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Abstract: In this paper, we study a proposal put forward recently by Bodendorfer, Mele and Münch
and García-Quismondo and Marugán, in which the two polymerization parameters of spherically
symmetric black hole spacetimes are the Dirac observables of the four-dimensional Ashtekar’s
variables. In this model, black and white hole horizons in general exist and naturally divide the
spacetime into the external and internal regions. In the external region, the spacetime can be made
asymptotically flat by properly choosing the dependence of the two polymerization parameters on the
Ashtekar variables. Then, we find that the asymptotical behavior of the spacetime is universal, and, to
the leading order, the curvature invariants are independent of the mass parameter m. For example, the
Kretschmann scalar approaches zero as K ' A0r−4 asymptotically, where A0 is generally a non-zero
constant and independent of m, and r the geometric radius of the two-spheres. In the internal region,
all the physical quantities are finite, and the Schwarzschild black hole singularity is replaced by a
transition surface whose radius is always finite and non-zero. The quantum gravitational effects
are negligible near the black hole horizon for very massive black holes. However, the behavior of
the spacetime across the transition surface is significantly different from all loop quantum black
holes studied so far. In particular, the location of the maximum amplitude of the curvature scalars
is displaced from the transition surface and depends on m; so does the maximum amplitude. In
addition, the radius of the white hole is much smaller than that of the black hole, and its exact value
sensitively depends on m, too.

Keywords: quantum black holes; singularity resolution; asymptotical behavior

1. Introduction

Loop quantum gravity (LQG) has burgeoned in an effort to quantize gravity. It is a non-
perturbative and background independent approach to canonically quantizing Einstein’s
general relativity (GR) [1–5]. Loop quantum cosmology (LQC) is an application of the
LQG techniques by first performing the symmetry reduction of the homogeneous and
isotropic spacetimes at the classical level, and then quantizing it by using the canonical
Dirac quantization for systems with constraints, the so-called minisuperspace approach [6].
Singularities are one of the major predictions by GR, which appear (classically) in the very
early cosmological epoch and the interior regions of black holes. Classical GR becomes
invalid when such singularities appear. One usually expects that in such high curvature
regimes quantum gravitational effects will take over and become dominant, whereby
the singularities are smoothed out and finally replaced by regions with the Planck scale
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curvatures. Because of the quantum nature of geometry in LQG, cosmological singularities
can be naturally resolved in LQC models, without any additional constraints on matter
fields [6]. Although the full theory is still under construction, symmetry reduced models
constructed from LQG have received great attention.

Since the Schwarzschild interior is isometric to the homogeneous but anisotropic
(vacuum) Kantowski–Sachs cosmological model, techniques of LQC can be used to study
black hole(BH) singularities in the spherically symmetric spacetimes. In the treatment of
LQC, the full quantum evolution is well approximated by quantum corrected effective
equations. Similar treatment is applied to the interior of the Schwarzschild spacetime
to obtain the quantum corrected Schwarzschild spacetime, which cures the black hole
singularity. Recently, such works have received lot of attention [7–52].

A particular model proposed recently is the Ashtekar–Olmedo–Singh (AOS) loop
quantum black hole (LQBH) [53–55], in which AOS constructed the effective Hamiltonian
that governs the dynamics of spherically symmetric loop quantum black holes in the semi-
classical limit. This effective Hamiltonian contains two polymerization parameters (δb, δc),
characterizing the quantum gravitational effects. In some of the previous approaches, they
were simply taken as constants [7,11,31,33], similar to the µ0 scheme first introduced in
LQC [6]. However, in LQC it was found [56] that the µ0 scheme leads to large quantum
geometric effects even in regions much lower than the Planck curvatures. To remand this
problem, Ashtekar, Pawlowski and Singh (APS) [56] proposed that the polymerization
parameter should depend on phase variables, the so-called µ̄ scheme 1. It turns out that so
far this is the only scheme that leads to consistent results in LQC [6].

