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Abstract: We review the distortions of spectra of relic neutrinos due to the interactions with electrons,
positrons, and neutrinos in the early universe. We solve integro-differential kinetic equations for the
neutrino density matrix, including vacuum three-flavor neutrino oscillations, oscillations in electron
and positron background, a collision term and finite temperature corrections to electron mass and
electromagnetic plasma up to the next-to-leading order O(e3). After that, we estimate the effects
of the spectral distortions in neutrino decoupling on the number density and energy density of
the Cosmic Neutrino Background (CνB) in the current universe, and discuss the implications of
these effects on the capture rates in direct detection of the CνB on tritium, with emphasis on the
PTOLEMY-type experiment. In addition, we find a precise value of the effective number of neutrinos,
Neff = 3.044. However, QED corrections to weak interaction rates at order O(e2G2

F) and forward
scattering of neutrinos via their self-interactions have not been precisely taken into account in the
whole literature so far. Recent studies suggest that these neglections might induce uncertainties of
±(10−3–10−4) in Neff.

Keywords: cosmological neutrinos; neutrino physics; physics of the early universe

1. Introduction

The successful hot big bang model after inflation predicts that neutrinos produced in
the early universe still exist in the current universe. After the temperature of the universe
dropped below T ∼ 2 MeV, weak interactions became ineffective and neutrinos would
have decoupled from thermal plasma. Analogous to photons that make up the Cosmic
Microwave Background (CMB), these decoupled neutrinos are called the Cosmic Neutrino
Background (CνB). The existence of these relic neutrinos is confirmed indirectly by the
observations of primordial abundances of light elements from the Big Bang Nucleosynthesis
(BBN), the anisotropies of the CMB and the distribution of Large Scale Structure (LSS) of the
universe. In particular, observations from the Planck satellite impose the severe constraint
on the effective number of relativistic species Neff, which describes the total neutrino energy
in the Standard Model (SM), and the sum of the neutrino masses at 95% CL as [1]

Neff ≡
8
7

(
11
4

)4/3[ ρr

ργ
− 1
]
= 2.99+0.34

−0.33 and ∑ mν < 0.12 eV, (1)

where ργ and ρr are the energy densities of photons and radiation, which is composed of
photons and neutrinos in the SM, respectively.

Future observations of the CνB will be developed both indirectly and directly. In
fact, CMB-S4 observations are expected to determine Neff with a very good precision of
∼0.03 at 68% C.L. [2]. Thus, an estimation of Neff in the SM with 10−3 precision will be
important towards the future CMB-S4 observation. In addition, although it is still very
difficult to observe the CνB in a direct way at present, it is inconceivable that the CνB will
never be directly observed. Among the various discussions on the direct observations, the
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most promising method of direct detection of the CνB is neutrino capture on β-decaying
nuclei [3,4], ν + n→ p + e−, where there is no threshold energy for relic cosmic neutrinos.
In both cases, the theoretical prediction of the relic neutrino spectrum is a crucial ingredient
since the radiation energy density in Neff and the direct detection rates depend on the
spectrum, and their deviations from the SM suggest physics beyond the SM.

Soon after the decoupling of neutrinos, e±-pairs start to annihilate and heat photons
when the temperature of the universe is T ∼ me = 0.511 MeV. If neutrinos decoupled
instantaneously and all electrons and positrons annihilated into photons, the ratio for the
temperatures of cosmic photons and neutrinos would be Tγ/Tν = (11/4)1/3 ' 1.40102,
due to entropy conservation of the universe. However, the temperatures of neutrino
decoupling and e±-annihilations are so close that e±-pairs slightly annihilate into neutrinos,
which leads to non-thermal distortions in neutrino spectra and a less increase in the photon
temperature. These modifications are also parametrized by an increase in Neff from 3.

The non-thermal distortions of relic neutrino spectra and the precise value of Neff have
long been studied by solving kinetic equations for neutrinos, which are the Boltzmann equa-
tions and the continuity equation. First, several studies solved the Boltzmann equations
for neutrino distribution functions [5–12]. Then the kinetic equations were solved with
including finite temperature radiative corrections at leading order O(e2) [13–18], and then
including three-flavor neutrino oscillations the Boltzmann equations for a neutrino density
matrix formalism were solved [19–21]. A fast and precise method to calculate effective
neutrino temperature for all neutrino species and Neff was also proposed [22,23]. Recently,
the authors in ref. [24] pointed out that the finite temperature corrections to electromagnetic
plasma at the next-to-leading order O(e3) are expected to decrease Neff by 10−3. After that,
the present authors found a precise value of Neff = 3.0439 ' 3.044 [25] by solving the
Boltzmann equations for the neutrino density matrix including the corrections to electron
mass and electromagnetic plasma up to O(e3) but neglecting off-diagonal parts derived
from self-interactions of neutrinos. Later, the authors in refs. [26,27] estimate Neff = 3.0440
and 3.0440± 0.0002, respectively, including off-diagonal parts of the collision term derived
by neutrino self-interactions. However, QED corrections to weak interaction rates at the
order O(e2G2

F) and forward scattering of neutrinos via their self-interactions have not been
precisely taken into account in the above references so far. Recent studies [23,28] suggest
that these omissions might still induce uncertainties of ±(10−3 − 10−4) in Neff.

If we observe the CνB in a direct way in addition to its indirect observations, we might
see neutrino decoupling directly. In the current universe, since the average momentum

of the CνB is 〈pν〉 ∼ 0.53 meV �
√

∆m2
21,
√
|∆m2

31|, two massive neutrinos at least are
non-relativistic. Under such a situation, it is quite nontrivial to quantize neutrinos in the
flavor basis. To reveal the contribution of e±-annihilation in neutrino decoupling to the
spectrum of the CνB, we calculated the spectra, number densities and energy densities
for relic neutrinos in the mass-diagonal basis in the current homogeneous and isotropic
universe [25,29].

In this article, we present a review of the distorted spectra of relic cosmic neutrinos
from neutrino decoupling to the current universe based on refs. [25,29]. First, in Section 2,
we describe the kinetic equations for cosmic neutrinos. In Section 3, we present our
results of relic neutrino spectra and Neff. Here we also discuss the uncertainties in Neff. In
Section 4, we calculate the number density and energy density of the CνB in the present
universe. In Section 5, the impact of the distortions of the spectra in neutrino decoupling on
neutrino capture experiments is also discussed. One of such experiments, which is called
the PTOLEMY-type experiment [30,31], uses 100 g of tritium [29,32–35] as a target through
the reaction, νi +

3H→ e− + 3He. Tritium is an appropriate candidate for the target due
to its availability, high neutrino capture cross section, low Q-value and long half lifetime of
t1/2 = 12.32 years. Here we also include the effects of gravitational clustering of the CνB
by our Galaxy and nearby galaxies based on the results in ref. [36]. Finally, conclusions and
discussion are given in Section 6.
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2. Kinetic Equations for Neutrinos in Their Decoupling

To follow relic neutrino spectra from neutrino decoupling to the current homogeneous
and isotropic universe, we first discuss the field operators and the density matrix for
relativistic and non-relativistic neutrinos. Then we introduce the kinetic equations for
neutrinos, which are the Boltzmann equations for the evolution of the neutrino density
matrix known as the quantum kinetic equations. The continuity equations for the evolution
of the total energy density are also introduced.

2.1. Field Operators and Density Matrix

We consider field operators of neutrinos and their density matrices in a homogeneous
and isotropic system. With neutrino masses, we cannot define annihilation and creation
operators for neutrinos in flavor basis due to their off-diagonal masses in the conventional
way, where we interpret these operators as operators that annihilate and create a state with
eigenvalues of energy and momentum. On the other hand, in the mass-diagonal basis, we
can define such annihilation and creation operators, including neutrino masses. We also
compare relic cosmic neutrino spectra obtained in the two bases and confirm their match.

In the ultra-relativistic limit, the field operators for left-handed flavor neutrinos in
terms of 4-component spinors, which are composed of only active states for Majorana
neutrinos and both active and sterile states for Dirac neutrinos, are expanded in terms of
plane wave solutions as

να(x) =
∫ d3 p

(2π)3
√

2p0

(
aα(p, t)upeip·x + b†

α(p, t)vpe−ip·x
)

, (2)

where aα(p, t) = eiHtaα(p)e−iHt and bα(p, t) = e−iHtbα(p)eiHt are annihilation operators
for negative-helicity neutrinos and positive-helicity anti-neutrinos, respectively, and H is
the Hamiltonian. α and p are a flavor index and a three dimensional momentum with
p0 ' |p|, respectively. up (vp) denotes the Dirac spinor for a massless negative-helicity
particle (positive-helicity anti-particle), which is normalized to be u†

pup = v†
pvp = 2p0. The

annihilation and creation operators satisfy the anti-commutation relations,

{aα(p), a†
β(p′)} = {bα(p), b†

β(p′)} = δαβ(2π)3δ(3)(p− p′). (3)

For freely evolving massless neutrinos without any interactions, a0
α(p, t) = aα(p)e−ip0t and

b0
α(p, t) = bα(p)e−ip0t and the Dirac spinors satisfy free Dirac equations, /pu0

p = 0, /pv0
p = 0.

On the other hand, for free massive neutrinos in the flavor basis, a0
α(p, t) and b0

α(p, t)
cannot be expanded in terms of a plane wave with an eigenvalue of their energy due to
off-diagonal neutrino masses. Then we cannot interpret aα(p, t) and bα(p, t) as annihilation
operators except in the ultra-relativistic case.

The density matrices for neutrinos and anti-neutrinos in the flavor basis are defined
through the following expectation values of these operators concerning the initial states,

〈a†
β(p, t)aα(p′, t)〉 = (2π)3δ(3)(p− p′)

(
ρp
)

αβ
,

〈b†
α(p, t)bβ(p′, t)〉 = (2π)3δ(3)(p− p′)

(
ρ̄p
)

αβ
, (4)

where p = |p|. Due to the reversed order of flavor indices in ρ̄p(t), both density matrices
transform in the same way under a unitary transformation of flavor space. Here the
diagonal parts are the usual distribution functions of flavor neutrinos and the off-diagonal
parts represent non-zero in the presence of flavor mixing.
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On the other hand, in the mass-diagonal basis, the field operators for the negative
helicity neutrinos 1 can be expanded as, including neutrino masses,

νi(x) =
∫ d3 p

(2π)3
√

2Ei

(
ai(p, t)u(i)

p eip·x + b†
i (p, t)v(i)p e−ip·x

)
, (5)

where i(= 1, 2, 3) denotes a mass eigenstate, ai(p, t) = eiHtai(p)e−iHt, bi(p, t) = e−iHtbi(p)eiHt,

Ei =
√

p2 + m2
i and mi is the neutrino mass in the mass basis. u(i)

p (v(i)p ) denotes the Dirac
spinor for negative-helicity particles (positive-helicity anti-particles), which is also normalized
to be u(i)

p
†u(i)

p = v(i)p
†v(i)p = 2Ei. For freely evolving neutrinos, a0

i (p, t) = ai(p)e−iEit, b0
i (p, t) =

bi(p)e−iEit and the Dirac spinors satisfy (/p−mi)u
(i),0
p = 0 and (/p + mi)v

(i),0
p = 0. As in the

flavor basis, the commutation relations for ai(p) and bi(p), and the density matrix are defined
in the same way except for the exchange of the subscripts, α↔ i.

The diagonalization of the mass matrix for left-handed neutrinos in the flavor basis is
achieved through the transformations,

να(x) = ∑
i=1,2,3

Uαiνi(x), (6)

where Uαi represents a component of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)
matrix UPMNS. Due to Equation (6), in the ultra-relativistic limit, the relation of the density
matrices in the flavor and the mass bases is described as(

ρp
)

αβ
= ∑

i,j=1,2,3
U∗βjUαi

(
ρp
)

ij (7)

In addition, after neutrino decoupling, the off-diagonal parts of the density matrix
in the mass basis are zero, (ρp)ij ' 0 (i 6= j), since all neutrino interactions are ineffective
and the oscillations do not occur after neutrino decoupling. In this case, the relations of
distribution function in the two bases are simply 2

fνα(p, t) = ∑
i=1,2,3

|Uαi|2 fνi (p, t). (8)

Note that Equation (8) is only valid when neutrinos are relativistic and decoupled
with thermal plasma. Our numerical calculations also confirm Equation (8).

2.2. Boltzmann Equations

In this section, we derive the Boltzmann equations for the neutrino density matrix,
known as quantum kinetic equations, including neutrino oscillations in vacuum, forward
scattering with e±, ν, ν̄-background, corresponding to neutrino oscillations in matter, and
the collision process at tree level. The resulting Boltzmann equations for neutrinos are
summarized in Section 2.5, where we will also discuss the approximations we used in our
numerical calculations.

2.2.1. Boltzmann Equations in a Homogeneous and Isotropic System

The Boltzmann equations for neutrinos, including flavor conversion effects, are de-
rived from the Heisenberg equations for the neutrino density operator,

d
dt

Nαβ(t) = i[H, Nαβ], (9)

where [·, ·] represents the commutator of matrices with a flavor (or mass) index and Nαβ is
the neutrino density operator,

Nαβ = a†
β(p, t)aα(p, t). (10)
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H is the full Hamiltonian in a system, which can be separated into

H = Hfree + Hint, (11)

where Hfree is the free Hamiltonian and Hint is the interaction Hamiltonian. We assume
interactions are enough small that collisions occur individually. Then any fields can be
regarded as free ones except during interactions. When the interaction Hamiltonian can be
treated perturbatively, the density operator evolves at the first order of Hint,

Nαβ(t) ' N0
αβ(t) + i

∫ t

t0

dt′
[

H0
int(t

′), N0
αβ(t)

]
, (12)

where t0 is the initial time and H0
int is the interaction Hamiltonian as a function of freely

evolving fields, which are solutions of free Dirac equations, and N0
αβ(t) is the free density

operator evolved as

N0
αβ(t) = eiHfree(t−t0)Nαβ(t0)e−iHfree(t−t0) (13)

The first order solution (12) includes only neutrino oscillation in vacuum and forward
(momentum conserving) scattering with a medium in the system.

To take into account momentum changing collisions, we consider the evolution
equation for the density operator at second order of Hint, substituting Equation (12) into
Equation (9),

d
dt

Nαβ(t) ' i
[

H0
free(t), N0

αβ(t)
]
+ i
[

H0
int(t), N0

αβ(t)
]
−
∫ t

t0

dt′
[

H0
int(t),

[
H0

int(t
′), N0

αβ(t)
]]

, (14)

and an analogous equation for anti-neutrinos [37], N̄αβ ≡ b†
α(p, t)bβ(p, t), which is not

solved in this article since we assume no lepton asymmetry. Here H0
free is also the free

Hamiltonian as a function of freely evolving fields, where we neglect would-be tiny correc-
tions in the presence of interactions. We also ignore the tiny modification of oscillation and
forward scattering,

[
Hfree,

[
Hint, N0

αβ

]]
compared with

[
H0

free, N0
αβ(t)

]
and

[
H0

int, N0
αβ(t)

]
.

Note that the differential Equation (14) is not closed for both Nfffi and N0
fffi.

To close and simplify the differential Equation (14), we impose additional approxima-
tions. We may set t0 = 0 and t→ ∞ in the integral range since the time step of the change
of Nαβ, t, may be chosen to be small enough compared to the timescale of the evolution of
the universe and large enough compared to the timescale of one collision, t′. In addition,
at t = 0, the free density operator coincides with the full one, N0

αβ(0) = Nαβ(0). Then
Equation (14) can be rewritten as

d
dt

N0
αβ(0) = i

[
H0

free(0), N0
αβ(0)

]
+ i
[

H0
int(0), N0

αβ(0)
]
− 1

2

∫ ∞

−∞
dt′
[

H0
int(0),

[
H0

int(t
′), N0

αβ(0)
]]

. (15)

Thus, the time evolution of the expectation value of N0
αβ(0) concerning the initial state,

ρp(0), is given by

(2π)3δ(0)(0)
d
dt

ρp(0) = i
〈[

H0
free(0), N0

αβ(0)
]〉

+ i
〈[

H0
int(0), N0

αβ(0)
]〉

− 1
2

∫ ∞

−∞
dt′
〈[

H0
int(0),

[
H0

int(t
′), N0

αβ(0)
]]〉

. (16)

Equation (16) will be valid at all times, even at t 6= 0, if in two or more collisions,
the correlation of the particles in each collision is independent. This assumption is called
molecular chaos in the derivation of the Boltzmann equation. In general, n-point correlation
functions are produced by both forward and non-forward collisions. Under the assumption
of molecular chaos, n-point correlation functions are reduced to combinations of two-point
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correlation functions as in ordinary scattering theory. Here two-point correlation functions
correspond to distribution functions and neutrino density matrix.

The first term in the right hand side (RHS) represents neutrino oscillations in vacuum
and the second term represents forward scattering of neutrinos with background in the
system, which is called refractive effects and corresponds to neutrino oscillations in matter.
These two terms do not change neutrino momenta but induce flavor conversions. The third
term represents scattering and annihilation including both momentum conserving and
changing processes, usually rewritten as

−1
2

∫ ∞

−∞
dt′
〈[

H0
int(0),

[
H0

int(t
′), N0

αβ(0)
]]〉
≡ (2π)3δ(3)(0)C

[
ρp(t)

]
, (17)

where C
[
ρp(t)

]
is called the collision term. In the following sections, we calculate the

formulae of these three terms. The resulting Boltzmann equations for the neutrino density
matrix are summarized in Section 2.5.

