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Abstract: In this article, a Ricci soliton and ∗-conformal Ricci soliton are examined in the framework
of trans-Sasakian three-manifold. In the beginning of the paper, it is shown that a three-dimensional
trans-Sasakian manifold of type (α, β) admits a Ricci soliton where the covariant derivative of
potential vector field V in the direction of unit vector field ξ is orthogonal to ξ. It is also demonstrated
that if the structure functions meet α2 = β2, then the covariant derivative of V in the direction of ξ is
a constant multiple of ξ. Furthermore, the nature of scalar curvature is evolved when the manifold of
type (α, β) satisfies ∗-conformal Ricci soliton, provided α 6= 0. Finally, an example is presented to
verify the findings.
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1. Introduction

Richard S. Hamilton introduced the concept of Ricci flow (for details see [1]) which
was named after the great Italian mathematician Gregorio Ricci-Curbastro. Later, Grigori
Perelman [2–4] found it very useful to solve Poincare conjecture. If we take a smooth
closed (compact without boundary) Riemannian manifold M equipped with a smooth
Riemannian metric g then the Ricci flow is defined by the geometric evolution equation,

∂g(t)
∂t

= −2S(g(t)), (1)

where S is the Ricci curvature tensor of the manifold and g(t) is a one-parameter family of
metrics on M.

A Riemannian manifold (M, g) is called a Ricci soliton if there exists a vector field V
and a constant λ such that the following equation holds, [5]

1
2
LV g + S + λg = 0, (2)

where LV denotes Lie derivative along the direction of V. The vector field V is called the
potential vector field and λ is called the soliton constant. The Ricci soliton, which is a
natural extension of the Einstein manifold, is a self-similar solution of Ricci flow. When
establishing the characteristics of the soliton, the potential vector field V and the soliton
constant λ are crucial factors. According to whether λ < 0, λ = 0 or λ > 0, the soliton is
said to be shrinking, steady or expanding. The Ricci soliton reduces to Einstein manifold if
V is Killing vector field. Compact Ricci solitons are the fixed points of the Ricci flow (1)
projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings,
and often arise as blow-up limits for the Ricci flow on compact manifolds.
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By simply generalizing the classical Ricci flow equation and changing the unit volume
constraint to a scalar curvature constraint, in 2005 A. E. Fischer [6] introduced conformal
Ricci flow. The conformal Ricci flow equation was given by

∂g
∂t

+ 2(S +
g
n
) =− pg,

r(g) =− 1,

where g is a dynamically evolving metric, r is the scalar curvature, p is the scalar non-
dynamical field and n is the dimension of the manifold. The conformal Ricci soliton, which
is an extension of the Ricci soliton, was introduced by N. Basu and A. Bhattacharyya [7] in
2015 in relation to the conformal Ricci flow equation. The conformal Ricci soliton equation
was given by,

LV g + 2S + [2λ− (p +
2
n
)]g = 0. (3)

The definition of the Ricci soliton was modified in 2014 by G. Kaimakamis and K.
Panagiotidou [8] who substituted the ∗-Ricci tensor S∗, introduced by S. Tachibana [9] and
T. Hamada [10], respectively, for the Ricci tensor S. The ∗-Ricci tensor S∗ is defined by

S∗(X, Y) =
1
2
(trace{φ.R(X, φY)}),

for arbitrary vector fields X and Y on M, where R is the Riemannian curvature tensor and
φ is a (1, 1) tensor field. Within the context of real hypersurfaces of a complex space form,
the ∗-Ricci soliton notion has been applied. A pseudo-Riemannian metric g is called a
∗-Ricci soliton if there exists a constant λ and a vector field V such that,

LV g + 2S∗ + 2λg = 0.

Note that, ∗-Ricci soliton is trivial if the vector field V is Killing, and in this case,
the manifold becomes ∗-Einstein. By a ∗-Einstein manifold we mean that the ∗-Ricci ten-
sor (S∗) is proportional to the metric g. Thus, it is considered a natural generalization of
∗-Einstein metric. A ∗-Ricci soliton is said to be almost ∗-Ricci soliton if λ is a smooth func-
tion on M. Moreover, an almost ∗-Ricci soliton is called shrinking, steady, and expanding
according to as λ is negative, zero, and positive, respectively. It was demonstrated by G.
Kaimakamis et al. [8] that a real hypersurface in a complex projective space does not admit
a ∗-Ricci soliton by studying real hypersurfaces of a non-flat complex space that admit a
∗-Ricci soliton whose potential vector field is the structure vector field. They also proved
that a real hypersurface of complex hyperbolic space admitting a ∗-Ricci soliton is locally
congruent to a geodesic hypersphere.