On the other hand, in the AOS model [53–55], instead of treating (δb, δc) as arbitrary
functions of the phase variables, they consider them as Dirac observables, that is, they
are particular functions of the phase variables, such that along the trajectories of the
effective Hamiltonian equations they become constants. Similar treatments have also been
adopted in [9,14,15,23,24]. However, the AOS approach is different as they considered
(δb, δc) as Dirac observables in the 8-dimensional extended phase space Γext of the variables(

b, c, pb, pc; δb, δc, pδb , pδc

)
, instead of the 4-dimensional phase space Γ of the variables

(b, c, pb, pc). Another key feature that differentiates the AOS approach is the imposition of
the minimum area condition of LQG on the plaquettes that tesselate the transition surface.
This treatment helped resolve the long standing problems in LQBH such as the dependence
of the system on the fiducial structure and non-negligible quantum corrections at low
curvatures, to name a few.

Despite the success of the AOS model, some questions have been raised [57,58]. In
particular, Bodendorfer, Mele and Münch (BMM) [59] argued that the polymerization
parameters can be treated canonically as Dirac observables directly in the 4-dimensional
phase space Γ, so that δi = fi(Oi), (i = b, c), where Oi’s are the two independent Dirac
observables that can be constructed in the spherically symmetric spacetimes, and are
given explicitly by Equation (10) below in terms of the four Ashtekar variables (b, c, pb, pc).
Then, the corresponding dynamics of the effective Hamiltonian is different from that of
AOS. More recently, García-Quismondo and Marugán (GM) [60] argued that in the BMM
approach, the two polymerization parameters in general should depend on both Ob and
Oc, that is, δi = fi(Ob, Oc), and the BMM choice can be realized as a special case. GM also
derived the corresponding dynamical equations.

In this paper, we shall study the main properties of the LQBH spacetimes resulting
from the BMM/GM proposal. In particular, the paper will be organized as follows: in
Section 2 we will briefly review the AOS model, so readers can clearly see the difference
between the AOS and BMM/GM approaches. In Section 3, we first introduce the BMM/GM
model and then restrict ourselves to the external region of the BMM/GM LQBH spacetime.
By requiring that the spacetime in this region be asymptotically flat, we find that the
parameter Ωb [≡ ωbb + ωbc] must be non-negative Ωb ≥ 0, where ωij ≡ ∂ fi/∂Oj [cf.
Equation (60)]. This excludes the BMM choice δi = fi(Oi) [59], which is also the choice
made by AOS [53–55], but it must be noted that AOS did it in the extended phase space.
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With this condition, we find that the asymptotical behavior of the spacetime is universal
and independent of the mass parameter m for the curvature invariants [cf. Equations (72)
and (88)]. In particular, the Kretschmann scalar behaves as K → A0r−4 as r → ∞, where A0
is a constant and independent of m, and r the geometric radius of the two-spheres. Similar
behavior is also found in the AOS model.

In Section 4, we analyze the properties of the BMM/GM model in the internal region
and find that all the physical quantities are finite, and the Schwarzschild black hole singular-
ity is replaced by a transition surface whose radius is always finite and non-zero. However,
the behavior of the spacetime across the transition surface is significantly different from all
LQBHs studied previously. In particular, the curvature invariants, such as the Kretschmann
scalar, achieve their maxima not at the transition surface but right after or before crossing
it. Detailed investigations of the metric components reveal that this is because of the fact
that now δis are the Dirac observables in the 4D phase space, which considerably modify
the structure of the spacetime. Due to such modifications, the location of the white hole
horizon is also very near to the transition surface, and the ratio of the white and black hole
horizon radii is much smaller than one, and sensitively depends on the mass parameter m.
Finally, in Section 5, we summarize our main conclusions.

To distinguish the AOS and BMM/GM approaches, in this paper, we shall refer them
as to the extended and canonical phase space approaches, respectively.

Before proceeding further, we would also like to note that parts of the results presented
in this paper had been reported in the APS April meeting, 9–12 April 2022, New York, as
well as in the 23rd International Conference on General Relativity and Gravitation (GR23),
Liyang, China, 3–8 July 2022.