2.2.2. Neutrino Oscillation in Vacuum

The calculation of the first term in the RHS of Equation (16) is well established in the
mass basis. The free Hamiltonian of neutrinos in the mass basis is given by

Hfree =
∫

d3x
3

∑
i=1

ν̄i(−iγ · ∇+ mi)νi, (18)

where γ = (γ1, γ2, γ3) are the gamma matrices. After substituting the free operators for
left-handed neutrinos, the free Hamiltonian becomes

H0
free =

∫
d3 p

3

∑
i=1

[
a†

i (p)Eiai(p) + b†
i (p)Eibi(p)

]
. (19)

The first term in the RHS of Equation (16) in the mass basis is written as

i
〈[

H0
free, N0

ij(0)
]〉

= −i(2π)3δ(3)(0)
[
diag(E1, E2, E3), ρp

]
,

' −i(2π)3δ(3)(0)

[
M2

diag

2p
, ρp

]
, (20)

where M2
diag = diag(m2

ν1
, m2

ν2
, m2

ν3
) and i, j denote mass-eigenstates. In the flavor basis,

as in discussed in Section 2.1, it is quite nontrivial to quantize neutrinos in the flavor basis
with non-zero masses. When we calculate the first term in the RHS of Equation (16) in the
flavor basis directly, we replace the free annihilation operators a0

α(p, t) and b0
α(p, t) with

aosc
α (p, t) = (exp(−iΩpt))αβaβ(p) and bosc

α (p, t) = (exp(−iΩpt))αβbβ(p) as in [37], where

Ωp =
√

p2 + M2. Then we also obtain the first term of Equation (16) , following the similar
procedure in the mass basis,

i
〈[

H0
free, N0

αβ(0)
]〉
' −i(2π)3δ(3)(0)

[
M2

2p
, ρp

]
, (21)

where M2 = UPMNSM2
diagU†

PMNS is the neutrino mass matrix in the flavor basis. For anti-
neutrinos, the corresponding term is obtained by adding a minus sign for the reverse indices
in the anti-neutrino density matrix (4), i〈[H0

free, N̄0
αβ(0)]〉 ' i(2π)3δ(3)(0)[M2/2p, ρ̄p].

2.2.3. Forward Scattering with e±, ν, ν̄-Background
In the following of Section 2, we consider the flavor basis of neutrinos. Forward

scattering of neutrinos with background in the system called refractive effects modifies
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neutrino oscillations through the one-loop thermal interaction as given in Figure 1. Since
the temperature in thermal plasma is ∼2 MeV in neutrino decoupling, particles except for
photons, electrons, neutrinos and their anti-particles are already annihilated due to their
heavy masses. Then we consider only e±, ν, ν̄-background. The interaction Hamiltonian is
described as

Hint =
g2

2

∫
d3xd4y

d4 p
(2π)4 e−ip(x−y)

[
DZ

µν(p)Jµ
NC(x)Jν

NC(y) + 2DW
µν(p)Jµ†

CC(x)Jν
CC(y)

]
,

≡ HNC + HCC, (22)

where DZ
µν(p) and DW

µν(p) are the full propagator of Z0 boson and W± boson,

DW,Z
µν (p) =

(
gµν −

pµ pν

m2
W,Z

)
1

m2
W,Z − p2

,

'
gµν

m2
W,Z

+
gµν p2 − pµ pν

m4
W,Z

. (23)

να να

Z0

β, νβ, ν̄β

να να

Z0, W±

α, να, ν̄α

Figure 1. One-loop thermal contributions to forward scattering of neutrinos in the flavor basis with
α, β = e±, µ± and τ±. (Left) Tadpole diagram with all flavors in the one-loop. (Right) Babble diagram
with the same flavor in the one-loop.

Here g, mZ, mW are the electroweak coupling constant, the Z0 boson mass and the W±

boson mass, respectively. The neutral current and the charged current are given by

Jµ
NC ' Jµ

νν + JLµ
ee + JRµ

ee ,

Jµ
CC ' Jµ

eνe , (24)

where

Jµ
νν =

1
4 cos θW

ν̄γµ(1− γ5)ν, JLµ
ee =

1
2 cos θW

(
−1

2
+ sin2 θW

)
ēγµ(1− γ5)e,

JRµ
ee =

1
2 cos θW

sin2 θW ēγµ(1 + γ5)e, Jµ
eνe =

1
2
√

2
ν̄eγµ(1− γ5)e, (25)

with

ν =

νe
νµ

ντ

. (26)

Here θW is the weak mixing angle, e is the field operator for electron and positron and
να is the field operator for neutrinos and anti-neutrinos with a flavor α.

The interaction Hamiltonian is divided into the two parts corresponding to the neutral
current interaction, HNC ∝ Jµ

NC, and to the charged current interaction, HCC ∝ Jµ
CC. For the
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charged current interactions, the second term in the RHS of Equation (16), which represents
forward scattering of neutrinos with e±-background, is given by [37,38]

i
〈[

H0
CC(0), N0

αβ(0)
]〉

= −i(2π)3δ(3)(0)

[
√

2GF(Ne− −Ne+)−
2
√

2GF p
3m2

Z
(Ee− + Pe− + Ee+ + Pe+), ρp

]
, (27)

where GF is the Fermi coupling constant and Ne± , Ee± and Pe± are the number density,
energy density and pressure for e±-background, respectively, which are described in the
flavor basis as

Ne− ' diag(ne− , 0, 0), Ne+ ' diag(ne+ , 0, 0), ne± = 2
∫ d3 p

(2π)3 fe±(p),

Ee± + Pe± ' diag(ρe± + Pe
±, 0, 0), ρe± + Pe± =

∫ d3 p
(2π)3

(
Ee +

p2

3Ee

)
fe±(p), (28)

where Ee =
√

p2 + m2
e . In the temperature of MeV scale in neutrino decoupling, the den-

sities for muons and tauons are enough suppressed by their heavy masses. We neglect
forward scattering of neutrinos with muons and tauons, which corresponds to the second
and third diagonal components in Equation (28).

For the neutral current interactions, the second term in the RHS of Equation (16),
which represents forward scattering of neutrinos via neutrino self-interactions, is given
by [37,38]

i
〈[

H0
NC(0), N0

αβ(0)
]〉

= −i(2π)3δ(3)(0)

[
√

2GF(Nν −Nν̄)−
8
√

2GF p
3m2

Z
(Eν + Eν̄), ρp

]
, (29)

where Nν, Nν̄, Eν and Eν̄ are the number and energy densities for the density matrices of
ν, ν̄-background, respectively, which are described in the flavor basis as

Nν =
∫ d3 p

(2π)3 ρp, Nν̄ =
∫ d3 p

(2π)3 ρ̄p,

Eν =
∫ d3 p

(2π)3 pρp, Eν̄ =
∫ d3 p

(2π)3 pρ̄p, (30)

where we neglect neutrino masses since neutrinos are relativistic in neutrino decoupling.
For anti-neutrinos, the corresponding terms, i〈[H0

CC(0), N̄0
αβ(0)〉 and i〈[H0

CC(0), N̄0
αβ(0)〉,

are obtained by adding an overall minus sign for the reverse indices in the anti-neutrino
density matrix (4) and replacing Ne− −Ne+ → −(Ne− −Ne+) and Nν−Nν̄ → −(Nν−Nν̄)
for an opposite evolution of anti-neutrinos due to the lepton asymmetry in Equations (27)
and (29) [37].

If there is a large lepton asymmetry, the terms proportional to Ne− −Ne+ and Nν −Nν̄

will be important. Note that even if there is no lepton asymmetry, the off-diagonal parts
of Nν −Nν̄ have non-zero contribution since the density matrices for neutrinos and anti-
neutrinos follow the same evolution, ρp = ρ̄T

p 6= ρ̄p, in the case of no lepton asymmetry.

2.2.4. Collision Term

Finally we discuss the third term in the RHS of Equation (16) called the collision term.
The temperature of ∼2 MeV in neutrino decoupling is much lower than the electroweak
scale of∼mZ, mW . After integrating out Z0 and W± bosons in the instantaneous interaction
limit, the interaction Hamiltonian in neutrino decoupling can be written as

Hint '
g2

2

∫
d3x
[

1
m2

Z
Jµ
NC(x)JNCµ(x) +

2
m2

W
J†µ
CC(x)JCCµ(x)

]
. (31)
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The interaction Hamiltonian can be divided into the part including both neutrinos and
electrons (and their anti-particles), and the one only including neutrinos and anti-neutrinos,
Hint ' Heν

int + Hν
int, while we ignore the part including only electrons and positrons,

Heν
int =

GF√
2

∫
dx3
[
ν̄γµ(1− γ5)YLνēγµ(1− γ5)e + ν̄γµ(1− γ5)YRνēγµ(1 + γ5)e

]
,

Hν
int =

GF

4
√

2

∫
dx3ν̄γµ(1− γ5)νν̄γµ(1− γ5)ν, (32)

with

YL =

 1
2 + sin2 θW 0 0

0 − 1
2 + sin2 θW 0

0 0 − 1
2 + sin2 θW

, YR = sin2 θW × 1. (33)

Here we have used the following Fierz transformation in the charged currents,

ν̄eγµ(1− γ5)eēγµ(1− γ5)νe = ν̄eγµ(1− γ5)νe ēγµ(1− γ5)e. (34)

Due to this contribution of the charged current, only electron-type neutrinos and anti-
neutrinos interact with electrons and positrons via different magnitudes of interactions,
compared to other flavor neutrinos with (YL)11 = (YL)22(33) + 1.

The Hamiltonian of Equation (32) can be further divided as

Heν
int = Hνν̄↔e−e+ + Hνe±↔νe± + Hν̄e±↔ν̄e± ,

Hν
int = Hνν↔νν + Hνν̄↔νν̄, (35)

where Hab↔cd is the term including operators of (anti-)particles, a, b, c and d. In the fol-
lowing, we neglect Hν̄e±↔ν̄e± since this Hamiltonian does not contribute the evolution of
neutrinos. In addition, we only consider contributions proportional to the following terms
as a function of freely evolving fields in the collision term in Equation (16),

[H0
νν̄↔e−e+ , [H0

νν̄↔e−e+ , N0
αβ], [H0

νe±↔νe± , [H0
νe±↔νe± , N0

αβ]],

[H0
νν↔νν, [H0

νν↔νν, N0
αβ]], [H0

νν̄↔νν̄, [H0
νν̄↔νν̄, N0

αβ]. (36)

The other terms also denote forward scattering, which would give tiny modifications
of Equations (27) and (29). The first term in Equation (36) denotes the annihilation of
neutrinos and anti-neutrinos into e±-pairs, which mainly contribute to the distortion of
neutrino spectrum in their decoupling. The second term denotes the scattering between
neutrinos and electrons (positrons). The third term represents the scattering process
including only neutrinos while the fourth term denotes the annihilation and scattering
processes of neutrinos and anti-neutrinos.

In a schematic manner, the collision term for two-body reactions 1 + 2↔ 3 + 4 at tree
level takes the following expressions,

(2π)3δ(3)(0)C[ρp1 ] = −
1
2

∫ ∞

−∞
dt′〈[H0

int(0), [H
0
int, N0

αβ]〉

= (2π)3δ(3)(0)
1

2E1
∑
∫ d3 p2

(2π)32E2

d3 p3

(2π)32E3

d3 p4

(2π)32E4

× (2π)4δ(4)(p1 + p2 − p3 − p4)F(ρ, fe± , YL, YR)
(

S|M|212→34

)
part

, (37)

where ρi (i = 1, 2, 3, 4) denote the neutrino density matrix, not the energy density, and

Ei ' |pi| for ν and ν̄ while Ei =
√

p2
i + m2

e for e±. F(ρ, fe± , YL, YR) is a matrix depending

on ρ, fe± , YL and/or YR.
(
S|M|212→34

)
part is a part of S|M|212→34, where S is the symmetric
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factor and |M|2 is the squared matrix element summed over spins of all particles except
for the first one. The formulae of S|M|2 for the relevant reaction in neutrino decoupling
are shown in Table 1. Nine integrals in the collision term in Equation (37) can be reduced
analytically to two integrals as in Appendix B.

In the following, we rewrite the collision terms C[ρp(t)] including Equation (36)
with neutrino density matrices and the distribution functions of electrons and positrons.
The formulae of the collision terms for neutrino density matrix are originally given in
refs. [37,39], and for numerical calculations of neutrino spectra, these formulae are devel-
oped in refs. [20,26].

Table 1. Squared matrix elements with the symmetric factor S|M|2 for processes νe(p1) + b(p2)→
c(p3)+ d(p4). gL = 1

2 + sin2 θ2
W and gR = sin2 θW correspond (YL)11 and (YR)11 in Equation (33). For

processes of νµ and ντ , νµ(τ)(p1) + b(p2)→ c(p3) + d(p4), squared matrix elements are obtained by
the substitutions of gL → gL − 1 = − 1

2 + sin2 θW , which corresponds (YL)22(33) in Equation (33) [9].

Process 2−5G−2
F S|M|2

νe + ν̄e → νe + ν̄e 4(p1 · p4)(p2 · p3)
νe + νe → νe + νe 2(p1 · p2)(p3 · p4)

νe + ν̄e → νµ(τ) + ν̄µ(τ) (p1 · p4)(p2 · p3)
νe + ν̄µ(τ) → νe + ν̄µ(τ) (p1 · p4)(p2 · p3)
νe + νµ(τ) → νe + νµ(τ) (p1 · p2)(p3 · p4)

νe + ν̄e → e− + e+ 4[g2
L(p1 · p4)(p2 · p3) + g2

R(p1 · p3)(p2 · p4) + gLgRm2
e (p1 · p2)]

νe + e− → νe + e− 4[g2
L(p1 · p2)(p3 · p4) + g2

R(p1 · p4)(p2 · p3)− gLgRm2
e (p1 · p3)]

νe + e+ → νe + e+ 4[g2
R(p1 · p2)(p3 · p4) + g2

L(p1 · p4)(p2 · p3)− gLgRm2
e (p1 · p3)]

(i) ν(p1) + ν̄(p2)↔ e−(p3) + e+(p4)

The collision term for the annihilation process including e±, ν(p1) + ν̄(p2)↔ e−(p3) +
e+(p4), comes from the term proportional to [H0

νν̄↔e−e+ , [H0
νν̄↔e−e+ , N0

αβ]. We can calculate

the corresponding collision terms, which are denoted as (2π)3δ(3)(0)Cνν̄↔e−e+ [ρp1(t)],

(2π)3δ(3)(0)Cνν̄↔e−e+ [ρp1(t)]

= −1
2

∫ ∞

−∞
dt′〈[H0

νν̄↔e−e+(0), [H
0
νν̄↔e−e+(t

′), N0
αβ]〉

= (2π)3δ(3)(0)
1
2

25G2
F

2|p1|

∫ d3 p2

(2π)32|p2|
d3 p3

(2π)32E3

d3 p4

(2π)32E4
(2π)4δ(4)(p1 + p2 − p3 − p4)

×
[
4(p1 · p4)(p2 · p3)FLL

ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ 4(p1 · p3)(p2 · p4)FRR

ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ 2(p1 · p2)m2

e

(
FLR

ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ FRL

ann

(
ν(1), ν̄(2), e−(3), e+(4)

))]
, (38)

where

Fab
ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
= fe−(p3) fe+(p4)

(
Ya(1− ρ̄2))Yb(1− ρ1) + (1− ρ1)Yb(1− ρ̄2)Ya

)
− (1− fe−(p3))(1− fe+(p4))

(
Yaρ̄1Ybρ1 + ρ1Ybρ̄2Ya

)
. (39)

Here fe±(p) is the distribution function for electrons and positrons, respectively.