With the aid of (3), P. Majhi and D. Dey [11] further modified the aforementioned
definition of ∗-Ricci soliton in 2020 and defined ∗-conformal Ricci soliton as follows,

LV g + 2S∗ + [2λ− (p +
2
n
)]g = 0. (4)

Ricci solitons have been studied in many contexts: on Kähler manifolds [12], on con-
tact and Lorentzian manifolds [13,14], on K-contact manifolds [15], etc. by many au-
thors. Later, H. G. Nagaraja and C. R. Premalatha [16] studied the nature of Ricci soliton
on a three-dimensional trans-Sasakian manifold; C. Cǎlin and M. Crasmareanu [17] on
f-Kenmotsu manifold; C. He and M. Zhu [18] on Sasakian manifold and G. Ingalahalli
and C. S. Bagewadi [19] on α-Sasakian manifold. Recently, in 2017, Y. Wang [20] proved
that if a three-dimensional cosymplectic manifold M3 admits a Ricci soliton, then either
M3 is locally flat or the potential vector field is an infinitesimal contact transformation.
Furthermore, S. Pahan and A. Bhattacharyya gave some insight into the trans-Sasakian
manifold [21]. In 2016, T. Dutta et al. studied conformal Ricci soliton on a three-dimensional
trans-Sasakian manifold [22].
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As shown in the literature, ∗-Ricci soliton on contact geometry was studied by many
authors: on Sasakian and (κ, µ)-contact manifold by A. Ghosh and D. S. Patra [23], on (κ, µ)′-
almost Kenmotsu manifolds by X. Dai, Y. Zhao and U. C. De [24], on contact 3-manifolds
by Y. Wang [25], etc. It is worthy to mention that in [26], D. Dey and P. Majhi considered
∗-Ricci soliton on a three-dimensional trans-Sasakian manifold and proved that if the metric
of the manifold represents ∗-Ricci soliton and if it satisfies a certain condition then the
manifold reduces to a β-Kenmotsu manifold. Furthermore, very recently generalizations of
∗-Ricci soliton on contact geometry were studied by [5,27–31]. Moreover, some of the latest
connected studies can be seen in [32–91].

Motivated from the above-mentioned well-praised works we studied the behaviour
of Ricci soliton and ∗-conformal Ricci soliton on a three-dimensional trans-Sasakian mani-
fold. In the later sections, we revisit some definitions and important properties of three-
dimensional trans-Sasakian manifold and after that the main result of this paper, containing
two theorems are described. We also provide an example to justify our findings.

Physical Motivation

The Ricci soliton has extensive applications, not only in mathematical physics but also
in quantum cosmology, quantum gravity, and black holes as well. The Ricci soliton can be
considered as a kinematic solution in fluid space–time, whose profile develops a charac-
terization of spaces of constant curvature along with the locally symmetric spaces. It also
expresses geometrical and physical applications with relativistic viscous fluid space–time
admitting heat flux and stress, dark and dust fluid general relativistic space–time, and ra-
diation era in general relativistic space–time. Ricci soliton has applications in the renor-
malization group (RG) flow for the bosonic nonlinear sigma model from two-dimensional
space–time to a curved Riemannian tangent manifold. A two-dimensional Ricci soliton can
be used to discuss the behavior of mass under Ricci flow. Ricci soliton is important as it can
help in understanding the concepts of energy or entropy in general relativity. This property
is the same as that of the heat equation due to which an isolated system loses the heat for
thermal equilibrium.

As an application to cosmology and general relativity by investigating the kinetic
and potential nature of relativistic space–time, we can present a physical model of three
classes, namely, shrinking, steady, and expanding of perfect and dust fluid solutions of
Ricci solitons space–time. The first case shrinking (λ < 0) which exists on a minimal time
interval −1 < t < b where b < 1, steady (λ = 0) which exists for all time or expanding
(λ > 0) which exists on maximal time interval a < t < 1, a > −1. These three classes give
examples of ancient, eternal, and immortal solutions, respectively. From [92,93] (briefly
discussed in the above section), we can think more about the physical applications of
Ricci soliton.

