, θ, ϕ) in the KS spacetime, we can decompose it as [38,39]

H = e−iωteimϕR(r)S(θ). (31)
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By substituting Equation (31) into Equation (30) we can get two separable equations
for S(θ) and R(r):

1
sin θ

d
dθ

(
sin θ

dS(θ)
dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
+ A`m

)
S(θ) = 0, (32)

d
dr

(
∆KS

dR(r)
dr

)
+

(
(ω(r2 + 2br + a2)− am)2

∆KS
+ 2amω− a2ω2 − A`m

)
R(r) = 0, (33)

where m and A`m are the azimuthal quantum number and the angle eigenvalue, respectively.
A`m is a function of ω. When the parameter a and b take to zero (the Schwarzschild limit),
the angle eigenvalue takes a simple form as A`m = `(`+ 1). In general, the expression
of A`m is quite complicated and we can usually separate A`m into real and imaginary
parts [40]

A`m = AR
`m − iAI

`m. (34)

For Equation (32) it should satisfy the Bohr–Sommerfeld quantization condition [40]

∫ θ+

θ−

√
a2ω2

R cos2 θ − m2

sin2 θ
+ AR

`mdθ = (L− | m |)π. (35)

Here we have set L = `+ 1/2 [40]. θ± are the turning point and the zero point of the
potential. For the angular equation Equation (32), motivated by the WKB analysis, defining
dx = dθ/ sin θ, x = log(tan θ

2 ), Equation (32) can be rewritten as

d2S(θ)
dx2 + (a2ω2

R cos2 θ sin2 θ −m2 + AR
`m sin2 θ)S(θ) = 0. (36)

Equation (32) has two regular singular points, cos θ = +1 and cos θ = −1. The bound-
ary condition for Equation (32) is that Sθ being finite at the singular points. Similar to E. W.
Leaver [41], we can write a solution to Equation (32) as [41]

Sθ = eaω cos θ(1 + cos θ)
|m|
2 (1− cos θ)

|m|
2

∞

∑
n=0

an(1 + cos θ)n. (37)

By substituting Equation (37) into Equation (32), we can get a three-term recurrence
relation:

α0a1 + β0a0 = 0. (38)

αnan+1 + βnan + γnan−1 = 0. n = 1, 2... (39)

For given values of a and m, ωR and A`m can be found by solving the continued
fraction equation. Particularly, in the eikonal limit with `� 1, we can take aωR as a small
value. Then the separation constant AR

`m can be expanded as a Taylor series [41]. That is:

AR
`m =

∞

∑
p=0

fp(aωR)
p ≈ f0 + f2(aωR)

2 + O(aωR)
4 ≈ L2 +

1
2
(

m2

L2 − 1)a2ω2
R. (40)

4.2. Connections between the QNMs and Shadow Radius

By identifying the massless scalar field H with the leading order of the principal
function (6), we can rewrite it as

H = eiS = e−iEteiLzφeiSθ eiSr . (41)



Universe 2022, 8, 604 7 of 10

After comparing Equation (31) with Equation (41), it is not difficult to conclude that

E = ωR, Lz = m. (42)

Moreover, when considering Equations (7), (32) and (36), and using the WKB method
used in Ref. [40], we can further make the identification that

D = AR
`m −m2. (43)

For typical QNMs, it can be expressed as [40]

ω = (`+
1
2
)ΩR(µ)− i(n +

1
2
)ΩI(µ), (44)

with µ ≡ m/(`+ 1/2).
For a rotating black hole, we introduce a new angle ∆ϕprec [40,42], it represents the

Lense–Thiring-precession frequency of the orbit arises because of the rotation of the black
hole [40]. If we define Tθ as a period of motion in the θ direction, then the corresponding
precession frequencies Ωprec is

Ωprec =
∆ϕprec

Tθ
. (45)

Such that in the rotating black hole the real part of the frequency can be written as [14]