(ii) ν(p1) + e±(p2)↔ ν(p3) + e±(p4)

The collision term for the scatterings including e±, ν(p1) + e±(p2)↔ ν(p3) + e±(p4),
comes from the term proportional to [H0

νe±↔νe± , [H0
νe±↔νe± , N0

αβ]. We can similarly calculate
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the corresponding collision term, which is denoted as Cνe−↔νe− [ρp1(t)] and Cνe+↔νe+ [ρp1(t)],
respectively,

Cνe−↔νe− [ρp1(t)]

=
1
2

25G2
F

2|p1|

∫ d3 p2

(2π)32E2

d3 p3

(2π)32|p3|
d3 p4

(2π)32E4
(2π)4δ(4)(p1 + p2 − p3 − p4)

×
[
4(p1 · p2)(p3 · p4)FLL

sc

(
ν(1), e−(2), ν(3), e−(4)

)
+ 4(p1 · p4)(p2 · p3)FRR

sc

(
ν(1), e−(2), ν(3), e−(4)

)
− 2(p1 · p3)m2

e

(
FLR

sc

(
ν(1), e−(2), ν(3), e−(4)

)
+ FRL

sc

(
ν(1), e−(2), ν(3), e−(4)

))]
, (40)

and

Cνe+↔νe+ [ρp1(t)]

=
1
2

25G2
F

2|p1|

∫ d3 p2

(2π)32E2

d3 p3

(2π)32|p3|
d3 p4

(2π)32E4
(2π)4δ(4)(p1 + p2 − p3 − p4)

×
[
4(p1 · p2)(p3 · p4)FRR

sc

(
ν(1), e+(2), ν(3), e+(4)

)
+ 4(p1 · p4)(p2 · p3)FLL

sc

(
ν(1), e+(2), ν(3), e+(4)

)
− 2(p1 · p3)m2

e

(
FLR

sc

(
ν(1), e+(2), ν(3), e+(4)

)
+ FRL

sc

(
ν(1), e+(2), ν(3), e+(4)

))]
, (41)

where

Fab
sc

(
ν(1), e±(2), ν(3), e±(4)

)
= f±e (p4)(1− f±e (p2))

(
Yaρ3Yb(1− ρ1) + (1− ρ1)Ybρ3Ya

)
− f±e (p2)(1− f±e (p4))

(
ρ1Yb(1− ρ3)Ya + Ya(1− ρ3)Ybρ1

)
. (42)

(iii) ν(p1) + ν(p2)↔ ν(p3) + ν(p4) and ν(p1) + ν̄(p2)↔ ν(p3) + ν̄(p4)

The collision terms for the scatterings including only neutrinos and anti-neutrinos,
ν(p1) + ν(p2) ↔ ν(p3) + ν(p4) and ν(p1) + ν̄(p2) ↔ ν(p3) + ν̄(p4), come from the term
proportional to [H0

νν↔νν, [H0
νν↔νν, N0

αβ]] and [H0
νν̄↔νν̄, [H0

νν̄↔νν̄, N0
αβ]], respectively. The cor-

responding collision terms, which are denoted as Cνν↔νν[ρp1(t)] and Cνν̄↔νν̄[ρp1(t)], re-
spectively, are calculated as

Cνν↔νν[ρp1(t)]

=
1
2

25G2
F

2|p1|

∫ d3 p2

(2π)32|p2|
d3 p3

(2π)32|p3|
d3 p4

(2π)32|p4|
(2π)4δ(4)(p1 + p2 − p3 − p4)

× (p1 · p2)(p3 · p4)Fsc

(
ν(1), ν(2), ν(3), ν(4)

)
, (43)

Cνν̄↔νν̄[ρp1(t)]

=
1
2

25G2
F

2|p1|

∫ d3 p2

(2π)32|p2|
d3 p3

(2π)32|p3|
d3 p4

(2π)32|p4|
(2π)4δ(4)(p1 + p2 − p3 − p4)

× (p1 · p4)(p2 · p3)
(

Fsc

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
+ Fann

(
ν(1), ν̄(2), ν(3), ν̄(4)

))
, (44)
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where Fsc

(
ν(1), ν(2), ν(3), ν(4)

)
, Fsc

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
and Fann

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
denote

contributions from scatterings for νν ↔ νν, scatterings and annihilations for νν̄ ↔ νν̄,
respectively,

Fsc

(
ν(1), ν(2), ν(3), ν(4)

)
= [ρ4(1− ρ2) + Tr(...)]ρ3(1− ρ1) + (1− ρ1)ρ3[(1− ρ2)ρ4 + Tr(...)]

− [(1− ρ4)ρ2 + Tr(...)](1− ρ3)ρ1 − ρ1(1− ρ3)[ρ2(1− ρ4) + Tr(...)], (45)

Fsc

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
= [(1− ρ̄2)ρ̄4 + Tr(...)]ρ3(1− ρ1) + (1− ρ1)ρ3[ρ̄4(1− ρ̄2) + Tr(...)]

− [ρ̄2(1− ρ̄4) + Tr(...)](1− ρ3)ρ1 − ρ1(1− ρ3)[(1− ρ̄4)ρ̄2 + Tr(...)], (46)

Fann

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
= [ρ3ρ̄4 + Tr(...)](1− ρ̄2)(1− ρ1) + (1− ρ1)(1− ρ̄2)[ρ̄4ρ3 + Tr(...)]

− [(1− ρ3)(1− ρ̄4) + Tr(...)]ρ̄2ρ1 − ρ1ρ̄2[(1− ρ̄4)(1− ρ3) + Tr(...)], (47)

where [α + Tr(...)] ≡ [α + Tr(α)].
Finally, we obtain the collision term in Equation (16), C[ρp(t)], combining Equations (38),

(40), (41), (43) and (44),

C[ρp(t)] = Cνν̄↔e−e+ + Cνe−↔νe− + Cνe+↔νe+ + Cνν↔νν + Cνν̄↔νν̄. (48)

The collision terms for anti-neutrinos can be obtained by appropriately replacing the
density matrices and momenta, ρi ↔ ρ̄i and pi ↔ pj [37,40]. Changing the collision term
for ν(p1)X → ν(p3)X′ to ν̄(p1)X → ν̄(p3)X′ corresponds replacing ρ1 → ρ̄1, ρ3 → ρ̄3 and
p1 ↔ p3 in this collision term while changing that for ν(p1)ν̄(p2)→ XX′ to ν̄(p1)ν(p2)→
XX′ corresponds ρ1 → ρ̄1, ρ̄2 → ρ2 and p1 ↔ p2. One may consider the transpose in the
collision terms is necessary for the reverse indices in the anti-neutrino density matrix (4),
but this is not necessary since the collision terms are invariant under the transpose.

2.3. Continuity Equation

In addition to the Boltzmann equations for the neutrino density matrix, the energy
conservation law must be satisfied,

dρ

dt
= −3H(ρ + P), (49)

where ρ and P are the total energy density and pressure of γ, e±, ν, ν̄ around MeV-scale
temperature, respectively. The continuity equation corresponds to the evolution of the
photon temperature Tγ.

Though we will discuss finite temperature corrections from QED to ρ, P and me in the
next section, in the ideal gas limit, they are given as follows, which are denoted by ρ(0) and
P(0), respectively,

ρ(0) =
π2T4

γ

15
+

2
π2

∫ dpp2
√

p2 + m2
e

exp(
√

p2 + m2
e /Tγ) + 1

+ ∑
α=e,µ,τ

1
π2

∫
dp p3 fνα(p),

P(0) =
π2T4

γ

45
+

2
π2

∫ dpp4

3
√

p2 + m2
e [exp(

√
p2 + m2

e /Tγ) + 1]
+ ∑

α=e,µ,τ

1
3π2

∫
dp p3 fνα(p). (50)

The Hubble parameter in Equation (49) is calculated using the usual relation,
3H2m2

Pl = 8πρ with mPl being the Planck mass, where we ignore the curvature term and
the cosmological constant because they are negligible in the radiation dominated epoch.
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2.4. Finite Temperature QED Corrections to me, ρ and P up to O(e3)

QED interactions at finite temperature modify the energy density and pressure of
electromagnetic plasma from the ideal gas limit. In addition, their interactions change the
electron mass (and produce an effective photon mass). These corrections affect the kinetic
equations for neutrinos discussed in the former sections. The corrections to the electron
mass modify the weak interaction rates and the distribution function for e±. Through
the direct modifications of ρ and P, the expansion rate H is also changed. Note that
QED interactions also modify weak interaction rates in the collision term C[ρp(t)] and the
Hamiltonian for the forward scattering (60) at order O(e2G2

F) directly. In our numerical
calculations, we consider corrections to weak interaction rates only due to the change of me.
We will discuss other QED corrections to weak interaction rates and their uncertainties in
Neff in Section 3.3.1.

The corrections to the grand canonical partition function Z by interactions at finite
temperature are well established perturbatively and can be calculated by the similar proce-
dure of the functional integrals of Quantum Field Theory (QFT) at zero temperature after
changing t→ −i/T. P and ρ are described by Z as

P =
T
V

ln Z,

ρ =
T2

V
∂ ln Z

∂T
= −P + T

∂P
∂T

, (51)

where T and V are the temperature and volume in the system, respectively. Then we
can expand ln Z in powers of the QED coupling constant e as ln Z = ∑∞

n=1 ln Z(n), where
ln Z(n) ∝ en. In the isotropic and lepton symmetric universe, the corresponding corrections
to P and ρ at O(e2), P(2), ρ(2), ∝ e2, are [41]

P(2) = −
e2T2

γ

12π2

∫ ∞

0
dp

p2

Ep
NF(p)− e2

8π4

(∫ ∞

0
dp

p2

Ep
NF(p)

)2

+
e2m2

e
16π4

∫ ∞

0

∫ ∞

0
dpdp′

pp′

EpEp′
ln
∣∣∣∣ p + p′

p− p′

∣∣∣∣NF(p)NF(p′),

ρ(2) = −P(2) + Tγ

∂P(2)
∂Tγ

, (52)

where Ep =
√

p2 + m2
e and NF(p) is the sum of the distribution functions for e±,

NF(p) = 2
1

eEp/Tγ + 1
. (53)

The next-to-leading order of thermal corrections to ρ, P isO(e3), notO(e4). These non-
trivial corrections come from the resummation of ring diagrams in the photon propagator
at all orders. The thermal corrections to P, ρ at O(e3), P(3), ρ(3), ∝ e3, are [24,41],

P(3) =
e3Tγ

12π4 I3/2(Tγ),

ρ(3) =
e3T2

γ

8π4 I1/2 ∂I
∂Tγ

, (54)

where

I(Tγ) =
∫ ∞

0
dp

(
p2 + E2

p

Ep

)
NF(p). (55)
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Finally, we read the total energy density and the total pressure of electromagnetic
plasma up to O(e3) corrections as

P = P(0) + P(2) + P(3),

ρ = ρ(0) + ρ(2) + ρ(3). (56)

The thermal corrections to the e± mass at O(e2) is given by, through modifications of
the e± self energy [42],

δm2
e(2)(p, Tγ) =

e2T2
γ

6
+

e2

2π2

∫ ∞

0
dp′

k2

E′p
NF(p′)

− e2m2
e

4π2 p

∫ ∞

0
dp′

p′

Ep′
log
∣∣∣∣ p + p′

p− p′

∣∣∣∣NF(p′). (57)

The last logarithmic terms in Equations (52) and (57) give less than 10% corrections
to these equations around the decoupling temperature and the average momentum of
electrons [43]. These terms also give contributions less than 10−4 to Neff [24,27]. In the fol-
lowing, we neglect the logarithmic corrections. Note that thermal corrections to me atO(e3)
do not appear becauseO(e3) corrections stem from ring diagrams in the photon propagator.

2.5. Summary and Approximations

In this section, we summarize the closed system of the resulting Boltzmann equations
for the neutrino density matrix and the continuity equation in neutrino decoupling. We
also discuss the approximations we used in our numerical calculations. The following
Equations (58)–(61) have already been presented in the previous sections.

The closed system of the equations of motion for the neutrino density matrix and the
continuity equation, which reads the equation of the evolution for the photon temperature,
in the expanding universe are [37,39]

dρp(t)
dt

= (∂t − Hp∂p)ρp(t) = −i
[
Hp, ρp(t)

]
+ C[ρp(t)], (58)

dρ

dt
= −3H(ρ + P), (59)

and analogous Boltzmann equations for anti-neutrinos [37,40], which is not solved in this

article since we assume no lepton asymmetry. Here H = 1
mPl

√
8πρ

3 is the Hubble parameter,
Hp is the Hamiltonian which governs the neutrino oscillation in vacuum and the forward
scattering of neutrinos in the e±, ν, ν̄-background, C[ρp(t)] is the collision term describing
the momentum changing scatterings and annihilations , and [·, ·] represents the commutator
of matrices with a flavor (or mass) index. ρ and P in Equation (59) are the total energy
density and the pressure for γ, e±, ν, ν̄, respectively. Including QED finite temperature
corrections up to O(e3), ρ and P are given by Equation (56) (see also Equations (50), (52)
and (54) for the detail of Equation (56)).

The effective Hamiltonian for the neutrino oscillations in vacuum and the forward
scattering of neutrinos in the e±, ν, ν̄-background is given by 3

Hp =
M2

2p
+
√

2GF(Ne− −Ne+) +
√

2GF(Nν −Nν̄)

− 2
√

2GF p
m2

W
(Ee− + Pe− + Ee+ + Pe+)−

8
√

2GF p
3m2

Z
(Eν + Eν̄), (60)

where GF is the Fermi coupling constant and mW , mZ are the W and Z boson masses,
respectively.
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The first term in the RHS of Equation (60) denotes neutrino oscillations in vacuum and
M2 is the mass-squared matrix. In the flavor basis, we can write M2 = UPMNSM2

diagU†
PMNS,

where M2
diag = diag(m2

ν1
, m2

ν2
, m2

ν3
). The other terms describe the forward scattering

of neutrinos in the background of thermal plasma which comes from one-loop thermal
contributions to neutrino self energy. Ne± , Nν,ν̄, Ee± , Pe± , Eν,ν̄ are defined in the flavor
basis around the temperature of MeV scale as

Ne− −Ne+ = diag(ne− − ne+ , 0, 0), ne± = 2
∫ d3 p

(2π)3 fe±(p),

Nν −Nν̄ =
∫ d3 p

(2π)3

(
ρp(t)− ρ̄p(t)

)
,

Ee± + Pe± = diag(ρe± + Pe
±, 0, 0), ρe± + Pe± =

∫ d3 p
(2π)3

(
Ee +

p2

3Ee

)
fe±(p),

Eν + Eν̄ =
∫ d3 p

(2π)3 p
(
ρp(t) + ρ̄p(t)

)
, (61)

where Ee =
√

p2 + m2
e + δm2

e (p, T) and fe±(p) is the distribution function of e±. δm2
e (p, T)

is the QED finite temperature correction to me, which is given by Equation (57) up to O(e2).
Here we neglect the contributions of µ and τ since the densities of these charged particles
are significantly suppressed.

In the following, we assume that electrons and positrons are always in thermal equi-
librium and follow the Fermi–Dirac distributions since electrons, positrons and photons
interact with each other through rapid electromagnetic interactions. In addition we neglect
lepton asymmetry since neutrino oscillations leading to flavor equilibrium before the BBN
imposes a stringent constraint on this asymmetry [44–50]. The standard baryogenesis sce-
narios via the sphaleron process in leptogenesis models predict that the lepton asymmetry
is of the order of the current baryon asymmetry, nb/nγ ∼ 10−10, which is much smaller
than the above constraint. We also neglect any CP-violating phase in the PMNS matrix
for simplicity. Note that from the recent global analysis of neutrino oscillation experi-
ments [51,52], the CP-conserving PMNS matrix is excluded at approximately 3σ confidence
level. Strictly speaking, ignoring the CP-violating phase is inconsistent with the experi-
mental results, but we adopt this assumption to save computational time. In fact, since
effects of CP-violating phase on neutrino oscillations are sub-dominant, this ignorance will
not affect the resultant neutrino spectra and Neff significantly. Under these assumptions,
neutrinos and anti-neutrinos satisfy the same density matrices and the same evolutions
in the Universe, ρp(t) = ρ̄p(t)T, and electrons and positrons follow the same Fermi–Dirac
distributions with Tγ and no chemical potential.

Note that without lepton asymmetry, Nν −Nν̄ 6= 0 due to ρp(t) = ρ̄p(t)T 6= ρ̄p(t).
However, in the following, we neglect it for reducing computational time. We will discuss
this uncertainty in Section 3.3. In addition, as in refs. [19–21,25], we replace Ee± + Pe±

as 4/3Ee± for simplicity. Strictly, this replacement is valid only in the ultra-relativistic
limit [38]. However, since in the non-relativistic region Ee± is suppressed by the Boltzmann
factor, these difference would be quite small. Ref. [27] reported this difference in Neff is no
more than 10−5.

The final term in the RHS of Equation (58) represents both the momentum conserving
and changing collisions of neutrinos with neutrinos, electrons and their anti-particles.
In this term, collisions are dominated by two-body reactions 1 + 2→ 3 + 4, i.e., C[ρp(t)] ∝
G2

F, where GF is the Fermi coupling constant. The detailed formula for C[ρp(t)] is given by
Equation (48) (see also Equations (38), (40), (41), (43) and (44) in this review and refs. [20,26]).
Nine integrals in the collision term (37) can be reduced analytically to two integrals as in
Appendix B. We deal with both diagonal and off-diagonal collision terms in Equations (38),
(40) and (41) for the processes which involve electrons and positrons, νe± ↔ νe± and
νν̄ ↔ e−e+. On the other hand, we do not treat the off-diagonal terms in Equations (43)
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and (44) for the self-interactions of neutrinos, νν↔ νν and νν̄↔ νν̄, since the annihilations
of electrons and positrons are important for the heating process of neutrinos while the self-
interactions of neutrinos less contribute to this heating process. We treat this collision term
from neutrino self-interaction in Equation (A13) of Appendix A. In refs. [26,27], the authors
solve kinetic equations for neutrinos including the full collision term at tree level and
reported almost the same results with very small difference in Neff, δNeff ∼ 2× 10−4 [27].
Here, we take into account finite temperature corrections to me up to O(e2) in the collision
term as Ee =

√
p2 + m2

e + δm2
e (p, T). However, we neglect other sub-leading contributions

to the collision term, i.e., other QED corrections to weak interaction rates. We also discuss
these uncertainties in Section 3.3.

2.6. Computational Method, Initial Conditions and Values of Neutrino Masses and Mixing

We solve kinetic equations for neutrinos of Equations (58) and (59) with the follow-
ing comoving variables instead of the cosmic time t, the momentum p, and the photon
temperature Tγ,

x = mea, y = pa, z = Tγa, (62)

where we choose an arbitrary mass scale in x to be the electron mass me and a is the
scale factor of the universe, normalized as z → 1 (a → 1/Tγ) in high temperature limit.
The resultant kinetic equations for neutrinos in the comoving variables are described in
Appendix A.