2. Preliminaries

According to D. E. Blair [94], a differentiable manifold M of dimension (2n + 1) is said
to have an almost contact structure or (φ, ξ, η) structure if M permits a (1, 1) tensor field φ,
a vector field ξ, an 1-form η satisfying

φ2 = −I + η ⊗ ξ, (5)

η(ξ) = 1, (6)

where I is the identity mapping. A Riemannian metric g is said to be a compatible metric if
it satisfies,

g(φX, φY) = g(X, Y)− η(X)η(Y), (7)

for any vector fields X and Y on M. A manifold having almost contact structure along with
compatible Riemannian metric is called almost contact metric manifold.
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In an almost contact metric manifold the following conditions are satisfied for arbitrary
X, Y ∈ χ(M), where χ(M) denotes the set of all vector fields on M [94]:

φξ = 0, (8)

η ◦ φ = 0, (9)

g(X, ξ) = η(X), (10)

g(φX, Y) = −g(X, φY). (11)

Let M be a (2n + 1)-dimensional almost contact manifold. Then we define an almost
complex structure J on M × R by J(X, f d

dt ) = (φX − f ξ, η(X) d
dt ), where X is a tangent

to M, t is the coordinate on R, and f a C∞ function on M ×R. Clearly, J2 = −I. If J is
integrable then the almost contact structure is said to be normal. The normality of an almost
contact metric manifold is equivalent to the vanishing of the tensor field [φ, φ] + 2dη ⊗ ξ,
where [φ, φ] is the Nijenhuis torsion tensor of φ (for more details see [94]).

In 1985, J. A. Oubiña [95] introduced a new class of almost contact metric manifolds
known as trans-Sasakian manifolds. Trans-Sasakian manifolds arose naturally from the
classification of almost contact metric structures and they appear as a natural generalization
of both Sasakian and Kenmotsu manifolds. An almost contact metric manifold M is called a
trans-Sasakian manifold if (M×R, J, G), where G is the product metric on M×R, belongs
to the class W4 (see [96]). If there are smooth functions α, β on an almost contact metric
manifold (M, φ, ξ, η, g) satisfying [97]

(∇Xφ)Y = α[g(X, Y)ξ − η(Y)X] + β[g(φX, Y)ξ − η(Y)φX], (12)

where X, Y ∈ χ(M) are arbitrary and ∇ is the Levi-Civita connection of g on M, then
the manifold is called trans-Sasakian manifold of type (α, β). α, β are called structure
functions of the manifold. Trans-Sasakian manifolds of type (0, 0), (α, 0), (0, β) are called
cosymplectic, α-Sasakian, and β-Kenmotsu manifolds, respectively. Then from (12), we can
deduce that,

(∇Xη)(Y) = −αg(φX, Y) + βg(φX, φY), (13)

∇Xξ = −αφX + β(X− η(X)ξ). (14)

J. C. Marrero [98] showed that a trans-Sasakian manifold of dimension ≥ 5 is either
cosymplectic or α-Sasakian or β-Kenmotsu. Therefore, proper trans-Sasakian manifold
exists only for dimension 3. In a 3-dimensional trans-Sasakian manifold the following
relations hold, [21]

R(X, Y)Z =
( r

2
+ 2ξβ− 2(α2 − β2)

)
[g(Y, Z)X− g(X, Z)Y]− g(Y, Z)[

( r
2
+ ξβ− 3(α2 − β2)

)
η(X)ξ − η(X)(φDα− Dβ) + ((Xβ) + (φX)α)ξ] + g(X, Z)[

( r
2
+ ξβ− 3(α2 − β2)

)
η(Y)ξ − η(Y)(φDα− Dβ) + ((Yβ) + (φY)α)ξ)]− [((Zβ) + (φZ)α)η(Y) +

((Yβ) + (φY)α)η(Z) +
( r

2
+ ξβ− 3(α2 − β2)

)
η(Y)η(Z)]X + [((Zβ) + (φZ)α)η(X)

+((Xβ) + (φX)α)η(Z) +
( r

2
+ ξβ− 3(α2 − β2)

)
η(X)η(Z)]Y, (15)

S(X, Y) =
( r

2
+ (ξβ)− (α2 − β2)

)
g(X, Y)−

( r
2
+ (ξβ)− 3(α2 − β2)

)
η(X)η(Y)−

((Yβ) + (φY)α)η(X)− ((Xβ) + (φX)α)η(Y), (16)

S(X, ξ) = (2(α2 − β2)− (ξβ))η(X)− (Xβ)− (φX)α, (17)

where D f denotes the gradient of the smooth function f defined on M and R, S, r are
the Riemannian curvature tensor, Ricci tensor of type (0, 2), and scalar curvature of the
manifold, respectively, and α, β are smooth functions on the manifold.
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Here in this paper, we restricted the smooth functions α, β to be constant functions.
Then we obtained some special relations compatible with our restrictions,