2. Extended Phase Space Approach

The starting point of LQG is the introduction of the Ashtekar variables. In the spheri-
cally symmetric spacetimes, they are the metric components pb and pc and their moment
conjugates b and c with the canonical relations

{b, pb} = Gγ, {c, pc} = 2Gγ, (1)

where γ is the Barbero–Immirzi parameter and G is the Newtonian gravitational constant.
In terms of pb and pc, the four-dimensional spacetime line element takes the form,

ds2 = −N2dT2 +
p2

b
|pc|L2

o
dx2 + |pc|dΩ2, (2)

where N is the lapse function, and Lo is a constant, denoting the length of the fiducial cell
in the x-direction with x ∈ (0, Lo), and dΩ2 ≡ dθ2 + sin2 θdφ2 with θ and φ being the two
angular coordinates defined on the two spheres T, x = Constant.

In the internal region of a classical black hole, (N, pb, pc) are all functions of T only (so
are b and c), and the corresponding spacetimes are of the Kantowski–Sachs cosmological
model, which allows one to apply LQC techniques to such homogeneous but anisotropic
spacetimes. As a result, the internal region of the Schwarzschild has been extensively
studied in the framework of LQC.

On the other hand, in the external region, the coordinates T and x exchange their
rules, and the spacetime becomes static. However, such changes can be also carried out
by the replacement N → iN and pb → ipb, as shown explicitly below, while keeping the
dependence of the Ashtekar variables still only on T.

With the above in mind, we can see that in general the metric (2) has the gauge freedom,

T′ = T′(T), x′ = αx + x0, (3)
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in both external and internal regions, where T′(T) is an arbitrary function of T only, and α
and t0 are real constants. To see the AOS approach more clearly, let us consider the AOS
effective Hamiltonian inside and outside the LQBH, separately.

2.1. AOS Internal Solution

With the gauge freedom of (3), AOS chose T′(T) so that:

N =
γδb sgn(pc)

√
|pc|

sin (δbb)
. (4)

Then, the effective Hamiltonian in the interior of LQBHs reads [53–55]:

Heff = − 1
2Gγ

[
2 sin(δcc)

δc
|pc|+

(
sin(δbb)

δb
+ γ2δb

sin(δbb)

)
pb

]
, (5)

where δb and δc are two Dirac observables, appearing in the polymerizations,

b→ sin(δbb)
δb

, c→ sin(δcc)
δb

. (6)

That is, replacing b and c by Equation (6) in the classical Hamiltonian,

Hcl = −
1

2Gγ

[
2c|pc|+

(
b +

γ2

b

)
pb

]
, (7)

whereby the effective Hamiltonian (5) is obtained, provided that the classical lapse function
is chosen as:

Ncl =
γ sgn(pc)

√
|pc|

b
. (8)

To fix δb and δc, AOS first noticed that the above effective Hamiltonian can be written as:

Heff =
Lo

G
(Ob −Oc), (9)

where

Ob ≡ − pb
2γLo

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
, (10)

Oc ≡ |pc|
γLo

sin(δcc)
δc

, (11)

are two Dirac observables. Then, AOS proceeded as follows:

• First extend the 4-dimensional (4D) phase space Γ spanned by (b, c; pb, pc) to 8-
dimensional (8D) phase space Γext spanned by

(
b, c, δb, δc; pb, pc, pδb , pδc

)
. In Γext

the variables δb and δc are independent, so they are in particular not functions of
(b, c, pb, pc) and instead Poisson commute with all of them;

• Lift Heff given by Equation (5) to Γext, and then consider its Hamiltonian flow. Since
Ob and Oc are the Dirac observables of this flow, the following choice can be made

δb = δb(Ob), δc = δc(Oc), (12)

so that (δb, δc) are also the Dirac observables;
• Introduce these dependences as two new first-class constraints:

Φb ≡ Ob − Fb(δb) ' 0,

Φc ≡ Oc − Fc(δc) ' 0, (13)
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so that the four-dimensional reduced Γ̂ corresponding to these constraints is symplec-
tomorphic to the original phase space Γ. Since Ob and Oc are the Dirac observables,
Equation (13) implies:

δb = F−1
b (Ob), δc = F−1

c (Oc), (14)

are also constants on the trajectories of the effective Hamiltonian Heff given by Equation (5).
• To fix δb and δc, AOS assumed that at the transition surface, (where T = T ), the

physical areas of the (x, θ)- and (θ, φ)-planes are respectively equal to the minimal area
∆ [53]

2πδcδb|pb(T )| = ∆, (15)

4πδ2
b pc(T ) = ∆. (16)

With all the above, AOS found that the corresponding Hamilton equations are given by:

ḃ = −1
2

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
, (17)

ṗb =
1
2

pb cos(δbb)

(
1−

γ2δ2
b

sin2(δbb)

)
, (18)

and

ċ = −2
sin(δcc)

δc
, (19)

ṗc = 2pc cos(δcc). (20)

It is remarkable to note that, in the above equations, no cross terms exists between
the equations for (b, pb) and the ones for (c, pc). As a result, we can solve the two sets of
equations independently, and the corresponding solutions are given by [52,53]:

cos(δbb) = bo

1 + bo tanh
(

boT
2

)
bo + tanh

(
boT

2

) = bo
b+eboT − b−
b+eboT + b−

,

pb = −mLo

2b2
o

(
b+ + b−e−boT

)
A, (21)

sin(δcc) =
2aoe2T

a2
o + e4T ,

pc = 4m2
(

a2
o + e4T

)
e−2T , (22)

where

A ≡
[
2
(

b2
o + 1

)
eboT − b2

− − b2
+e2boT

]1/2
,

ao ≡ γδcLo

8m
, bo ≡

(
1 + γ2δ2

b

)1/2
,

b± ≡ bo ± 1, (23)

with

δbb ∈ (0, π), δcc ∈ (0, π), pb ≤ 0, pc ≥ 0, −∞ < T < 0. (24)

The parameter m is an integration constant, related to the mass parameter of the AOS
solution. From the above solution, it can be shown that the two Dirac observables on-shell
are given by:

Ob = m = Oc. (25)
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In the large mass limit, m� mp, from Equations (15) and (16) AOS found that

δb =

( √
∆√

2πγ2m

) 1
3

, L0δc =
1
2

(
γ∆2

4π2m

) 1
3

, (26)

where mp denotes the Planck mass.
It should be noted that in [53] two solutions for c were given, and here in this paper

we only consider the one with “+” sign, as physically they describe the same spacetime.
From Equation (22), it can be seen that the transition surface is located at ∂pc(T)/∂T|T=T =

0, which yields:

T =
1
2

ln
(

γδcLo

8m

)
< 0. (27)

There also exist two horizons, located respectively at:

TBH = 0, TWH = − 2
bo

ln
(

bo + 1
bo − 1

)
, (28)

at which we have A(T) = 0, where T = TBH is the location of the black hole horizon, while
T = TWH is the location of the white hole. In the region T < T < 0, the 2-spheres are all
trapped, while in the one TWH < T < T , they are all anti-trapped. Therefore, the region
T < T < 0 behaves like the BH interior, while the one TWH < T < T behaves like the WH
interior, denoted, respectively, by Region B and Region W in Figure 1. This explains the
reason why we call them the black hole and white hole regions, although the geometric
radius

√
pc of the two-sphere (T, x = Const) is always finite and non-zero, so spacetime

singularities never appear.