Since the Boltzmann Equations (58) are integro-differential equations due to integra-
tions in the collision terms, their equations were solved by a discretization in a momentum
grid yi in refs. [8–10,16,19–21], by an expansion of the distortions of neutrinos from the
Fermi–Dirac distribution in refs. [11,14,15], or by a hybrid method combining the previous
two methods in ref. [18]. In this study, we adopt the discretization method we mentioned
first and take 100 grid points for yi, equally spaced in the region yi ∈ [0.02, 20] with
the Simpson method. We have used MATLAB ODE solver, in particular, ode15s with an
absolute and relative tolerance of 10−6. In these tolerances, we confirm that numerical
errors for relic neutrino spectra and Neff are typically 10−4 or less.

We have numerically estimated the evolution of the density matrix for neutrinos and
the photon temperature in xin ≤ x ≤ x f . We have set xin = me/10 MeV as an initial time.
Since neutrinos are kept in thermal equilibrium with the electromagnetic plasma at xin,
the initial values of density matrix ρin

yi
(x) are regarded as

ρin
yi
(x) = diag

(
1

eyi/zin + 1
,

1
eyi/zin + 1

,
1

eyi/zin + 1

)
. (63)

The initial dimensionless photon temperature at xin, zin, slightly deviates from 1
because a tiny amount of e±-pairs have already been annihilated at xin. Due to the entropy
conservation of electromagnetic plasma, neutrinos and anti-neutrinos, zin is estimated as
in [10],

zin = 1.00003. (64)

We take x f = 30 as a final time, when the neutrino density matrix and z can be regarded
as frozen.

Finally we comment on values of neutrino masses and mixing we use in our numerical
simulation. We use the best-fit values in the global analysis in 2019 [53], but assume
CP-symmetry, δCP = 0. We note that in 2020 their best-fit values are updated [51,52]
though their differences are very small. Their parameters include small uncertainties of
about 10% at 3σ confidence level. Effects of their uncertainties on Neff is investigated
in ref. [27] and slightly change Neff by |δNeff| ∼ 10−4. In our numerical simulation, we
confirmed that relic neutrino spectra and the value of Neff with 10−3 precision are the same
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for both neutrino mass ordering. In the following, we show the results in the normal mass
ordering, ∆m2

31 > 0, not in the inverted ordering, ∆m2
31 < 0, because the results do not

change significantly.

3. Effective Number of Neutrino Species N eff

To describe the process of neutrino decoupling, we first numerically solve a set of
Equations (58) and (59) and show relic neutrino spectra in the flavor basis. Then we present
a precise value of the effective number of neutrino species, Neff = 3.044, and discuss effects
of neutrino oscillations and finite temperature corrections to me, ρ and P up to O(e3) on
Neff. We also comment on uncertainties of ingredients we ignored in estimating Neff.

3.1. Relic Neutrino Spectra in the Flavor Basis

In the left panel of Figure 2, we show the distortions of the flavor neutrino spectra for
a comoving momentum (y = 5), where we plot the neutrino spectra fνα / feq as a function
of the normalized cosmic scale factor x. feq(y) is the neutrino distribution function if
neutrinos decoupled instantaneously and all e±-pairs annihilated into photons,

feq(y) =
1

ey + 1
. (65)

Figure 2. (Left panel): Time evolution of the distortions of flavor neutrinos for a fixed momentum
(y = 5) as a function of the normalized scale factor x = mea with QED finite temperature corrections
up to O(e3). (Right panel): Final distortions of flavor neutrino spectra as a function of the comoving
momentum y with QED finite temperature corrections up to O(e3). Upper (lower) dotted line is for
νe (νµ,τ) without neutrino oscillations, while inner solid and dashed lines represent those for flavor
neutrinos with neutrino oscillations.

At high temperature with (x . 0.2), the temperature differences between photons
and neutrinos are negligible and neutrinos are in thermal equilibrium with electrons and
positrons. In the intermediate regime with (0.2 . x . 4), weak interactions gradually
become ineffective with shifting from small to large momenta. In this period, the neutrino
spectra are distorted since the energies of electrons and positrons partially convert into
those of neutrinos coupled with electromagnetic plasma. Finally, at low temperature with
(x & 4), the collision term C[ρp(t)] becomes ineffective and the distortions are frozen.

The difference between the νe spectrum and the νµ,τ spectrum without flavor mixing
arises from the fact that only electron-type neutrinos interact with electrons and positrons
through the weak charged currents. On the other hand, in the cases with neutrino mixing,
neutrino oscillations mix the distortions of the flavor neutrinos too.

In the right panel of Figure 2, we show the frozen values of the flavor neutrino
spectra fνα / feq as a function of a comoving momentum y for both cases with and without
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neutrino mixing. This figure shows the fact that neutrinos with higher energies interact
with electrons and positrons until a later epoch. In addition, we see neutrino oscillations
tend to equilibrate the flavor neutrino distortions. Although the neutrino spectra fνα / feq
with low energies are very slightly less than unity, these extractions of low energy neutrinos
stem from an energy boost through the scattering by electrons, positrons, (and neutrinos)
with sufficiently high energies, which are not yet annihilated and hence still effective at
neutrino decoupling process.

3.2. Value of the Effective Number of Neutrino Species N eff

The effective number of neutrinos Neff can be rewritten,

Neff =

(
(11/4)1/3

z

)4(
3 +

δρνe

ρ
eq
ν

+
δρνµ

ρ
eq
ν

+
δρντ

ρ
eq
ν

)
, (66)

where δρνα = ρνα − ρ
eq
ν and ρ

eq
ν =

∫ d3 p
(2π)3 p feq. In Tables 2 and 3, we present final values (at

x f = 30) of the dimensionless photon temperature zfin, the difference of energy densities
and number densities of flavor neutrinos from those where neutrinos decoupled instanta-

neously denoted by ρ
eq
ν =

∫ d3 p
(2π)3 p feq and neq

ν =
∫ d3 p

(2π)3 feq, and the effective number of
neutrinos Neff.

By comparing values of Neff in the cases without QED corrections and with QED
corrections to me, ρ and P up toO(e2) andO(e3) in Table 2, we find that the QED corrections
at O(e2) and O(e3) shift Neff by +0.01 and −0.00095, respectively, which is very close to
the value estimated in the instantaneous decoupling limit [24].

In the cases with neutrino mixing, Table 3 shows that the energy densities of µ, τ-type
neutrinos increase more while those of electron-type neutrinos increase less, compared to
the cases without neutrino mixing. This modification leads to the enhancement of the total
energy density for neutrinos with final values of Neff = 3.04391 ' 3.044 with QED correc-
tions to me, ρ and P up to O(e3). Since the blocking factor for electron neutrinos, (1− fνe),
is decreased by neutrino mixing, the annihilation of electrons and positrons into electron
neutrinos increases. Although the annihilation into the other neutrinos decreases, electron
neutrinos contribute to the neutrino heating most efficiently, and neutrino oscillations
enhance the annihilation of electrons and positrons into neutrinos. From these processes,
we conclude that neutrino oscillations slightly promote neutrino heating and the difference
of Neff is 0.00056, which agrees with the results of previous works [12,20,23].

To conclude, our numerical calculation with neutrino oscillations and QED finite
temperature corrections to me, ρ and P up to O(e3) finds Neff = 3.044. This value is in
excellent agreement with later independent works [26,27].

Table 2. Final values of comoving photon temperature and the effective number of neutrinos for
flavor neutrinos in several cases.

Case zfin Neff

Instantaneous decoupling 1.40102 3.00000

No mixing+No QED 1.39910 3.03404
No mixing+QED up to O(e2) 1.39789 3.04430
No mixing+QED up to O(e3) 1.39800 3.04335

mixing+QED up to O(e2) 1.39786 3.04486
mixing+QED up to O(e3) 1.39797 3.04391
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Table 3. Final values of the distortions of energy densities δρ̄να ≡ (ρνα − ρ
eq
ν )/ρ

eq
ν and number

densities δn̄να ≡ (nνα − neq
ν )/neq

ν for flavor neutrinos in several cases.

Case δρ̄νe(%) δρ̄νµ(%) δρ̄ντ (%) δn̄νe(%) δn̄νµ(%) δn̄ντ (%)

Instantaneous decoupling 0 0 0 0 0 0

No mixing+No QED 0.949 0.397 0.397 0.583 0.240 0.240
No mixing+QED up to O(e2) 0.937 0.391 0.391 0.575 0.236 0.236
No mixing+QED up to O(e3) 0.937 0.391 0.391 0.575 0.236 0.236

mixing+QED up to O(e2) 0.712 0.511 0.523 0.435 0.311 0.319
mixing+QED up to O(e3) 0.712 0.511 0.523 0.436 0.312 0.319

3.3. Discussions of Uncertainties in N eff

We comment on possible errors of the results for relic neutrino spectra and Neff due
to approximations in Equations (58) and (59) and the choice of physical parameters. Our
numerical calculations converge very well since we have directly computed Neff in the
mass basis as will be done in the next section and obtained Neff = 3.04388 ' 3.044.

First we neglect the off-diagonal parts for neutrino self-interactions in the collision
term, νν̄↔ νν̄ and νν↔ νν. Later, in refs. [26,27], the authors solve kinetic equations for
neutrinos including their off-diagonal parts in the collision term and report the difference in
Neff is δNeff ∼ 2× 10−4 [27]. We also neglect the O(e2) logarithmic terms and terms above
O(e4) in QED finite temperature corrections to me, ρ and P. Their corrections to ρ and P
are reported to contribute δNeff < 10−4 to Neff in refs. [24,27]. Though their corrections to
me are not taken into account, the corrections to me even at O(e2) contribute δNeff . 10−4

to Neff [27] and we have also confirmed it.
The neutrino masses and mixing parameters contain 10-20% uncertainties at 3σ con-

fidence level. Since in our estimations, neutrino oscillations contribute +0.0005 to Neff,
their uncertainties are expected to be quite small. In ref. [27], the authors report that their
uncertainties are δNeff ∼ 10−4. We also neglect the CP-violating phase δCP in the PMNS
matrix. No one has yet computed precise neutrino evolution in the decoupling including
three-flavor oscillations with CP violating phase. However, since effect of the CP-violating
phase on neutrino oscillations is sub-dominant, we expect neutrino and anti-neutrino
spectra might not change significantly. In addition, the total energy density, i.e., Neff would
change much less than 0.0005 since the changes for the energy densities of neutrinos and
anti-neutrinos would be canceled out. See also discussion in Appendix F of ref. [26] and
ref. [54]. Other physical parameters for electroweak interaction are measured very precisely
and will not affect neutrino spectra and Neff.

However, QED corrections to weak interaction rates at order O(e2G2
F) and forward

scattering of neutrinos via their self-interactions have not been precisely taken into account
in the whole literature so far.

3.3.1. QED Corrections to Weak Interaction Rates at Order e2G2
F

QED interactions also modify the weak interaction rates in the collision term C[ρp(t)]
and the Hamiltonian for the forward scattering of neutrinos (60) at order e2G2

F in addition
to the modification of the energy density and pressure for electromagnetic plasma, ρ and P.
These corrections are partially taken into account by considering thermal QED corrections
on me so far. See also Section 3.1.2 in ref. [27].

QED corrections to the weak interaction rates (see also the diagrams in Figure 3)
are categorized as (i) additional photon emission and absorption, (ii) corrections to the
dispersion relation for external e±, (iii) vertex corrections, and (iv) corrections mediated by
photon propagator. The interference among the weak interaction at leading order GF and
corrections (i)–(iv) produce modifications to the weak interaction rates at the next-to-leading
order O(e2G2

F).
The correction (i) might be the most dominant contribution to Neff since the pho-

ton emission processes, e.g., e+e− → νν̄γ, would not be suppressed by the distribution
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function of photons in the Boltzmann equations. The photon emission processes reduce
Neff. However, there are many processes in the categories (ii), (iii) and (iv). In total, these
contributions to Neff might be as large as that from the correction (i).

For category (ii), corrections to the dispersion relation for e± produce a thermal
electron mass as Equation (57). One can incorporate corrections (i) in the weak interaction
rates by shifting m2

e → m2
e + δm2

e(2)(p, T), but it is numerically difficult to take into account

the momentum-dependent part of δm2
e(2)(p, T), which corresponds to the logarithmic

O(e2) corrections to me. These logarithmic O(e2) corrections to me are less than 10% of
corrections atO(e2) to me around neutrino decoupling [43], and corrections even at leading
O(e2) to the weak interaction rates (i.e., δme(2)(T)) contributes Neff < 10−4 to Neff [27]
and we confirmed it. Thus, we would properly be able to incorporate corrections (i) to
Neff with 10−4 precision. However, we should carefully derive these corrections to the
weak interaction rates and consider effects of the logarithmic O(e2) corrections and other
sub-dominant neglected contributions in the collision term in the future.

For categories (i), (iii) and (iv), corrections to the weak interaction rates are typically
momentum-dependent. It would be quite difficult to solve the Boltzmann equation, which
is the integro-differential equation, including such momentum-dependent corrections. In
ref. [55], the authors consider energy loss rate of a stellar plasma, including corrections on
e−e+ → νν̄ at order O(e2G2

F) and found such corrections modify the energy loss rate of a
stellar plasma by a few percent. In ref. [23], the author suggests δNeff ' −0.0007 due to
correction (i) by roughly extrapolating the results in ref. [55] and using a precise and simple
evaluation method of Neff proposed in ref. [23]. The contributions of (i), (iii) and (iv) to Neff
should be evaluated in the future in a more precise way.

e

e

ν

ν

(0)

e

e

ν

ν

γ

(i)

e

e

ν

ν

γ

(ii)

e

e

ν

ν

γ

(iii)

e

e

ν

ν

γ

(iv)

Figure 3. Feynman diagrams that contribute the weak interaction rates up to O(e2G2
F) [27,55].

(0): 4-Fermi interactions. QED finite temperature corrections (i): additional photon emissions and
absorptions, (ii): corrections to the dispersion relation for e±, (iii): vertex corrections, (iv): corrections
mediated by photon propagator. Matrix elements multiplied by (0) and one of (ii–iv), and squared
matrix elements for (i) contribute the weak interaction rates at O(e2G2

F).

3.3.2. Forward Scattering of Neutrinos via Their Self-Interactions

In the Hamiltonian (60) in the Boltzmann Equations (58), the forward scattering terms
of neutrinos via their self-interactions correspond to

Hp ⊃
√

2GF(Nν −Nν̄)−
8
√

2GF p
3m2

Z
(Eν + Eν̄). (67)
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Even in the case without lepton asymmetry, Nν −Nν̄ 6= 0 due to ρp(t) = ρ̄p(t)T 6= ρ̄p
in general, where Nν −Nν̄ is

Nν −Nν̄ =
∫ d3 p

(2π)3

(
ρp(t)− ρ̄p(t)

)
. (68)

Though ρp(t)− ρ̄p(t) might be small, forward scattering via neutrino self-interactions
could be more dominant than neutrino oscillation in vacuum, with a typical dimensional
analysis,

√
2GF p3 ∼ 10−11 MeV

(
GF

10−5 GeV−2

)( p
1 MeV

)3

� M2

2p
∼ 10−14 MeV

(
M

0.1 eV

)2(1 MeV
p

)
. (69)

In ref. [28], the authors suggest forward scattering of neutrinos via their self-interactions
contributes δNeff ' +(1− 5)× 10−4 to Neff by solving a simplified kinetic equations for
neutrinos. In the future, relic neutrino spectra and Neff should be estimated including the
above forward scattering of neutrinos more precisely.

Though recent estimations might contain uncertainties of |δNeff| . (10−3–10−4) in
Neff, Neff = 3.044 would still be one of very good reference values in Neff.

4. Relic Cosmic Neutrino Spectra in the Current Homogeneous and Isotropic Universe

In the current universe, two neutrino species at least are non-relativistic. Then relic
neutrino spectra in the mass basis will be important observable to detect the CνB in a
direct way as discussed in Section 2.1. In this section, we present the spectrum (as a
function of comoving momenta) , number density and energy density of the CνB in the
current homogeneous and isotropic universe, including non-thermal distortions due to
e±-annihilation during neutrino decoupling.

4.1. Relic Neutrino Spectra in the Mass Basis

We present relic neutrino spectra in the mass basis by solving a set of Equations (58)
and (59) in the mass basis directly. We can also obtain the same result by transforming relic
neutrino spectra in the flavor basis through Equation (8).