R(X, Y)ξ = (α2 − β2)[η(Y)X− η(X)Y], (18)

S(X, Y) =
( r

2
− (α2 − β2)

)
g(X, Y)−

( r
2
− 3(α2 − β2)

)
η(X)η(Y), (19)

S(X, ξ) = 2(α2 − β2)η(X), (20)

QX =
( r

2
− (α2 − β2)

)
X−

( r
2
− 3(α2 − β2)

)
η(X)ξ, (21)

where Q is the Ricci operator given by S(X, Y) = g(QX, Y). The expression of ∗-Ricci
tensor (for details see Lemma 3.1 of [26]) on a three-dimensional trans-Sasakian manifold
for arbitrary vector fields X and Y of χ(M) is given by,

S∗(X, Y) =
( r

2
− 2(α2 − β2)

)
[g(X, Y)− η(X)η(Y)]. (22)

3. Results

In this section, we consider the metric of a three-dimensional trans-Sasakian manifold
as a Ricci soliton and a ∗-conformal Ricci soliton and prove the following two results.

Theorem 1. Let M be a three-dimensional trans-Sasakian manifold of type (α, β) admitting a Ricci
soliton where the structure functions α and β are non-zero constant. Then the following relations
are satisfied,

1. If ∇ξV is orthogonal to ξ, then the soliton is shrinking for α2 < β2, steady for α2 = β2,
and expanding for α2 > β2.

2. If α2 = β2, then the covariant derivative of the potential vector field V in the direction of ξ is
a constant multiple of ξ.

Proof. In a three-dimensional trans-Sasakian manifold where α and β are non-zero constant,
we know from (21) that the Ricci operator can be written as,

QX =
( r

2
− (α2 − β2)

)
X−

( r
2
− 3(α2 − β2)

)
η(X)ξ, (23)

where X ∈ χ(M) is any vector field. The aforementioned equation implies that it is
an η-Einstein manifold. Now taking the covariant derivative of (23) along an arbitrary
Y ∈ χ(M), we have

(∇YQ)X =
1
2
(Yr)X− 1

2
(Yr)η(X)ξ −

( r
2
− 3(α2 − β2)

)
[−αg(φY, X)ξ + βg(X, Y)ξ−

αη(X)(φY) + βη(X)Y− 2βη(X)η(Y)ξ]. (24)

Contracting X and using the well-known formula trace{X → (∇XQ)Y} = 1
2 (Yr)

in (24), we obtain
ξr = −2rβ + 12(α2 − β2)β. (25)

Using (19) in the definition of Ricci soliton (2), we acquire

(LV g)(Y, Z) = (2λ− r + 2(α2 − β2))g(Y, Z) + (r− 6(α2 − β2))η(Y)η(Z), (26)

for any vector fields Y, Z ∈ χ(M). Now taking the covariant derivative of (26) along an
arbitrary vector field X ∈ χ(M),

(∇XLV g)(Y, Z) =− (Xr)g(Y, Z) + (Xr)η(Y)η(Z) + (r− 6(α2 − β2))[−αg(φX, Y)η(Z)

+ βg(φX, φY)η(Z)− αg(φX, Z)η(Y) + βg(φX, φZ)η(Y)]. (27)
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Again for any vector fields X, Y, Z ∈ χ(M), we know [99]

(LV∇X g−∇XLV g−∇[V,X]g)(Y, Z) = −g((LV∇)(X, Y), Z)− g((LV∇)(X, Z), Y).

Since ∇ is Riemannian metric connection, ∇g = 0. So the above equation reduces
to, (∇XLV g)(Y, Z) = g((LV∇)(X, Y), Z) + g((LV∇)(X, Z), Y). Again, using symmetry
of (LV∇), i.e., (LV∇)(X, Y) = (LV∇)(Y, X), we rewrite the last relation as

2g((LV∇)(X, Y), Z) = (∇XLV g)(Y, Z) + (∇YLV g)(Z, X)− (∇ZLV g)(X, Y). (28)

Using (27) in the above equation, we obtain

(LV∇)(X, Y) =− 1
2
(Xr)Y− 1

2
(Yr)X +

1
2

g(φX, φY)Dr +
1
2
(Xr)η(Y)ξ +

1
2
(Yr)η(X)ξ

+ (r− 6(α2 − β2))[−αη(Y)φX− αη(X)φY + βg(φX, φY)ξ], (29)

for all vector fields X and Y on M. Covariant derivative of (29) along an arbitrary vector
field yields,