ΩR = Ωθ(µ) + µΩprec(µ), (46)

with Ωθ = 2π/Tθ .
Considering a complete cycle of the photon orbit in the θ direction,

δS = Lz∆ϕ− ETθ + δSθ = 0, (47)

where ∆ϕ is the azimuth changed after completing a cycle in the direction. It relates to the
∆ϕprec by

∆ϕ = ∆ϕprec + 2πsgn(Lz), (48)

where sgn(.) evaluates the sign of the argument. For δSθ , consider it with Equation (35),
we can get the equation that

δSθ = 2
∫ θ+

θ−

√
Θdθ = 2

∫ θ+

θ−

√
D − cos2 θ

(
L2

sin2 θ
− a2E2

)
dθ = 2π(L− Lz). (49)

Combining Equations (42), (45)–(49), we found that

L
E
=

1
Ωθ + µΩprec

=
1

ΩR
. (50)

By substituting D = AR
`m − m2 into Equation (40), in large ` case, there is an equa-

tion that √
D + L2

z
E

≈ Rs. (51)
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Moreover, combining Equations (40), (43) and (51), we can get that

L2

E2 =
D + L2

z
E2 +

a2

2

(
1− m2

L2

)
≈ R2

s +
a2

2

(
1− m2

L2

)
, (52)

Collecting all the ingredients, for the shadow radius R+
s and R−s , the connection

between the real part of the QNMs and the shadow radius is [15]

ωR =
1
2
(ωR+ −ωR−) (53)

with ωR± being

ωR± = ±
`+ 1

2√
(R±s )2 + a2

2 (1− µ2)
. (54)

When take the limit that ` � 1, and m = ±` which means µ → 1. Then the above
equation can be reduced to ωR± ≈ `

R±s
, which agrees with the statement in Ref. [15].

We can get the real part of QNMs of KS black hole by use of correspondence Equation (54).
Table 1 shows the QNMs of the black hole obtained by applying geometrical optics approx-
imation to calculate the shadow of the black hole under different values of the parameter
b. With the increase of parameter b, the corresponding shadow radius of the black hole
decreases gradually and the value of QNMs increases.

Table 1. shadow radius of KS black hole for different charge parameter b when a = 0.2.

b ω+
R ω−

R Rs

0.005 16.81283709 −22.97778200 5.17568286

0.02 16.88189993 −23.12877614 5.14917896

0.045 16.99831595 −23.38742770 5.10476553

0.08 17.16644714 −23.76637234 5.04155388

0.125 17.39119052 −24.28492470 4.95857888

0.18 17.68007277 −24.97320521 4.85433954

0.245 17.04378505 −25.87821277 4.72668035

0.32 18.49758147 −27.07611124 4.57245092

0.405 19.06366779 −28.69898429 4.38683720

5. Conclusions

In this paper, we study the connections between the shadow radius and the real part
of QNMs of KS black hole in the eikonal limit, and by using this relationship, we calculate
the corresponding real part of QNMs of KS black hole through the shadow radius. Firstly,
we use the circular photon orbit to calculate the typical shadow radius of KS spacetime
and found that the shadow radius decreases with the increase of the parameters a and b
of KS black holes. Then we discuss the perturbation of the massless scalar field in the KS
background. The corresponding field equation turns out to be separable. Compared with
the case of Kerr black hole, despite the radial equation for R(r) appearing quite different,
the separation function for the θ direction keeps the same as the case of Kerr black hole due
to the same axial symmetry.

Through the comprehensive analysis of the perturbation of the massless scalar field
and the principal Hamilton–Jacobi function, we get the correspondence relation between
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the QNMs and the shadow radius. Through this correspondence, we calculate the QNMs
of KS black hole. In the eikonal limit, our result confirms the formula ωR± ≈ `

R±s
obtained

in Ref. [15]. This is somewhat surprising since in the modified gravity theories, the quasi-
normal modes and the black hole shadow will both be changed. As an output, this result
confirms that the real part of the QNMs corresponding to the unstable circular photon orbit
is still valid for KS black holes.
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