In the mass basis, the neutral and charged currents including left-handed neutrino
fields in Equation (24) are given by, using να = ∑i=1,2,3 Uαiνi as in Equation (6),

Jνν =
1

4 cos θW
∑

α=e,µ,τ
ν̄αγµ(1− γ5)να =

1
4 cos θW

∑
i=1,2,3

ν̄iγ
µ(1− γ5)νi,

Jµ
eνe =

1
2
√

2
ν̄eγµ(1− γ5)e =

1
2
√

2

3

∑
i=1

U∗eiν̄iγ
µ(1− γ5)e. (70)

Then, using the relations of Equation (70) and (34), we obtain the 4-point interaction
Hamiltonian (32) in the mass basis

Heν
int
∣∣
mass =

GF√
2

∫
dx3
[
ν̄γµ(1− γ5)ZLνēγµ(1− γ5)e + ν̄γµ(1− γ5)ZRνēγµ(1 + γ5)e

]
,

Hν
int
∣∣
mass =

GF

4
√

2

∫
dx3ν̄γµ(1− γ5)νν̄γµ(1− γ5)ν, (71)
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with

ν =

ν1
ν2
ν3

,

ZL =

g̃L + U∗e1Ue1 U∗e1Ue2 U∗e1Ue3
U∗e2Ue1 g̃L + U∗e2Ue2 U∗e2Ue3
U∗e3Ue1 U∗e3Ue2 g̃L + U∗e3Ue3

, ZR = YR = sin2 θW × 1. (72)

Then we obtain the Boltzmann equation for the neutrino density matrix in the mass
basis after replacements of YL,R → ZL,R andHp → U†

PMNSHpUPMNS analogous to M2
diag =

U†
PMNSM2UPMNS in Equation (58) for the flavor basis.

In the left panel of Figure 4, we show the evolution of the neutrino spectra, fνi / feq,
for a comoving momentum (y = 5) as a function of the normalized scale factor x. In
the right panel of Figure 4, we show the asymptotic values of the neutrino spectra 4

fνi / feq as a function of y. The differences of distortions for each neutrino species arise
from the charged current interactions between neutrinos and electrons weighted by the
PMNS matrix with mass species i, U∗ei, as in Equation (71). Note that neutral currents
between neutrinos in the mass basis are the same as that in the flavor basis except for the
subscript, Jµ

νν = ∑α=e,µ,τ ν̄αγµ(1− γ5)να = ∑α=1,2,3 ν̄iγ
µ(1− γ5)νi. Then the scattering

and annihilation among neutrinos and electrons and their anti-particles induce the spectral
distortions in Figure 4.

Finally we comment on Neff. After we directly solve a set of Equations (58) and (59) in
the mass basis, including vacuum three-flavor neutrino oscillations, forward scatterings in
e±-background, and QED corrections to me, ρ and P up to O(e3), we find Neff = 3.04388,
which is an excellent agreement with our calculation in the flavor basis. The tiny dif-
ference from Neff in the flavor basis may come from ignoring the off-diagonal parts for
self-interaction processes in the Boltzmann equations and/or numerical errors.

Figure 4. (Left panel): Time evolution of the distortions of neutrinos in the mass basis for a fixed
momentum (y = 5) with QED finite temperature corrections up to O(e3). (Right panel): Final
distortions of neutrino spectra in the mass basis as a function of the comoving momentum y with
QED finite temperature corrections up to O(e3).

4.2. Neutrino Number Density and Energy Density in the Current Homogeneous and
Isotropic Universe

In Table 4, we show the final values of the dimensionless photon temperature zfin,
the relativistic energy densities ρνi /ρ

eq
ν and number densities nνi /neq

ν of neutrinos in the
mass basis after neutrino decoupling. Note that the expression of energy density for a
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relativistic particle is not applicable to the first and second heaviest neutrinos today because
they are non-relativistic in the current universe.

After neutrino decoupling, the neutrino momentum distribution in the homogeneous
and isotropic universe can be parametrized as

fνi (p, t) =
1

e|p|/T̃ν(t) + 1
(1 + δ fνi (p, t)). (73)

T̃ν(t) is the effective neutrino temperature, which is ∝ a(t)−1 and normalized as
T̃ν → Tγ in high temperature limit. Under this definition of T̃ν(t), neutrino spectral
distortions, δ fνi (p, t), can be rewritten as δ fνi (y) given in the right panel of Figure 4. At
t0 = 4.35× 1017 s in the current universe, T̃ν(t0) satisfies

Tγ(t0)

T̃ν(t0)
= zfin = 1.39797, (74)

where Tγ(t0) ' 2.7255 K is the effective photon temperature in the current universe [56].
Then the effective neutrino temperature in the current universe is

T̃ν(t0) = 1.9496 K. (75)

Neutrino number density and energy density per one degree of freedom in the current
universe are also parametrized as

nνi (t0) =
∫ d3 p

(2π)3 fνi (p, t),

= ñ0(1 + δn̄νi ),

ρνi (t0) =
∫ d3 p

(2π)3 Eνi fνi (p, t),

=

{
minνi for non-relativistic νi
ρ̃0(1 + δρ̄νi ) for relativistic νi

, (76)

where ñ0 and ρ̃0 are given by

ñ0 =
∫ d3 p

(2π)3
1

e|p|/T̃ν(t0) + 1
=

3ζ(3)
4π2 T̃ν(t0)

3 = 56.376 cm−3,

ρ̃0 =
∫ d3 p

(2π)3
|p|

e|p|/T̃ν(t0) + 1
=

7π2

240
T̃ν(t0)

4 = 29.848 meV cm−3. (77)

Then δn̄νi and δρ̄νi are given in Table 4. The values of neutrino number density in the
current universe are listed in Table 5.

In the current universe, two species of cosmic relic neutrinos at least are non-relativistic

because of T̃ν(t0)�
√

∆m2
21 ' 8.6 meV,

√
|∆m2

31| ' 50 meV. On the other hand, the light-
est neutrinos might be relativistic in the current universe because the lightest neutrino mass
is not yet determined. In Table 6, we show energy density for the lightest neutrinos in
the case of mlightest � p0 ∼ 3.15T̃ν(t0). Here we consider both the normal mass ordering,
mν3 > mν2 > mν1 , and the inverted mass ordering, mν2 > mν1 > mν3 .

To estimate the effects of e±-annihilation into neutrinos during neutrino decoupling on
neutrino number density and energy density, it is useful to compare the neutrino number
density and relativistic energy density per one degree of freedom in the case when all
e±-pairs annihilate into photons, n0 and ρ0, respectively,
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n0 =
3ζ(3)
4π2 Tν(t0)

3 = 56.01 cm−3, (78)

ρ0 =
7π2

240
Tν(t0)

4 = 29.65 cm−3, (79)

where Tγ(t0)/Tν(t0) = (11/4)1/3. We show the deviation of neutrino number density from
the case when all e±-pairs annihilate into photons, δnd

νi
≡ nνi /n0 − 1, in Table 7. The num-

ber densities for all neutrino species are enhanced by about 1% due to e±-annihilations to
neutrinos during neutrino decoupling and the number density for ν1 is most efficiently en-
hanced.

Table 4. Final values of the distortions of “relativistic” energy densities δρ̄νi ≡ δρνi /ρν0 and number
densities δn̄νi ≡ (nνi − nν0 )/nν0 for neutrinos in the mass basis after neutrino decoupling.

zfin δρ̄ν1(%) δρ̄ν2(%) δρ̄ν3(%) δn̄ν1(%) δn̄ν2(%) δn̄ν3(%)

1.39797 0.764 0.574 0.409 0.468 0.350 0.248

Table 5. Neutrino number density per one degree of freedom in the current homogeneous and
isotropic universe including non-thermal distortions due to e±-annihilation during neutrino decou-
pling.

nν1(cm−3) nν2(cm−3) nν3(cm−3)

56.64 56.57 56.52

Table 6. Energy density per one degree of freedom for the lightest neutrinos with mνlightest = 0 in the
current homogeneous and isotropic universe including non-thermal distortions due to e±-annihilation
during neutrino decoupling.

Case ρνlightest(meV cm−3)

Normal Ordering (νlightest = ν1, mν1 = 0) 30.08

Inverted Ordering (νlightest = ν3, mν3 = 0) 29.97

Table 7. Deviation of relic neutrino number density including non-thermal distortions during
neutrino decoupling from the case when neutrinos decoupled instantaneously and all e±-pairs
annihilated into photons.

δnd
ν1

(%) δnd
ν2

(%) δnd
ν3

(%)

1.13 1.01 0.91

4.3. Helicity of Relic Majorana Neutrinos vs. Dirac Neutrinos

The weak interaction is chiral, which is manifest in the Lagrangian. Due to its chirality,
the left-chiral states for SM fermions interact with the weak bosons while the right-chiral
states do not. In the early universe, only left-chiral neutrinos and right-chiral anti-neutrinos,
i.e., left-handed neutrinos and right-handed anti-neutrinos are produced via the weak
interaction. Note that chirality is different from helicity in general, which is defined as the
projection of the spin vector onto the momentum vector.

During free streaming of relic neutrinos after their decoupling, the chirality for non-
relativistic neutrinos is not conserved since the chiral symmetry in the free neutrino La-
grangian is broken due to their masses. On the other hand, the helicity for relic neutrinos
is conserved in the homogeneous and isotropic universe. Thus, we should estimate the
spectrum for each helicity state of relic cosmic neutrinos in the current universe.
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In the early universe, both chirality and helicity for relic neutrinos are conserved and
then neutrino helicity and chirality have one-to-one correspondence since neutrinos are
approximately massless in the early universe. We define left (right) helical neutrinos with
helicity sν = −1/2 (+1/2) such that they correspond to left (right) handed neutrinos in the
early universe. Then the spectra for the left-handed neutrinos (right-handed anti-neutrinos)
produced in the early universe are translated into the left-helical neutrinos (right-helical
anti-neutrinos) [34],

fνi (pν, sν = −1/2) = fνi (pν, t),

fνi (pν, sν = +1/2) ' 0,

fν̄i (pν, sν = −1/2) ' 0,

fν̄i (pν, sν = +1/2) = fν̄i (pν, t) ' fνi (pν, t), (80)

where fνi (pν, t) is given by Equation (73) and fν̄i (pν, t) ' fνi (pν, t) if we neglect lepton
asymmetry. Here right-helical neutrinos, νi with sν = +1/2, (left-helical anti-neutrinos,
ν̄i with sν = +1/2,) corresponds to right-handed neutrinos (left-handed anti-neutrinos),
which are sterile states. We assume sterile neutrinos are not produced in the early universe
due to very weak interactions with the SM particles or have already decayed if sterile neu-
trinos are right-handed heavy Majorana particles as required for the see-saw mechanism.

For Majorana neutrinos, right-handed active anti-neutrinos are regarded as right-
handed active neutrinos due to the lepton number violation. Then fνi (pν, sν) for νi are
given by

fνi (pν, sν = −1/2) = fνi (pν, t),

fνs
i
(pν, sν = +1/2) ' 0,

fνs
i
(pν, sν = −1/2) ' 0,

fνi (pν, sν = +1/2) = fν̄i (pν, t) ' fνi (pν, t), (81)

where νs
i denotes a sterile state of neutrino. Note that even in the case of Majorana neutrinos

lepton asymmetry can be interpreted as chiral asymmetry between left-handed and right-
handed neutrinos. Then fν̄i (pν, t) and fνi (pν, t) are different strictly speaking but almost
the same approximately.

For Dirac neutrinos, since right-handed neutrinos and left-handed anti-neutrinos are
sterile, fνi (pν, sν) for νi are given by

fνi (pν, sν = −1/2) = fνi (pν, t),

fνs
i
(pν, sν = +1/2) ' 0,

fν̄s
i
(pν, sν = −1/2) ' 0,

fν̄i (pν, sν = +1/2) = fν̄i (pν, t) ' fνi (pν, t), (82)

where ν̄s
i denotes a sterile state of anti-neutrino.

From Equations (81) and (82), the magnitude of relic neutrino spectra summed over
helicity for Majorana and Dirac neutrinos differ by a factor of two, which is first pointed
out in ref. [34],

∑
sν=±1/2

fνi (pν, sν) '
{

2 fνi (pν, t) for Majorana νi
fνi (pν, t) for Dirac νi

. (83)
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Then number density and energy density summed over helicity for Majorana and
Dirac neutrinos also differ by a factor of two,

∑
sν=±1/2

nνi (sν) '
{

2nνi for Majorana νi
nνi for Dirac νi

,

∑
sν=±1/2

ρνi (sν) '
{

2ρνi for Majorana νi
ρνi for Dirac νi

. (84)

5. Implications for the Capture Rates on Cosmic Neutrino Capture on Tritium

Finally we discuss how neutrino spectral distortions from e±-annihilations during
neutrino decoupling affect direct detection of the CνB on tritium target, with emphasis
on the PTOLEMY-type experiment [30,31], where cosmic neutrinos can be captured on
tritium by the inverse beta decay process without threshold energy for neutrinos, νi +

3H→
e− + 3He. Tritium is one of appropriate candidates for the target because of its availability,
high capture rate for neutrinos, low Q-value and long half lifetime of t1/2 = 12.32 years.
Here we take 100 g of tritium as the target. We take into account gravitational clustering
for cosmic neutrinos in our Galaxy and nearby galaxies because we would observe the CνB
directly inside our Galaxy. We also comment on gravitational helicity flipping and annual
modulation for the CνB. Then we discuss the potential of direct measurements of such
cosmological effects although it would be still extremely difficult to observe such effects
directly. In particular, we compute the capture rates of cosmic relic neutrinos on tritium,
including such cosmological effects.

5.1. Gravitational Effects for the CνB
5.1.1. Clustering for the CνB by Our Galaxy and Nearby Galaxies

Near the Earth, non-relativistic relic neutrinos cluster locally in the gravitational
potential of our Galaxy and nearby galaxies. Then the local distribution function is distorted
and the local number density is enhanced compared with the global distribution function
and number density. The local number density for relic neutrinos in the current universe is
described as

nloc
νi

= nνi (1 + δnc
νi
), (85)

where δnc
νi

is an enhancement factor by the gravitational attraction by galaxies, which is
estimated in refs. [36,57–61]. For reference, we display some of these values, estimated
in a recent numerical study [36], in Table 8, where the authors consider the gravitational
potential in the Milky Way, Virgo cluster, and Andromeda galaxy. Note that so far, when
evaluating values of δnc

νi
, effects of e±-annihilations into ν, ν̄ during neutrino decoupling

have not been taken into account simultaneously. For mνi < 0.15 eV, spectral distortions
to the momentum distributions for relic cosmic neutrinos by the gravitational clustering
have not also been explicitly estimated (see ref. [58] for spectral distortions by gravitational
clustering for relic neutrinos with mνi ≥ 0.15 eV).

Table 8. The enhancement factor, δnc
νi

, due to neutrino clustering by our Galaxy and nearby galaxies
for given values of neutrino masses [36].

mνi (meV) δnc
νi
(%)

10 0.53
50 12

100 50
200 300
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In the following, we discuss only the case where δnc
νi
< 1 and the lightest neutrino

mass is quite small because the Planck satellite suggests ∑ mν < 0.12 eV. Then the local
number density for relic neutrino can be parametrized as, using linear approximation,

nloc
νi
' n0(1 + δnc

νi
+ δnd

νi
), (86)

where δnd
νi

is the enhancement factor by e±-annihilations into ν and ν̄ during neutrino
decoupling given in Table 7.

5.1.2. Helicity Flipping and Annual Modulation for the CνB

We shortly comment on gravitational helicity flipping and annual modulations for
relic neutrinos. Gravitational clustering for massive neutrinos may induce mixing of relic
neutrino helicity [34,35,62] since the direction of neutrino momentum would change in the
gravitational potential for our Galaxy whereas its spin does not. Although the quantitative
calculations have not yet been achieved, the capture rates on tritium would not change
since their capture rates depend on neutrino number density summed over helicities at
leading order as we will see in the next section. In addition, an annual modulation for
relic neutrinos might occur in a direct detection experiment for the CνB since their velocity
relative to the Earth could be anisotropic due to neutrino clustering and the gravitational
focusing for the CνB by the Sun could also occur. The former effect is negligible since
the capture rates on tritium target are independent of neutrino velocity as we will see in
the next section. The latter effect is expected to change the capture rates by much less
than 1% for mν < 0.15 meV [63]. In the following, we neglect helicity flipping and annual
modulation for relic neutrinos.

5.2. Precise Capture Rates on Tritium including Sub-Dominant Cosmological Effects

In Table 6, non-thermal distortions during neutrino decoupling enhance the number
density of the CνB by about 1%. To properly incorporate such effects into the capture rates
of the CνB on tritium, we discuss the formula of their capture rate with 1% precision.