(∇XLV∇)(Y, Z) = −1
2

g(Z,∇XDr)Y− 1
2

g(Y,∇XDr)Z +
1
2

g(φY, φZ)(∇XDr)−

αη(Z)(Xr)φY− αη(Y)(Xr)φZ +
1
2
[(Zr)η(Y) + (Yr)η(Z)](∇Xξ) +

1
2
[g(Y,∇XDr)η(Z)−

α(Yr)g(φX, Z) + βg(φX, φZ)(Yr) + g(Z,∇XDr)η(Y)− α(Zr)g(φX, Y) + βg(φX, φY)(Zr)

+ 2βg(φY, φZ)(Xr)]ξ +
1
2
[αg(φX, Y)η(Z)− βg(φX, φY)η(Z) + αg(φX, Z)η(Y)−

βg(φX, φZ)η(Y)]Dr + (r− 6(α2 − β2))[{α2g(φX, Z)− αβg(φX, φZ)}φY + {α2g(φX, Y)−
αβg(φX, φY)}φZ− αη(Z)((∇Xφ)Y)− αη(Y)((∇Xφ)Z) + βg(φY, φZ)(∇Xξ)+

{αβg(φX, Y)η(Z)− β2g(φX, φY)η(Z) + αβg(φX, Z)η(Y)− β2g(φX, φZ)η(Y)}ξ].

From K. Yano [99], we know (LV R)(X, Y)Z = (∇XLV∇)(Y, Z)− (∇YLV∇)(X, Z).
Using this formula in the above equation we obtain,

(LV R)(X, Y)Z =
1
2

g(Z,∇YDr)X− 1
2

g(Z,∇XDr)Y− 1
2
[α(Yr)g(φX, Z) + β(Yr)g(φX, φZ)

− g(Z,∇XDr)η(Y) + α(Zr)g(φX, Y)− α(Xr)g(φY, Z)− βg(φY, φZ)(Xr) + g(Z,∇YDr)

η(X)− α(Zr)g(φY, X)]ξ + αη(Z)(Yr)φX− αη(Z)(Xr)φY + α{η(X)(Yr)− η(Y)(Xr)}φZ

+
1
2
{αg(φX, Y)η(Z) + αg(X, φY)η(Z)− αg(φX, Z)η(Y)− βg(φX, φZ)η(Y)− αg(φY, Z)

η(X) + βg(φY, φZ)η(X)}Dr +
1
2
{(Yr)η(Z) + (Zr)η(Y)}(∇Xξ)− 1

2
{(Xr)η(Z)+

(Zr)η(X)}(∇Yξ) +
1
2

g(φY, φZ)(∇XDr)− 1
2

g(φX, φZ)(∇YDr) + (r− 6(α2 − β2))

[{αβg(φY, φZ)− α2g(φY, Z)}φX− {αβg(φX, φZ)− α2g(φX, Z)}φY + 2α2g(φX, Y)φZ+

{2αβg(φX, Y)η(Z) + αβg(φX, Z)η(Y)− β2g(φX, φZ)η(Y)− αβg(φY, Z)η(X)+

β2g(φY, φZ)η(X)}ξ + βg(φY, φZ)(∇Xξ)− β(∇Yξ)g(φX, φZ)− αη(Z)((∇Xφ)Y)−
αη(Y)((∇Xφ)Z) + αη(Z)((∇Yφ)X) + αη(X)((∇Yφ)Z). (30)

The above equation holds for any X, Y, Z ∈ χ(M). Contracting X in (30), we achieve

(LVS)(Y, Z) =
(

∆r
2
− 6α4 + 12α2β2 − 6β4 + rα2 − rβ2

)
g(φY, φZ), (31)

for any Y, Z ∈ χ(M). Again, from (19), we obtain
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(LVS)(Y, Z) =
1
2

g(φY, φZ)(Vr) +
( r

2
− (α2 − β2)

)
{g(∇YV, Z) + g(Y,∇ZV)}−( r

2
− 3(α2 − β2)

)
{η(Z)((∇Vη)Y) + η(Y)((∇Vη)Z) + η(Z)η(∇YV)

+ η(Y)η(∇ZV)}. (32)

Comparison of (31) with (32) yields,(
∆r
2
− 6α4 + 12α2β2 − 6β4 + rα2 − rβ2

)
g(φY, φZ) =

1
2
{g(φY, φZ)(Vr) +

( r
2
− (α2 − β2)

)
{g(∇YV, Z) + g(Y,∇ZV)} −

( r
2
− 3(α2 − β2)

)
{η(Z)((∇Vη)Y) + η(Y)((∇Vη)Z)+

η(Z)η(∇YV) + η(Y)η(∇ZV)}. (33)

Now, letting Y = Z = ξ gives rise to (α2 − β2)η(∇ξV) = 0. From here, two cases
arise, either η(∇ξV) = 0 or (α2 − β2) = 0. From the definition of Ricci soliton (2), we have

1
2
(g(∇XV, Y) + g(∇YV, X)) + S(X, Y) = λg(X, Y), (34)

for any vector fields X and Y. In first case, η(∇ξV) = 0 which implies ∇ξV is orthogonal
to ξ, putting X = Y = ξ in (34) gives 2(α2 − β2) = λ. It directly implies that the soliton is
shrinking if α2 < β2, steady if α2 = β2 and expanding if α2 > β2.