Cosmic relic neutrinos can be captured on tritium by the following inverse beta
decay process,

νi +
3H→ 3He + e−. (87)

The total capture rate for the CνB in this process, ΓCνB, can be written

ΓCνB =
Nν

∑
i=1

Γi, (88)

where Nν is the number of (mass) species of neutrinos. Γi is the capture rate for a given
mass-eigenstate of neutrino νi, given by

Γi = NT ∑
sν=±1/2

∫ d3 pν

(2π)3 σνi (pν, sν)vνi f loc
νi

(pν, sν), (89)

where NT = MT/M3H is the number of tritium, MT is the total tritium mass in the experi-
mental setup, and M3H ' 2809.432 MeV is the atomic mass of tritium. sν, vνi = |pν|/Eνi

and σνi are helicity, velocity and the total cross section in the inverse beta decay on tritium,
respectively. f loc

νi
(pν, sν) is the local momentum distribution for relic cosmic neutrinos

around the Earth, which satisfies nloc
νi
(sν) =

∫ dp3
ν

(2π)3 f loc
νi

(pν, sν).
In cosmic neutrino capture on tritium, the spins of the outgoing electron and nucleus

would not be measured. In addition, the spin of the initial nucleus would not be identified
either. On the other hand, the helicity state for cosmic neutrinos in the Dirac case is polarized
as in Section 4.3. Then we compute the spin-polarized cross section for νi. After averaging
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over the spin of 3H and summing over the spin of outgoing e− and 3He , the formulae of
σνi (pν, sν) with 1% precision reduces to (see Appendix D for detail calculations)

σνi (pν, sν) '
G2

F
2π
|Vud|2|Uei|2

m3He
m3Hvνi

(
〈 fF〉2 +

g2
A

g2
V
〈gGT〉2

)
× F(2, Ee)Ee|pe|(1− 2sνvνi ), (90)

where Vud ' 0.9740 is a component of the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
m3H ' 2808.921 MeV and m3He ' 2808.391 MeV are the nuclear masses of 3H and 3He,
gA ' 1.2723 and gV ' 1 are the axial and vector coupling constant, and 〈 fF〉 ' 0.9998 and
〈gGT〉 '

√
3× (0.9511± 0.0013) are the reduced matrix elements of the Fermi and Gamow-

Teller (GT) operators, respectively. The Fermi function F(Z, Ee) is an enhancement factor
by the Coulombic attraction of the outgoing electron and proton, which is approximately
given by [64]

F(Z, Ee) =
2παZEe/|pe|

1− e−2παZEe/|pe |
, (91)

where α ' 137.036 is the fine structure constant. Z is the atomic number of the daughter
nucleus and Z = 2 for 3He. The energy and momentum for an emitted electron Ee and pe
depend on the neutrino masses and momenta strictly because of momentum conservation
in the inverse β-decay process. However, since the contributions of the neutrino masses
and momenta to Ee and pe are very small, Ee and |pe| are approximately given by (see
Appendix C for details)

Ee ' K0
end + me + Eνi ' K0

end + me,

|pe| =
√

E2
e −m2

e , (92)

where K0
end is the beta decay endpoint kinetic energy for massless neutrinos given by

K0
end =

(m3H −me)2 −m2
3He

2m3H
' 18.6 keV. (93)

Eνi is so small compared to K0
end and me that we can safely neglect Eνi in Equation (92).

Then we obtain Γi with 1% precision substituting Equation (90) into Equation (89),

Γi ' NT
G2

F
2π
|Vud|2|Uei|2

m3He
m3H

(
〈 fF〉2 +

g2
A

g2
V
〈gGT〉2

)
× F(2, Ee)Ee|pe| ∑

sν=±1/2

(nνi (sν)− 2sν〈vνi 〉), (94)

where 〈vνi 〉 is the (unnormalized) average magnitude of velocity for νi given by

〈vνi 〉 =
∫ d3 pν

(2π)3 fνi (pν, sν)vνi . (95)

Typically, 〈vνi 〉 contributes more than 1% to Γνi . If mνi & 100 meV, due to vνi ∼
p0/mνi . 0.01, we can drop 〈vνi 〉 in the formula of Equation (94) with 1% precision.
Here p0 ∼ 3.15Tν(t0) ∼ 0.53 meV is the average momentum of the CνB in the cur-
rent universe. We also comment on whether we can use further approximations with
1% precision to write Equation (94) into a simpler form. For massless neutrinos, due
to vνi = |pνi

|/Eνi = 1, the (unnormalized) velocity is written as 〈vνi 〉 = nνi . For non-
relativistic neutrinos (mν & 10 meV), due to vνi � 1, 〈vνi 〉 is approximately written
as 〈vνi 〉 '

∫
d3 p/(2π3

ν) f 0
ν (p, t0)|pν|/Eνi , where f 0

ν (pν, t0) = [exp(pν/Tν(t0)) + 1]−1 and
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Tν(t0)/Tγ(t0) = (4/11)1/3. We note that gravitational helicity flipping for massive neutri-
nos by neutrino clustering would be negligible since the helicity-dependent part in Γi is
already suppressed by vνi .

5.2.1. Majorana vs. Dirac Neutrinos

For non-relativistic neutrinos, i.e., vi � 1, if we set vνi = 0 in Equation (94), Γi is
porportional to ∑sν

nνi and left-helical and right-helical components for relic neutrinos
interact with tritium with the same magnitude via the weak interaction. Then the capture
rate on tritium for Majorana neutrinos ΓM

i is twice that for Dirac neutrinos [34],

ΓM
i
∣∣
vνi�1' 2ΓD

i
∣∣
vνi�1. (96)

On the other hand, for relativistic neutrinos, i.e., vi ' 1, only the left-helical neutrinos
interact with tritium via the weak interaction since helicity coincides with chirality in the
relativistic limit. Then in both Majorana and Dirac cases, the capture rates are the same [35],

ΓM
i
∣∣
vνi'1' ΓD

i
∣∣
vνi'1. (97)

Note again that the approximations in Equations (96) and (97) might not be valid
for the capture rates with 1% precision. To estimate the capture rates with 1% precision,
the term that depends on vνi in Equation (94) should be included precisely.

5.2.2. Values of the Capture Rates on Tritium with m lightest = 0

For references, we show values of the capture rates including cosmological effects dis-
cussed in Sections 4.2 and 5.1 in the case of mlightest = 0. We choose other neutrino masses
and their ordering to satisfy the observed values of neutrino squared-mass differences from
neutrino oscillation experiments [51,52],

Normal Ordering (NO) : ∆m2
21 ' (8.6 meV)2 ∆m2

31 ' (50 meV)2

Inverted Ordering (IO) : ∆m2
21 ' (8.6 meV)2 ∆m2

32 ' −(50 meV)2 (98)

In both neutrino mass ordering we take the following values of the PMNS matrix,

|Ue1|2 ' 0.681, |Ue2|2 ' 0.297, |Ue3|2 ' 0.0222. (99)

Note that neutrino squared-mass differences and neutrino mixing parameters currently
include a few percent (about 10%) uncertainties even at 1σ (3σ) confidence level.

In Table 9, we show values of the capture rates on 100 g of tritium in both the cases of
NO and IO for Majorana and Dirac neutrinos with mlightest = 0. δΓd

i denotes the differences
between the cases with and without effects of e±-annihilation during neutrino decoupling
and δΓc

i denotes the differences with and without gravitational clustering for relic neutrinos
in nearby galaxies.

Table 9. Capture rates of relic cosmic neutrinos on 100 g of tritium in unit of year−1 with mlightest = 0.
δΓd

i is the differences between the cases with and without effects of e±-annihilation during neutrino
decoupling and δΓc

i is the differences with and without gravitational clustering for relic neutrinos in
nearby galaxies.

Ordering Case Γ1 δΓd
1 δΓc

1 Γ2 δΓd
2 δΓc

2 Γ3 δΓd
3 δΓc

3

NO Majorana 5.48 0.061 0 2.40 0.024 0.013 0.200 1.6× 10−3 0.021
Dirac 5.48 0.061 0 1.27 0.012 6.3× 10−3 0.101 8.0× 10−4 0.011

IO Majorana 6.13 0.061 0.65 2.67 0.024 0.28 0.178 1.6× 10−3 0
Dirac 3.10 0.031 0.33 1.35 0.012 0.14 0.178 1.6× 10−3 0
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For Majorana neutrinos, the capture rates for the first and second heaviest neutrinos
are slightly less than twice those for Dirac neutrinos because of vνi ' 0. On the other hand,
the capture rates for massless (or almost massless) neutrinos in the cases of Majorana and
Dirac neutrinos are the same because of vνi ' 1.

5.2.3. Discussions on Exposure and Uncertainties in the Capture Rates

In this section, we discuss the required amount of tritium to observe the sub-leading
cosmological effects themselves, δΓc,d

i , and the estimated error of the capture rates for relic
neutrinos on tritium in more detail.

To observe δΓc,d
i , we need a large number of events to satisfy typically

∑i δΓc,d
i T√

ΓCνBT + ΓbackgroundT
� 1, (100)

where T is the exposure time and Γbackground is a background rate. Even if the background is
successfully removed, we need 102–104 events of the CνB signal (ΓCνBT ∼ 102–104) because
of δΓc,d

i ∼ (0.1− 0.01)× Γi for ∑i mνi < 0.12 eV. This requirement corresponds to the need
for 10–103 kg yr of exposure of tritium. Currently, it is extremely difficult to obtain such
amount of the exposure. In the next Section 5.3, we comment on β-decay background,
which is one of main background in cosmic neutrino capture on tritium.

The estimated error of the neutrino capture rates mainly comes from the uncertainties
of the neutrino mixing parameter, |Uei|2, and the undetermined value of the lightest
neutrino mass, mlightest. The current errors of PMNS matrix are about a few percent
(about 10%) at 1σ (3σ) confidence level [51,52]. The current upper bound of mlightest is
.0.8 eV [65]. Thus, unfortunately, it is still difficult to incorporate cosmological sub-
dominant contributions into the value of Γνi precisely. However, δΓc,d

i for mlightest = 0 is

correctly estimated since uncertainties of |Uei| are canceled out in δΓc,d
i . Future neutrino

oscillation experiments will reduce uncertainties of PMNS matrix (see, e.g., [66–68]). In
addition, measurement of large β-decay background in the PTOLEMY-type experiment
might determine the value of mlightest very precisely [31].

We also note that the theoretical calculation of 〈gGT〉 still includes the uncertainty of
a few %, although the estimation of 〈gGT〉 through the observation of the tritium half-life
and the value of the Fermi operator, 〈 fF〉, only involves uncertainty of 0.1% [69].

For a large value of mlightest, gravitational clustering effects of relic neutrinos are typi-
cally more dominant than effects of e±-annihilation during neutrino decoupling. Although
the CνB itself with a large value of mlightest would be easier to observe due to a large gravi-
tational clustering, it is also a very difficult task to distinguish the effects of e±-annihilation
during neutrino decoupling from gravitational clustering effect of relic neutrinos.

Based on the evaluation in this section, it is still extremely difficult to observe e±-
annihilation during neutrino decoupling in the PTOLEMY-type experiment. However,
the precise capture rates including cosmological sub-dominant contributions might be
useful to distinguish the SM from physics beyond the SM properly in the future.

5.3. β-Decay Background and the Energy Resolution of the Detector to Distinguish the CνB Signal
from It

Finally we comment on β-background and the required energy resolution of the detec-
tor to distinguish the CνB signal from this background, which is one of main difficulties to
observe the CνB directly in the inverse β-decay process.

The main background comes from tritium β-decay process,

3H→ 3He + e− + ν̄i. (101)
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The β-decay spectrum and the capture rate for the β-decay process are given by [70]
(see also Appendix D)

dΓβ

dEe
= NT

G2
F

2π3 |Vud|2|Uei|2
m3He
m3H

(
〈 fF〉2 +

g2
A

g2
V
〈gGT〉2

)

× F(2, Ee)Ee|pe|
3

∑
i=1
|Uei|2H(Ee, mνi ), (102)

where

H(Ee, mνi ) =
1−m2

e /(Eem3H)

(1− 2Ee/m3H + m2
e /m2

3H)
2

√
(Emax,i

e − Ee)

(
Emax,i

e − Ee +
2mνi m3He

m3H

)
×
[

Emax,i
e − Ee +

mνi

m3H
(m3He + mνi )

]
, (103)

Emax,i
e is the maximal energy of the emitted electron for 3H → 3He + e− + ν̄i , where the

electron is emitted in opposite direction to both 3He and ν̄e (see also Appendix C),

Emax,i
e ' K0

end + me −mνi . (104)

Then the maximal energy for the emitted electron in the β-decay process called the
energy at β-decay endpoint is

Eend
e ' K0

end + me −mνlightest , (105)

where mlightest is the lightest neutrino mass. We can see that the β-decay spectrum dΓβ/dEe

vanishes for Ee = Eend
e . Then the total tritium β-decay rate is obtained as

Γβ =
∫ Eend

e

me
dEe

dΓβ

dEe
' 1024

(
MT

100 g

)
yr−1. (106)

Since the event number of β-decay background is extremely larger than that of the
CνB signal, we must distinguish the two signals clearly.

To distinguish the CνB signal and β-decay background, we need a tiny energy res-
olution of the detector ∆. The energy resolution of a detector characterizes the smallest
separation where two signals can be distinguished. The β-decay background closest to
the CνB signal is the electron signal with the maximal energy Emax

e . To distinguish the
CνB signal for a mass species νi from β-decay background near the endpoint, the required
energy resolution ∆i is expected to be (see Appendix C for details)

∆i . ECνB,i
e − Eend

e ' mlightest + Eνi , (107)

where ECνB,i
e is the emitted electron energy from the CνB signal, νi +

3H→ e− + 3He given
by Equation (92).

To take into account the energy resolution of the detector ∆ in the spectrum and the
number of events for the CνB signal and the β-decay background, we model the would-be
observed spectrum of the emitted electron as a Gaussian-smeared version of the actual
spectrum. This is achieved by convolving both the CνB signal and the β-decay background
with a Gaussian of full width at half maximum (FWHM) equal to ∆ =

√
8 ln 2σ, where σ is

the Gaussian standard deviation,
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dΓ̃i
dEe

=
1√
2πσ

∫ ∞

−∞
dE′e Γi(E′e) δ[E′e − (Eend + Eνi + mlightest)] exp

[
− (E′e − Ee)2

2σ2

]
, (108)

dΓ̃β

dEe
=

1√
2πσ

∫ ∞

−∞
dE′e

dΓβ

dEe
(E′e) exp

[
− (E′e − Ee)2

2σ2

]
, (109)

Substituting Equation (88) into Equation (108), the smeared spectrum of the emitted
electron from the CνB signal can be written as

dΓ̃i
dEe

=
NT√
2πσ

∑
sν=± 1

2

∫ d3 pν

(2π)3 σνi (pν, sν)vνi fνi (p, sν)

× exp

{
−
[Ee − (Eend + mlightest + Eνi )]

2

2σ2

}
, (110)

where

σνi (pν, sν) = σνi (pν, sν, E′e)

= σνi (pν, sν, Eend + mlightest + Eνi ). (111)

Equation (110) is a Fredholm integral equation of the first kind and dΓ̃i
dEe

is a would-
be observed quantity. After solving Equation (110) inversely, the spectrum of the CνB,
fνi (p, sν), can be in principle reconstructed though we might need a significantly large num-
ber of observations for the CνB events. We leave the detailed study for the reconstruction
of the CνB spectrum fνi (p, sν) on tritium as future work.

In Figure 5, we show the expected spectra for the emitted electrons from the CνB
signals (solid lines) and the β-decay background (dashed lines) with mlightest = 0 meV and
100 g of tritium, the energy resolution ∆ = 20 meV (left panel) and ∆ = 0.4 meV (right
panel) considering the case of Dirac neutrinos and both the normal (fine red) and inverted
(bold blue) mass hierarchies. In these figures, we neglect spectral distortions for the CνB
from e±-annihilation during their neutrino decoupling and the gravitational clustering for
simplicity. We can see that the CνB signal is distinguished from the β-decay background
if ∆ � Eνi . It is easier to distinguish the CνB signal from the β-decay background in the
inverted mass ordering than the normal ordering. This is because we can obtain a larger
number of events for the heaviest neutrinos in the inverted case due to the large value
of |Ue1|. In addition, β-decay spectrum near the endpoint is smaller in the inverted case
because in the inverted case the β-decay spectrum near the endpoint is composed of ν3
with small |Ue3| while in the normal ordering that is composed of ν1 with large |Ue1|.

Comments on Statistical Analysis

To estimate the required energy resolution of the detector ∆ and exposure of tritium to
discover the CνB in a qualitative way, we need statistical analysis. In ref. [31], the authors
estimated statistical significance for the detection of the CνB on tritium as a function of
the lightest neutrino mass and the energy resolution in an exposure of 100 g yr of tritium
using a χ2-analysis (see Figure 5 in ref. [31]). Here a fiducial value of constant number
events of background of Nb = ΓbT, where Γb = 10−5 Hz in the 15 eV region around the
β-decay endpoint energy, is introduced in addition to the β-decay background. If we
would obtain a larger exposure of tritium, the result of Figure 5 in ref. [31] will be improved.
The reduction of the constant background Nb might improve the result. A more quantitative
discussion will be possible when the more concrete setup of the PTOLEMY-type experiment
is decided, and the neutrino mass ordering and the lightest neutrino mass are constrained
more severely from complementary future neutrino experiments.
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We leave as future work the statistical analysis to estimate the required energy res-
olution ∆ and exposures to observe the CνB spectral distortions due to e±-annihilation
in neutrino decoupling and gravitational clustering by nearby galaxies. However, the re-
quired energy resolution would not change drastically compared to observing the CνB itself
since their spectral distortions are sub-leading contributions. As discussed in Section 5.2.3,
to observe 1–10% modifications in Γi due to their spectral distortions, one will need 102–104

events of the CνB. The required exposures correspond to 10–103 kg yr of the exposure of
tritium. It is extremely difficult to achieve this exposure at present. Note that here we
consider neutrino masses small enough to satisfy ∑ mν < 0.12 eV. If neutrino masses are
enough large, the required exposure will be smaller due to large neutrino clustering. How-
ever, it would be difficult to distinguish the CνB spectral distortions due to e±-annihilation
in neutrino decoupling from such large neutrino clustering experimentally. We also leave
as future work how to distinguish the two contributions to the CνB spectral distortions by
numerical simulations and actual experiments.

Figure 5. The expected spectra as a function of the electron kinetic energy, Ke = Ee − me, for the
emitted electrons from the CνB signals (solid lines) and the β-decay background (dashed lines) in
a tritium experiment, assuming mlightest = 0 meV and 100 g of tritium, with the energy resolution
∆ = 20 meV (left panel) and ∆ = 0.4 meV (right panel) in the case of Dirac neutrinos. Bold blue
lines represent the NH case and fine red lines represent the IH case.

6. Conclusions

In the near future, CMB-S4 will determine Neff with a very good precision of ∼0.03 at
68% C.L., and consequently confirm neutrino decoupling process in the SM and/or impose
severe constraints on many scenarios in physics beyond the SM. In addition, in the future,
a direct observation of the CνB might bring us more information about the early universe
and neutrino physics. In both observations, the CνB spectrum is one of crucial ingredients
to estimate Neff and a direct detection rate.

In this article, we review the formula of kinetic equations for neutrinos in the early
universe, which are the quantum Boltzmann equations for neutrinos and the continuity
equation and the possible spectral distortions due to e±-annihilation in neutrino decoupling.
We also discuss the impact of the distortion of the CνB spectrum in neutrino decoupling on
direct observation of the CνB on tritium, with emphasis on the PTOLEMY-type experiment.

We find Neff = 3.044 [25–27] by solving the kinetic equations for neutrino density
matrix in the early universe, including vacuum three-flavor oscillations, oscillations in
e±-background, finite temperature corrections to me, ρ and P up to the next-to-leading
order O(e3) (see also ref. [24] for the first suggestion on the importance of this contribu-
tion), and the collision term where we consider full diagonal parts and off-diagonal parts
derived from charged current interactions but neglect off-diagonal parts derived from
neutral current interactions. Later, the authors in refs. [26,27] also find Neff = 3.0440 and
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3.0440± 0.0002, respectively, including off-diagonal parts in the collision term derived from
neutrino neutral current interactions. Effects of their off-diagonal parts, and the choice of
neutrino mass and mixing parameters on Neff are quite small, δNeff ∼ ±(1− 2)× 10−4 [27].
In refs. [25–27], the Dirac CP-violating phase in neutrino mixing parameters is neglected.
This contribution to Neff is expected to be also quite small since increases and decreases for
the energy densities of neutrinos and anti-neutrinos due to the Dirac CP-violating phase
would be canceled out (see also ref. [54]). However, QED corrections to weak interaction
rates at order O(e2G2

F) and forward scattering of neutrinos via their self-interactions have
not been precisely taken into account. Recent studies [23,28] suggest that these neglects
might still induce uncertainties of ±(10−3 − 10−4) in Neff. Although we should consider
their contributions to Neff in the future, Neff = 3.044 is still a very good reference value.

We have revealed the spectrum, number and energy density of the CνB in the current
homogeneous and isotropic universe, including the spectral distortions in neutrino decou-
pling, as in the right panel of Figure 4 and Tables 4 and 5. Then we have discussed the
capture rates of the CνB on tritium with 1% precision to observe effects of 1% enhancement
of the number density of the CνB by the spectral distortions due to e±-annihilation during
neutrino decoupling. Unfortunately, it is extremely difficult to observe such sub-dominant
effects since we will need more than 10 kg of tritium. The precise capture rates of the CνB
on tritium will be also useful to distinguish the SM from physics beyond the SM properly.

If observations and theoretical estimations of the CνB spectrum are improved signifi-
cantly, we will obtain much richer information about neutrino physics and the early universe.
Through direct observations of the CνB, one can impose significant constraints on neutrino
decays and lifetimes in the region of the age of the universe, t0 = 4.35× 1017 s [34,71]. The
CνB spectrum would also have fluctuations imprinted by inflationary perturbations. To-
wards a precise estimation of anisotropy of the CνB as the CMB, one would need to solve
kinetic equations for neutrinos in an anisotropic background, develop a detection method
of the anisotropy, and reduce uncertainties of physical constants such as neutrino mass and
mixing parameters, and Newton constant.
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Appendix A. Kinetic Equations for Neutrinos in Comoving Variables

In this appendix, we write the Boltzmann equations for the neutrino density matrix
(58) and the continuity Equation (59) in terms of the comoving variables, x = mea, y = pa,
z = Tγa. In terms of these variables, we can write the Boltzmann Equations (58) as in
ref. [20],

dρy(x)
dx

= mPl

√
3

8πρ̄

{
−i

x2

m3
e

[
H̄y(x), ρy(x)

]
+

m3
e

x4 C̄[ρy(x)]
}

. (A1)

where ρ̄, H̄y(x), and C̄[ρy(x)] are quantities written in the comoving variables, x, y, z. Here
we have used the following relations for the Hubble parameter,
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H =
1

mPl

√
8πρ

3
,

ρ = ρ̄
(me

x

)4
. (A2)

The effective Hamiltonian for neutrino oscillations in vacuum and the forward scatter-
ing of neutrinos with the e±, ν, ν̄-background (multiplied by me/x), H̄y(x), is given by

H̄y(x) =
M2

2y
+
√

2GF

(me

x

)4
(N̄e− − N̄e+) +

√
2GF

(me

x

)4
(N̄ν − N̄ν̄)

− 2
√

2GFy
m2

W

(me

x

)6
(Ēe− + P̄e− + Ēe+ + P̄e+)−

8
√

2GFy
3m2

Z

(me

x

)6
(Ēν + Ēν̄), (A3)

where N̄e± , N̄ν,ν̄, Ēe± , P̄e± , Ēν,ν̄ are written in the flavor basis around the temperature of
MeV scale as

N̄e− − N̄e+ = diag(n̄e− − n̄e+ , 0, 0), ne± = 2
∫ d3y

(2π)3 fe±(y),

N̄ν − N̄ν̄ =
∫ d3y

(2π)3

(
ρy(x)− ρ̄y(x)

)
,

Ēe± + P̄e± = diag(ρ̄e± + P̄e
±, 0, 0), ρ̄e± + P̄e± =

∫ d3y
(2π)3

(
Ēe +

y2

3Ēe

)
fe±(y),

Ēν + Ēν̄ =
∫ d3y

(2π)3 y
(
ρy(x) + ρ̄y(x)

)
, (A4)

where, neglecting the chemical potential for e±,

fe±(y) =
1

eĒe/z + 1
, Ēe =

√
y2 + x2 + δm̄2

e . (A5)

δm̄2
e is the finite temperature correction to the electron mass up to O(e2) in the comov-

ing variables, ignoring the logarithmic term in Equation (57) and the chemical potential
for e±,

δm̄2
e =

e2z
6

+
e2

π2

∫
dy

y2√
y2 + x2

1
exp(

√
y2 + x2/z) + 1

. (A6)

The collision term in the comoving variables can be also decomposed as in Equation (48)

C̄[ρy(x)] = C̄νν̄↔e−e+ + C̄νe−↔νe− + C̄νe+↔νe+ + C̄νν↔νν + C̄νν̄↔νν̄. (A7)

The collision terms from the annihilation and scattering processes including both ν and
e± are, neglecting the chemical potential for e± and reducing nine-dimensional collision
integrals in Equation (37) to two integrals as in Appendix B,
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C̄νν̄↔e−e+ [ρy1(x)]

=
G2

F
2π3y1

∫
dy2dy3 y2y3Ē4

×
[

Π1
annFLL

ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ Π2

annFRR
ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ Π3

ann

(
FRL

ann

(
ν(1), ν̄(2), e−(3), e+(4)

)
+ FLR

ann

(
ν(1), ν̄(2), e−(3), e+(4)

))]
, (A8)

C̄νe−↔νe− [ρy1(x)] + C̄νe+↔νe+ [ρy1(x)]

=
G2

F
2π3y1

∫
dy2dy3 y2y3Ē4

×
[

Π1
sc

(
FLL

sc

(
ν(1), e(2), ν(3), e(4)

)
+ FRR

sc

(
ν(1), e(2), ν(3), e(4)

))
−Π2

sc

(
FLR

sc

(
ν(1), e(2), ν(3), e(4)

)
+ FRL

sc

(
ν(1), e(2), ν(3), e(4)

))]
, (A9)

where Ēi =
√

y2
i + x2 + δm̄2

e and Fab
sc

(
ν(1), e−(2), ν(3), e−(4)

)
= Fab

sc

(
ν(1), e+(2), ν(3), e+(4)

)
=

Fab
sc

(
ν(1), e(2), ν(3), e(4)

)
due to no lepton asymmetry. Fab

ann and Fab
sc are given by

Equations (39) and (42). Similarly, the collision terms from the self-interaction processes in
the comoving variables are

C̄νν↔νν[ρy1(x)] + C̄νν̄↔νν̄[ρy1(x)]

=
G2

F
2π3y1

∫
dy2dy3 y2y3y4

×
[

Π1
selfFsc(ν

(1), ν(2), ν(3), ν(4))

+ Π2
self

(
Fsc(ν

(1), ν(2), ν(3), ν(4)) + Fann(ν
(1), ν̄(2), ν(3), ν̄(4))

)]
. (A10)

Fsc

(
ν(1), ν(2), ν(3), ν(4)

)
, Fsc

(
ν(1), ν̄(2), ν(3), ν̄+(4)

)
and Fann

(
ν(1), ν̄(2), ν(3), ν̄(4)

)
are

given by Equations (45)–(47). The functions Π1,2,3
self,ann,sc in Equations (A8)–(A9) take the

following forms,

Π1
ann = 2D1 −

2D2(y2, y3)

y2Ē3
− 2D2(y1, y4)

y1Ē4
+

2D3

y1y2Ē3Ē4
,

Π2
ann = 2D1 −

2D2(y2, y4)

y2Ē4
− 2D2(y1, y3)

y1Ē3
+

D3

y1y2Ē3Ē4
,

Π3
ann = (x2 + δm̄2

e )

(
D1 +

D2(y1, y2)

y1y2

)
1

Ē3Ē4
,

Π1
sc = 4D1 −

2D2(y2, y3)

Ē2y3
− 2D2(y1, y4)

y1Ē4
+

2D2(y3, y4)

y3Ē4
+

2D2(y1, y2)

y1Ē2
+

4D3

y1Ē2y3Ē4
,

Π2
sc = 2(x2 + δm̄2

e )

(
D1 −

D2(y1, y3)

y1y3

)
1

Ē2Ē4
,

Π1
self = D1 +

D2(y1, y2)

y1y2
+

D2(y3, y4)

y3y4
+

D3

y1y2y3y4
,

Π2
self = D1 −

D2(y2, y3)

y2y3
− D2(y1, y4)

y1y4
+

D3

y1y2y3y4
. (A11)
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The functions of D1,2,3 are written as,

D1 =
4
π

∫ ∞

0

dλ

λ2 sin(λy1) sin(λy2) sin(λy3) sin(λy4),

D2(y3, y4) =
4y3y4

π

∫ ∞

0

dλ

λ2 sin(λy1) sin(λy2)

[
cos(λy3)−

sin(λy3)

λy3

][
cos(λy4)−

sin(λy4)

λy4

]
,

D3 =
4y1y2y3y4

π

∫ ∞

0

dλ

λ2

[
cos(λy1)−

sin(λy1)

λy1

][
cos(λy2)−

sin(λy2)

λy2

]
×
[

cos(λy3)−
sin(λy3)

λy3

][
cos(λy4)−

sin(λy4)

λy4

]
, (A12)

which can be integrated out analytically as in Appendix B.
If we neglect the off-diagonal components of ρy(x) in the collision terms from neutrino

self-interactions, which could have a negligible effect on Neff with 10−3 precision, their
collision terms are reduced to

C̄νν↔νν[ρy1(x)] + C̄νν̄↔νν̄[ρy1(x)]
∣∣
diag

=
G2

F
2π3y1

∫
dy2dy3 y2y3y4

[(
2Π1

self + 4Π2
self

)
(ν

(1)
α , ν

(2)
α , ν

(3)
α , ν

(4)
α )

+
(

Π1
self + Π2

self

)
F(ν(1)α , ν

(2)
β , ν

(3)
α , ν

(4)
β ) + Π2

selfF(ν
(1)
α , ν

(2)
α , ν

(3)
β , ν

(4)
β )

+
(

Π1
self + Π2

self

)
F(ν(1)α , ν

(2)
γ , ν

(3)
α , ν

(4)
γ ) + Π2

selfF(ν
(1)
α , ν

(2)
α , ν

(3)
γ , ν

(4)
γ )

]
. (A13)

where

F(ν(1)α , ν
(2)
β , ν

(3)
γ , ν

(4)
δ ) = fνγ(y3) fνδ

(y4)(1− fνα(y1))
(

1− fνβ
(y2)

)
− fνα(y1) fνβ

(y2)
(
1− fνγ(y3)

)
(1− fνδ

(y4)). (A14)

Finally, the continuity Equation (59) is translated into the evolution equation for
z, including finite temperature corrections from QED up to O(e3) but neglecting the
logarithmic O(e2) corrections [14,24],

dz
dx

=

x
z J(x/z)− 1

2π2z3

∫ ∞
0 dy y3

(
d fνe
dx +

d fνµ

dx + d fντ
dx

)
+ G(2)

1 (x/z) + G(3)
1 (x/z)

x2

z2 J(x/z) + Y(x/z) + 2π2

15 + G(2)
2 (x/z) + G(3)

2 (x/z)
, (A15)

where
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G(2)
1 (ω) = 2πα

[
1
ω

(
K(ω)

3
+ 2K(ω)2 − J(ω)

6
− K(ω)J(ω)

)
+

(
K′(ω)

6
− K(ω)K′(ω) +

J′(ω)

6
+ J′(ω)K(ω) + J(ω)K′(ω)

)]
,

G(2)
2 (ω) = −8πα

(
K(ω)

6
+

J(ω)

6
− 1

2
K(ω)2 + K(ω)J(ω)

)
+ 2παω

(
K′(ω)

6
− K(ω)K′(ω) +

J′(ω)

6
+ J′(ω)K(ω) + J(ω)K′(ω)

)
,

G(3)
1 (ω) =

e3

4π

(
K(ω) +

ω2

2
k(ω)

)1/2[ 1
ω
(2J(ω)− 4K(ω))− 2J′(ω)−ω2 j′(ω)

−ω(2k(ω) + j(ω))−
(
2J(ω) + ω2 j(ω)

)
(ω(k(ω)− j(ω)) + K′(ω))

2(2K + ω2k(ω))

]
,

G(3)
2 (ω) =

e3

4π

(
K(ω) +

ω2

2
k(ω)

)1/2[
(2J(ω) + ω2 j(ω))2

2(2K(ω) + ω2k(ω))
− 2

ω
Y′(ω)−ω

(
3J′(ω) + ω2 j′(ω)

)]
, (A16)

with

K(ω) =
1

π2

∫ ∞

0
du

u2
√

u2 + ω2

1

exp
(√

u2 + ω2
)
+ 1

,

J(ω) =
1

π2

∫ ∞

0
du u2

exp
(√

u2 + ω2
)

(
exp

(√
u2 + ω2

)
+ 1
)2 ,

Y(ω) =
1

π2

∫ ∞

0
du u4

exp
(√

u2 + ω2
)

(
exp

(√
u2 + ω2

)
+ 1
)2 ,

k(ω) =
1

π2

∫ ∞

0
du

1√
u2 + ω2

1

exp
(√

u2 + ω2
)
+ 1

,

j(ω) =
1

π2

∫ ∞

0
du

exp
(√

u2 + ω2
)

(
exp

(√
u2 + ω2

)
+ 1
)2 . (A17)

The prime represents the derivative with respect to ω. G(2)(ω) and G(3)(ω) denote
QED finite temperature corrections at O(e2) and O(e3), respectively.