For the second case where α2 = β2, then it follows directly from (34) that ∇ξV = λξ,
i.e., the covariant derivative of the potential vector field V in the direction of ξ is λ-multiple
of ξ.

Theorem 2. Let M be a three-dimensional trans-Sasakian manifold of type (α, β) where the
structure functions α and β are constant with α 6= 0. If the metric g represents a ∗-conformal Ricci

soliton then the scalar curvature of the manifold is given by r =
(

1− β2

α2

)(
p
2 + 1

3 − λ + 4α2
)

.

Proof. Since the metric g represents a ∗-conformal Ricci soliton, using (22) in the definition
of ∗-conformal Ricci soliton (4), we obtain

(LV g)(X, Y) =
(

p +
2
3
+ 4(α2 − β2)− r− 2λ

)
g(X, Y)+ (r− 4(α2− β2))η(X)η(Y), (35)

for all vector fields X and Y on M. If we consider covariant derivative with respect to
arbitrary vector field Z, then (35) reduces to

(∇ZLV g)(X, Y) =(Zr)[η(X)η(Y)− g(X, Y)]− (r− 4(α2 − β2))[αg(φZ, X)η(Y)

− βg(φX, φZ)η(Y) + αg(φZ, Y)η(X)− βg(φY, φZ)η(X)], (36)

for all X, Y ∈ χ(M). Using (11) and (28) in (36), we obtain

(LV∇)(X, Y) =
1
2
(Dr)[g(X, Y)− η(X)η(Y)]− 1

2
(Xr)[Y− η(Y)ξ]− 1

2
(Yr)[X− η(X)ξ]

+ (r− 4(α2 − β2))[βg(φX, φY)ξ − αη(Y)(φX)− αη(X)(φY)], (37)

for arbitrary vector fields X and Y on M. Setting Y = ξ in (37), we have

(LV∇)(X, ξ) = −1
2
(ξr)[X− η(X)ξ]− α(r− 4(α2 − β2))(φX). (38)

Applying covariant derivative along an arbitrary vector field Y and making use
of (12)–(14), we obtain
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(∇YLV∇)(X, ξ) =α(LV∇)(X, φY)− β(LV∇)(X, Y)− 1
2
(Y(ξr))[X− η(X)ξ]+

1
2
(ξr)[αg(φX, Y)ξ + βg(φX, φY)ξ − αη(X)(φY) + βη(X)Y− βη(Y)X]

− α(Yr)(φX)− α(r− 4(α2 − β2))[αg(X, Y)ξ − αη(X)Y + βg(φY, X)ξ

− βη(X)(φY) + βη(Y)(φX)]. (39)

From K. Yano [99], we know (LV R)(X, Y)Z = (∇XLV∇)(Y, Z) − (∇YLV∇)(X, Z).
Using (39) in this formula, we obtain

(LV R)(X, Y)ξ =α(LV∇)(φX, Y)− α(LV∇)(X, φY)− 1
2
(X(ξr))[Y− η(Y)ξ] +

1
2
(Y(ξr))

[X− η(X)ξ] +
1
2
(ξr)[2αg(X, φY)ξ − αη(Y)(φX) + αη(X)(φY)+

2βη(Y)X− 2βη(X)Y]− α(Xr)(φY) + α(Yr)(φX)− α(r− 4(α2 − β2))

[αη(X)Y− αη(Y)X + 2βg(φX, Y)ξ + 2βη(X)(φY)− 2βη(Y)(φX)].