Appendix B. Reduction of the Collision Integrals

In this appendix, we analytically perform seven out of nine integrations in the collision
terms for four-Fermi interaction processes at order of O(G2

F) in the homogeneous and
isotropic universe, following refs. [9,39]. We consider the general form of the collision term
in this case,

Ccoll =
1

2E1

∫
(2π)4δ4(∑

i
pi)
(
|M|2

)
part

F
(
ρp
) 4

∏
i=2

d3 pi
(2π)32Ei

, (A18)

where Ei is the energy of i-th particle. The matrix F
(
ρp
)

is a function of neutrino density
matrix and

(
|M|2

)
part is a part of the possible squared matrix elements summed over spin
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degrees of freedom of all particles except for the first particle |M|2. We change the delta
function for 3-momentum into the exponential representation:

δ(3)(∑
i

pi) =
∫

eλ·(p1+p2−p3−p4)
d3λ

(2π)3 , (A19)

and decompose momentum integrations into the radial and angle components,

d3 pi = p2
i dpi sin θidθidφi ≡ p2

i dpidΩi. (A20)

Using Equations (A19) and (A20), we rewrite the general collision term (A18) to

Ccoll =
1

64π3E1 p1

∫
δ(E1 + E2 − E3 − E4)F(ρp(t))D(p1, p2, p3, p4)

p2dp2

E2

p3dp3

E3

p4dp4

E4
, (A21)

where

D(p1, p2, p3, p4) =
p1 p2 p3 p4

64π5

∫ ∞

0
λ2dλ

∫
eiλ·p1 dΩλ

∫
eiλ·p2 dΩp2

×
∫

e−iλ·p3 dΩp3

∫
e−iλ·p4 dΩp4 |M|

2. (A22)

For four-Fermi interaction processes at order of O(G2
F), all of |M|2 have two kinds

of forms,

K1(q1µqµ
2 )(q3νqν

4) = K1(E1E2 − q1 · q2)(E3E4 − q3 · q4), (A23)

K2m2(q3µqµ
4 ) = K2m2(E3E4 − q3 · q4), (A24)

where qi corresponds to one of pj and the angle between qi and qj is written in terms of the
integration variables of angle,

cos ψij = sin θi sin θj cos(φi − φj) + cos θi cos θj. (A25)

In both cases of Equations (A23) and (A24), we can perform all integrals for angle com-
ponents in Equation (A22) so that D(q1, q2, q3, q4) in the case of Equation (A23) reduces to

D = K1[E1E2E3E4D1 + E1E2D2(q3, q4) + E3E4D2(q1, q2) + D3], (A26)

while in the case of Equation (A24), D(q1, q2, q3, q4) is given by

D = K2E1E2[E3E4D1 + D2(q3, q4)], (A27)

where D1,2,3 are defined in Equation (A12).
In the following we only consider D1, D2(q3, q4), D3. For simplicity we assume that

q1 > q2 and q3 > q4 without loss of generality though we can perform the integrals in D1,2,3
without this assumption and obtain the exact expressions given in ref. [39]. Then we obtain
the simplified expressions of D1,2,3 in four cases:

(1) q1 + q2 > q3 + q4, q1 + q4 > q2 + q3 and q1 ≤ q2 + q3 + q4
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D1 =
1
2
(q2 + q3 + q4 − q1),

D2(q3, q4) =
1

12

(
(q1 − q2)

3 + 2(q3
3 + q3

4)− 3(q1 − q2)(q2
3 + q2

4)
)

,

D3 =
1

60
(
q5

1 − 5q3
1q2

2 + 5q2
1q3

2 − q5
2

− 5q3
1q2

3 + 5q3
2q2

3 + 5q2
1q3

3 + 5q2
2q3

3 − q5
3

− 5q3
1q2

4 + 5q3
2q2

4 + 5q3
3q2

4 + 5q2
1q3

4 + 5q2
2q3

4 + 5q2
3q3

4 − q5
4
)
. (A28)

Note that the case q1 > q2 + q3 + q4 is unphysical so that D1 = D2 = D3 = 0 in
this case.

(2) q1 + q2 > q3 + q4 and q1 + q4 < q2 + q3

D1 = q4,

D2(q3, q4) =
1
3

q3
4,

D3 =
1

30
q3

4

(
5q2

1 + 5q2
2 + 5q2

3 − q2
4

)
. (A29)

(3) q1 + q2 < q3 + q4, q1 + q4 < q2 + q3 and q3 ≤ q1 + q2 + q4

D1 =
1
2
(q1 + q2 + q4 − q3),

D2(q3, q4) =
1

12

(
−(q1 + q2)

3 − 2q3
3 + 2q3

4 + 3(q1 + q2)(q3
3 + q3

4)
)

. (A30)

D3 is equal to that in Equation (A28) with the replacement of variables q1 ↔ q3 and
q2 ↔ q4 and the case of q3 > q1 + q2 + q4 is unphysical so that D1 = D2 = D3 = 0 in
this case.

(4) q1 + q2 < q3 + q4 and q1 + q4 > q2 + q3

D1 = q2,

D2(q3, q4) =
1
6

q2

(
3q2

3 + 3q2
4 − 3q2

1 − q2
2

)
,

D3 =
1

30
q3

2

(
5q2

1 + 5q2
3 + 5q2

4 − q2
2

)
. (A31)

After we have integrated the δ-function, we obtain the simplified expression of the
collision term, leaving two integrals,

Ccoll =
1

64π3E1 p1

∫ ∫
F
(
ρp(t)

)
D(p1, p2, p3, p4)

p2dp2

E2

p3dp3

E3
, (A32)

where E4 = E1 + E2 − E3 and p4 =
√

E2
4 −m2

4.

Appendix C. Kinematics for νi +
3H→ e−+ 3He and 3H→ e−+ 3He + ν̄i

In this appendix, we estimate the kinematics of inverse tritium β-decay for the CνB,
νi +

3H → e− + 3He, and tritium β-decay 3H → e− + 3He + ν̄i. We also discuss the
kinematic relations between the two processes. In particular, we investigate the maximal
energy of the electron emitted from β-decay, called the β-decay endpoint energy, and the
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energy of the electron emitted from the inverse β-decay process for the CνB. Here we
consider the nuclear process and use the nuclear masses of 3H and 3He, m3H and m3He.

We first consider the kinematics of tritium beta decay, 3H→ 3He + e− + ν̄i, in the rest
frame of 3H. From 4-momentum conservation, the energy of the electron is

Ee =
m2

3H + m2
e −m2

νi
−m2

3He − 2Eνi E3He + 2|pν||p3He| cos θν3He

2m3H
. (A33)

The maximal energy, Eend, is achieved when the emitted anti-neutrino is the lightest
and cos θν3He = 1 (θν3He = 0). When the neutrino and the helium-3 nucleus are emitted
in parallel, the electron is produced in opposite direction. In addition, the maximization
condition of the electron energy corresponds to the minimization condition of (Eν + E3He),
which yields

Eνi

E3He
=
|pν|
|p3He|

=
mνi

m3He
. (A34)

From these conditions, the maximal energy of the electron for 3H→ e− + 3He + ν̄i is
given by

Emax,i
e =

m2
3H + m2

e − (mνi + m3He)
2

2m3H
. (A35)

The endpoint energy of the electron for the tritium β-decay is also given by

Eend
e =

m2
3H + m2

e − (mlightest + m3He)
2

2m3H
. (A36)

If the lightest neutrino is massless, the endpoint energy is identified as

Eend,0
e =

m2
3H + m2

e −m2
3He

2m3H
. (A37)

Due to m3H ' m3He, the difference between the endpoint energy for the massive and
massless lightest neutrinos is

Eend
e − Eend,0

e ' −mlightest. (A38)

Next we investigate the kinematics of inverse tritium beta decay for relic cosmic
neutrinos, νi +

3H→ 3He + e−. In the rest-frame of 3H, we similarly obtain the energy of
the electron as

EC ˚ B,i
e =

(Eνi + m3H)
2 + m2

e − |pν|2 + 2|pν||pe| cos θeν −m2
3He

2(Eνi + m3H)

'
(Eνi + m3H)

2 + m2
e −m2

3He
2(Eνi + m3H)

. (A39)

where we neglect the terms proportional to |pν|2 and |pν||pe| and leave the term propor-
tional to Eνi m3H because of m3H � |pe| � |pν|. For m3H � me, the difference between
ECνB,i

e and Eend is

ECνB,i
e − Eend

e ' Eνi + mlightest. (A40)
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Since ECνB,i
e − Eend is (approximately) not function of any nuclear masses, it is insen-

sitive to the uncertainties in the nuclear masses which are calculated from the measured
values of atomic masses.

Appendix D. Cross Section for νi +
3H→ e−+ 3He and Decay Rate for

3H→ e−+ 3He + ν̄i

In this section, we derive the cross section with 1% precision for νi +
3H→ e− + 3He,

σνi , following ref. [34] and the decay rate for 3H→ e− + 3He + ν̄i, Γβ. We also discuss the
spectrum for the tritium β-decay, dΓβ/dEe.

Appendix D.1. Cross Section for νi +
3H→ e− + 3He

In this section, we follow ref. [34]. The differential cross section for νi +
3H→ e−+ 3He

takes the following Lorentz invariant form:

dσνi

dt
=

1
16π

|Mi|2
[s− (mνi + m3H)

2][s− (mνi −m3H)
2]

, (A41)

where s = (pνi + p3H)
2 and t = (pνi − pe)2 are the Mandelstam variables, and |Mi|2 is

the squared matrix element for the inverse β-decay. In the rest frame of 3H, s and t are
expressed as

s = (m3H + Eνi )
2 − |pν|

2 = m2
3H + 2m3HEνi + m2

νi
,

t = (Ee − Eνi )
2 − |pe − pν|

2 ' (me −mνi )
2 + 2|pe||pν| cos θ. (A42)

Using also dt/d cos θ = 2|pe||pν|, we obtain

dσνi

d cos θ
=

1
32π

1
m2

3H

|pe|
|pν|
|Mi|2. (A43)

The matrix element for νi +
3H→ e− + 3He is effectively given by

iMi = −i
GF√

2
VudU∗ei

[
ūeγµ(1− γ5)uνi

][
ū3Heγµ

(
F− Gγ5

)
u3H

]
, (A44)

where

F = 〈 fF〉, G =
gA√
3gV
〈gGT〉. (A45)

uα denotes the Dirac spinor for species α, gA ' 1.2723 and gV ' 1 are the axial and
vector coupling constants, respectively, and 〈 fF〉 ' 0.9998 and 〈gGT〉 '

√
3× (0.9511±

0.0013) denote the reduced matrix elements of the Fermi and Gamow-Teller (GT) operators,
respectively, [69].

After averaging over the spins of 3H and summing over the spins of the outgoing e−

and 3He, the squared matrix element is given by

1
2 ∑

se ,s3H,s3He=±
1
2

|Mi|2 =
G2

F
4
|Vud|2|Uei|2T

αβ
1 T2αβ, (A46)
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where

T αβ
1 = ∑

se=±1/2
tr
[
γα(1− γ5)uνi ūνi γ

β(1− γ5)ueūe

]
,

T γδ
2 = ∑

s3H,s3He=±1/2
tr
[

γγ
(

F− Gγ5
)

u3Hū3Hγδ
(

F− Gγ5
)

u3Heū3He

]
. (A47)

Using the completeness relations, we obtain the relation of Dirac spinors for 3H, 3He,
and e−,

∑
sj=±1/2

ujūj = (/p j + mj), (A48)

and for neutrinos with their helicity sν,

uνi uνi =
1
2
(
/pνi

+ mνi

)(
1 + 2sνγ5/Sνi

)
, (A49)

where Sνi is the spin vector for neutrinos given by

(Sνi )
α =

( |pν|
mνi

,
Eν

mνi

pν

|pν|

)
. (A50)

In the massless limit, the previous relation of the Dirac spinor for neutrinos becomes

uνi uνi =
1
2 /pνi

(
1− 2sγ5

)
, (A51)

where we used mSµ = pµ and pµSµ = 0. Using the above relations, we rewrite Equa-
tion (A47) as

T αβ
1 =

1
2

tr
[
γα
(
1− γ5)(

/pνi
+ mνi

)(
1 + 2sνγ5/Sνi

)
γβ
(
1− γ5)(

/pe + me
)]

, (A52)

T γδ
2 = tr

[
γγ
(

F− Gγ5
)(

/pn + mn
)
γδ
(

F− Gγ5
)(

/pp + mp
)]

. (A53)

Then we obtain T αβ
1 T2αβ as

T αβ
1 T2αβ = 32

{
(G + F)2[(pe · p3He)(pνi · p3H)] + (G− F)2[(pe · p3H)(pνi · p3He)]

+
(

G2 − F2
)

m3Hm3He(pe · pνi )
}

− 64sνmνi

{
(G + F)2[(pe · p3He)(Sνi · p3H)] + (G− F)2[(pe · p3H)(Sνi · p3He)]

+
(

G2 − F2
)

m3Hm3He(pe · Sνi )
}

. (A54)

In the rest frame of 3H, neglecting the momentum of 3-helium |p3He|/m3He ∼ (m3H −
m3He)/m3He ∼ O(10−4), T αβ

1 T2αβ is given by

T αβ
1 T2αβ

= 32m3HE3HeEeEνi

{(
F2 + 3G2

)
(1− 2sνvνi ) +

(
F2 − G2

)
(vνi − 2sν)ve cos θ

}
. (A55)

We note that θ is the angle between pe and pν. Finally we obtain the differential cross
section for νi +

3H→ e− + 3He, including the enhancement factor due to the Coulombic
attraction between e− and 3He, F(2, Ee), and using also F = 〈 fA〉 and G = gA√

3gV
〈gGT〉,



Universe 2022, 8, 552 44 of 48

dσνi

d cos θ
=

G2
F

4π
|Vud|2|Uei|2F(2, Ee)

m3He
m3Hvνi

Ee|pe|

×
[(
〈 fA〉2 +

g2
A

g2
V
〈gGT〉2

)
(1− 2sνvνi ) +

(
〈 fA〉2 −

g2
A

3g2
V
〈gGT〉2

)
(vνi − 2sν)ve cos θ

]
. (A56)

Appendix D.2. Decay Rate for 3H→ e− + 3He + ν̄i

The decay rate of the β-decay follows the standard formula at the rest frame of tritium,

Γβ =
1

29π5m3H

∫ d3 ped3 pνi d
3 p3He

EeEνi E3He
|M|2δ4(p3H − pe − pνi − p3He),

=
1

26π4m3H

∫
dEedEνi |Mβ|2, (A57)

where |Mβ|2 is the effective squared matrix element for β-decays summed over spins for
the final states and averaged over spins for the initial state,

|Mβ|2 =
1
2

3

∑
i=1

∑
s3H,s3He,sνi=±1/2

|M′
i|2, (A58)

where

iM′
i = −i

GF√
2

VudU∗ei

[
ūeγµ(1− γ5)vνi

][
ū3Hγµ

(
〈 fF〉 −

gA√
3gV
〈gGT〉γ5

)
u3He

]
. (A59)

Then we integrate over Eνi for each Ee in Equation (A57). The upper (lower) limit of
the integral denotes Emax

νi
(Emin

νi
). After some calculations, Emax

νi
− Emin

νi
and Emax

νi
+ Emin

νi
are given by

Emax
νi
− Emin

νi
=

2m3H|pe|
M2 (Emax,i

e − Ee)
1/2
[

Emax,i
e − Ee +

2mνi m3He
m3H

]1/2
,

Emax
νi

+ Emin
νi

=
2m3H

M2 (m3H − Ee)

[
Emax,i

e − Ee +
mνi

m3H
(m3He + mνi )

]
, (A60)

where Emax,i
e is the maximal energy of the emitted electron for 3H→ e− + 3He + ν̄i given

by Equation (A35) in Appendix C.

M2 = m2
3H − 2m3HEe + m2

e . (A61)

Then dΓβ/dEe is given by

dΓβ

dEe
=

1
26π3m3H

∫ Emax
νi

Emin
νi

dEνi |Mβ|2. (A62)

After similar calculations in Appendix D.1, |Mβ|2 for β-decays at rest of tritium is
written as

|Mβ|2 ' 16G2
F|Vud|2

3

∑
i=1
|Uei|2m3Hm3HeEeEνi

×
[(
〈 f 2

F〉+
g2

A
g2

V
〈g2

GT〉
)
+

(
〈 f 2

F〉 −
g2

A
3g2

V
〈g2

GT〉
)

pνi
· pe

Eνi Ee

]
, (A63)
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where we neglect the momentum of 3He due to p3He � m3He. In addition, we neglect the
second term in Equation (A63) since |pe| ∼ m3H −m3He � Ee. Thus, |Mβ|2 approximately
becomes

|Mβ|2 ' 16G2
F|Vud|2

3

∑
i=1
|Uei|2m3Hm3HeEeEνi

(
〈 f 2

F〉+
g2

A
g2

V
〈g2

GT〉
)

. (A64)

Plugging Equation (A64) into Equation (A62), we obtain

dΓβ

dEe
=

G2
F

8π3 |Vud|2m3HeEe

(
〈 f 2

F〉+
g2

A
g2

V
〈g2

GT〉
)

×
3

∑
i=1
|Uei|2(Emax

νi
+ Emin

νi
)(Emax

νi
− Emin

νi
). (A65)

Finally, substituting Equation (A60) into Equation (A65), we obtain the electron spec-
trum from the β-decays as

dΓβ

dEe
=

σ̄

π2 NT

3

∑
i=1
|Uei|2H(Ee, mνi ), (A66)

where σ̄ is the average cross section at the leading order for neutrino capture, including the
enhancement due to the Coulombic attraction between e− and 3He, F(2, Ee),

σ̄ =
G2

F
2π
|Vud|2

m3He
m3H

(
〈 fF〉2 +

g2
A

g2
V
〈gGT〉2

)
F(2, Ee)Ee|pe|. (A67)

F(Z, Ee) is given in Equation (91) and H(Ee, mνi ) takes the following form,

H(Ee, mνi ) =
1− Ee/m3H

(1− 2Ee/m3H + m2
e /m2

3H)
2

√
(Emax,i

e − Ee)

(
Emax,i

e − Ee +
2mνi m3He

m3H

)
×
[

Emax,i
e − Ee +

mνi

m3H
(m3He + mνi )

]
. (A68)

Then we obtain Γβ,

Γβ =
∫ Eend

e

me
dEe

dΓβ

dEe
, (A69)

where Eend
e = max{Emax,1

e , Emax,2
e , Emax,3

e } is the endpoint energy of the tritium β-decay
given by Equation (A36) in Appendix C.

Notes
1 If we follow the evolution of neutrinos until today, it is also easier to follow the evolution of negative-helicity neutrinos in the

mass-diagonal basis since the helicity states of neutrinos are conserved while non-relativistic neutrinos are freely streaming. On
the other hand, the chiral states for non-relativistic neutrinos are not conserved.

2 Note that Equation (8) is different from Equation (13) in ref. [19]
3 For forward scattering with background in an anisotropic universe, see ref. [28].
4 The result in the right panel of Figure 4 is quite different from Figure 4 in ref. [20]. Our results are confirmed by Equation (8) and

the numerical results in the flavor basis.
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