Setting Y = ξ in the foregoing equation, we acquire

(LV R)(X, ξ)ξ =
1
2
(ξ(ξr))[X− η(X)ξ] + β(ξr)[X− η(X)ξ]−

2α(r− 4(α2 − β2))[−αX + αη(X)ξ − β(φX). (40)

Again, Lie differentiation of Equation (18) along soliton vector field V and use of (15)
and (18) leads to,

(LV R)(X, ξ)ξ = (α2 − β2)[g(X,LVξ)ξ − ((LVη)X)ξ − 2η(LVξ)X], (41)

which holds for arbitrary vector field X on M. Setting Y = ξ in (35) implies,

(LVη)X− g(X,LVξ) =

(
p +

2
3
− 2λ

)
η(X). (42)

Taking (42) into account, Lie derivative of η(ξ) = 1 along the direction of V leads to

2η(LVξ) = −
(

p +
2
3
− 2λ

)
. (43)

After using (42) and (43), the Equation (41) reduces to

(LV R)(X, ξ)ξ = (α2 − β2)

(
p +

2
3
− 2λ

)
[X− η(X)ξ], (44)

for all X ∈ χ(M). Comparing (40) with (44) we acquire,

(α2 − β2)

(
p +

2
3
− 2λ

)
[X− η(X)ξ] =

1
2
(ξ(ξr))[X− η(X)ξ] + β(ξr)

[X− η(X)ξ]− 2α(r− 4(α2 − β2))[−αX + αη(X)ξ − β(φX), (45)

for any X ∈ χ(M). Inner product of the foregoing equation with arbitrary vector field
Y gives, [

1
2
(ξ(ξr)) + β(ξr) + 2α2(r− 4(α2 − β2))− (α2 − β2)

(
p +

2
3
− 2λ

)]
[g(X, Y)− η(X)η(Y)] + 2αβ(r− 4(α2 − β2))g(φX, Y) = 0. (46)
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Anti-symmetrizing the foregoing equation yields,[
1
2
(ξ(ξr)) + β(ξr) + 2α2(r− 4(α2 − β2))− (α2 − β2)

(
p +

2
3
− 2λ

)]
g(φX, φY) = 0. (47)

Since this equation holds for arbitrary vector fields φX and φY and as we know from (25)
that ξr = −2rβ + 12β(α2− β2) holds in a three-dimensional trans-Sasakian manifold, we con-

clude that the scalar curvature of the manifold satisfies r =
(

1− β2

α2

)(
p
2 + 1

3 − λ + 4α2
)

.

4. Example of a Three-Dimensional Trans-Sasakian Manifold Admitting Ricci Soliton

In this section, we provide an example to verify our outcomes.

Example 1. We consider the manifold as M = {(x, y, z) ∈ R3 : y 6= 0}, where (x, y, z) are the
standard coordinates in R3. The vector fields as defined bellow,

e1 := e2z ∂

∂x
, e2 := e2z ∂

∂y
, e3 :=

∂

∂z
,

are linearly independent at each point of M. We define the Riemannian metric g as,

gij = g(ei, ej) :=

{
1, if i = j and i, j ∈ {1, 2, 3}
0, otherwise.

Let ξ = e3. Then the 1-form η is defined by η(Z) := g(Z, e3), for arbitrary Z ∈ χ(M), then
we have the following relations,

η(e1) = 0, η(e2) = 0, η(e3) = 1.

Let us define the (1,1)-tensor field φ as

φe1 := e2, φe2 := −e1, φe3 := 0,

then the relations (5), (6), and (7) are satisfied. Thus, (φ, ξ, η, g) defines an almost contact metric
structure on M. We can now easily conclude,

[e1, e2] = 0, [e2, e3] = −2e2, [e1, e3] = −2e1.

Let ∇ be the Levi-Civita connection of g. Then from Koszul’s formula, 2g(∇XY, Z) =
Xg(Y, Z) + Yg(Z, X)− Zg(X, Y)− g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y]), we can have

∇e1 e1 = 2e3, ∇e1 e2 = 0, ∇e1 e3 = −2e1,

∇e2 e1 = 0, ∇e2 e2 = 2e3, ∇e2 e3 = −2e2,

∇e3 e1 = 0, ∇e3 e2 = 0, ∇e3 e3 = 0.

From here we can easily verify that the relations (12) and (13) are satisfied. Hence M becomes
trans-Sasakian manifold of type (0,−2). The components of Riemannian curvature tensor are
given by,

R(e1, e2)e1 = −4e3, R(e1, e2)e2 = −4e1, R(e1, e2)e3 = 0,

R(e1, e3)e1 = 4e2, R(e1, e3)e2 = 0, R(e1, e3)e3 = −4e1,

R(e2, e3)e1 = 0, R(e2, e3)e2 = −4e2, R(e2, e3)e3 = −4e2.

And the components of Ricci tensor are given by,

S(e1, e1) = 0, S(e2, e2) = 0, S(e3, e3) = −8.
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From here we can easily deduce that the scalar curvature of the manifold r = ∑3
i=1 S(ei, ei) = −8.

Let us define a vector field V by, V := ξ. Then we can obtain,

(LV g)(e1, e1) = −4, (LV g)(e2, e2) = −4, (LV g)(e3, e3) = 0.

Contracting (2) and using the result r = −8, we deduce λ = 4. So g defines a Ricci soliton on
this trans-Sasakian manifold for λ = 4.

5. Conclusions

In this article, we used the methods of local Riemannian geometry to interpret solutions
of (2) and (4) and impregnate Einstein metrics in a large class of metrics of Ricci soliton
and ∗-conformal Ricci soliton on a trans-Sasakian manifold of the third dimension. Our
results will not only play an indispensable and incitement role in contact geometry but also
make a significant and motivational contribution in the area of further research of complex
geometry, especially on Kähler and para-Kähler manifolds, etc. Some questions arise from
our article to study in further research:

(i) What will be the outcomes if we consider the structure functions α and β to satisfy
φDα = Dβ?

(ii) Do the above results hold without assuming any restrictions on structure functions?
(iii) How do the aforementioned outcomes differ for the ∗-η Ricci soliton and the ∗-conformal

η-Ricci soliton?
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40. Li, Y.; Şenyurt, S.; Özduran, A.; Canlı, D. The Characterizations of Parallel q-Equidistant Ruled Surfaces. Symmetry 2022, 14, 1879.

[CrossRef]
41. Li, Y.; Haseeb, A.; Ali, M. LP-Kenmotsu manifolds admitting η-Ricci solitons and spacetime. J. Math. 2022, 2022, 6605127.

[CrossRef]
42. Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Timelike Circular Surfaces and Singularities in Minkowski 3-Space. Symmetry 2022, 14, 1914.

[CrossRef]
43. Li, Y.; Alluhaibi, N.; Abdel-Baky, R.A. One-Parameter Lorentzian Dual Spherical Movements and Invariants of the Axodes.

Symmetry 2022, 14, 1930. [CrossRef]
44. Li, Y.; Prasad, R.; Haseeb, A.; Kumar, S.; Kumar, S. A Study of Clairaut Semi-Invariant Riemannian Maps from Cosymplectic

Manifolds. Axioms 2022, 11, 503. [CrossRef]
45. Li, Y.; Nazra, S.H.; Abdel-Baky, R.A. Singularity Properties of Timelike Sweeping Surface in Minkowski 3-Space. Symmetry 2022,

14, 1996. [CrossRef]
46. Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2022,

7, 20213–20229. [CrossRef]

http://dx.doi.org/10.1155/2013/412593
http://dx.doi.org/10.1007/s00022-008-2004-5
http://dx.doi.org/10.5402/2012/421384
http://dx.doi.org/10.1515/ms-2017-0026
http://dx.doi.org/10.1134/S1995080216020128
http://dx.doi.org/10.15672/HJMS.20164514287
http://dx.doi.org/10.1142/S0219887818501207
http://dx.doi.org/10.1515/math-2019-0056
http://dx.doi.org/10.2996/kmj/1594313553
http://dx.doi.org/10.1007/s11587-021-00667-0
http://dx.doi.org/10.1142/S0219887822501213
http://dx.doi.org/10.1080/1726037X.2020.1856339
http://dx.doi.org/10.1016/j.geomphys.2021.104339
http://dx.doi.org/10.1142/S1793557122500358
http://dx.doi.org/10.1016/j.geomphys.2022.104513
http://dx.doi.org/10.3934/math.2022300
http://dx.doi.org/10.1515/math-2022-0048
http://dx.doi.org/10.3934/math.2022671
http://dx.doi.org/10.3390/axioms11070324
http://dx.doi.org/10.1186/s13660-022-02838-5
http://dx.doi.org/10.3390/math10142530
http://dx.doi.org/10.3390/sym14061191
http://dx.doi.org/10.3390/sym14091879
http://dx.doi.org/10.1155/2022/6605127
http://dx.doi.org/10.3390/sym14091914
http://dx.doi.org/10.3390/sym14091930
http://dx.doi.org/10.3390/axioms11100503
http://dx.doi.org/10.3390/sym14101996
http://dx.doi.org/10.3934/math.20221106


Universe 2022, 8, 595 12 of 13

47. Li, Y.; Gur, S.; Senyurt, S. The Darboux trihedrons of timelike surfaces in the Lorentzian 3-space. Int. J. Geom. Methods Mod. Phys.
2022, 1–35. [CrossRef]

48. Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base
curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [CrossRef]
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