B

W

 
 B

i

i

i

i

ii

a b

c d

I  I’

IIII’

IIIIII’

0

00

0

0 0

W

B

 W

Figure 1. The Penrose diagram for the AOS LQBH. The dashed horizontal lines ab and cd represent
the transition surfaces (throats), and the regions marked with B is the BH interior, and the regions
marked with W is the WH interior, but there are no spacetime singularities, so the extensions are
infinite along the vertical line in both directions. Regions marked with I, I’, II, II’, III, and III’ are
asymptotically flat regions but with a falling rate slower than that of the Schwarzschild black hole [55].
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Finally, we note that in this region the lapse function reads:

N =
γδb sgn(pc)|pc|1/2

sin(δbb)
=

2m
A

(
b+eboT + b−

)(
a2

oe−2T + e2T
)1/2

, (29)

where A is given in Equation (23).

2.2. AOS External Solution

At the two horizons (28), we have A(T) = 0, and the metric becomes singular, so
extensions beyond these surfaces are needed in order to obtain a geodesically complete
spacetime. AOS showed that such extensions can be obtained from (5) by the following
replacements:

b→ ib, pb → ipb, c→ c, pc → pc, (30)

for which the canonical relations (1) now become:

{b, pb} = −Gγ, {c, pc} = 2Gγ, (31)

while the effective Hamiltonian in the external space of the LQBH is given by:

Hext
eff = − 1

2Gγ

[
2

sin(δcc)
δc

pc −
(

sinh(δbb)
δb

− γ2δb
sinh(δbb)

)
pb

]
=

Lo

G
(Ob −Oc), (32)

but now with:

Ob ≡ pb
2γLo

(
sinh(δbb)

δb
− γ2δb

sinh(δbb)

)
, (33)

Oc ≡ pc

γLo

sin(δcc)
δc

, (34)

which can be obtained directly from Equations (10) and (11) with the replacement (30).
Then, the corresponding Hamilton equations for (c, pc) are still given by Equations (19)
and (20), while the ones for (b, pb) now are replaced by:

ḃ = −1
2

(
sinh(δbb)

δb
− γ2δb

sinh(δbb)

)
, (35)

ṗb =
1
2

pb cosh(δbb)

(
1 +

γ2δ2
b

sinh2(δbb)

)
. (36)

Then, the corresponding solutions of the Hamilton equations are given by:

cosh(δbb) = bo

1 + bo tanh
(

boT
2

)
bo + tanh

(
boT

2

) ,

pb = −2mγLoδb
sinh(δbb)

γ2δ2
b − sinh2(δbb)

= −mLo

2b2
o

(
b+ + b−e−boT

)
A, (37)

sin(δcc) =
2aoe2T

a2
o + e4T ,

pc = 4m2
(

e2T + a2
oe−2T

)
, (38)

but now with

A ≡
[
b2
− + b2

+e2boT − 2
(

b2
o + 1

)
eboT

]1/2
, (39)
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which can be obtained from Equation (23) by the replacement A → iA (or A2 → −A2), so
that gxx → −gxx, and the coordinate x now becomes timelike in the external region (T > 0)
of the black hole horizon, located at T = 0. It can be shown that for the above solution, we
have Ob = m = Oc, which shows clearly that Ob and Oc defined by Equations (33) and (34)
are two Dirac observables.

We also note that the replacement of Equation (30) leads to:

N2 = −
γ2δ2

b |pc|
sinh2(δbb)

= −4m2

A2

(
b+eboT + b−

)2(
a2

oe−2T + e2T
)

, (40)

so that, in terms of N, pb and pc, the metric now takes the form [53]:

ds2 = −N2dT2 −
p2

b
|pc|L2

o
dx2 + |pc|dΩ2

= −
p2

b
|pc|L2

o
dx2 +

γ2δ2
b |pc|

sinh2(δbb)
dT2 + |pc|dΩ2, (41)

which shows clearly that now T is spacelike, while x becomes timelike, so the spacetime
outside of the LQBH is static.

In addition, AOS showed that the two metrics (2) and (41) are analytically connected
to each other across the two horizons, and as a result, the extensions are unique. The global
structure of the spacetime is given by the Penrose diagram of Figure 1, from which we
can see that the extensions along the vertical direction are infinite, quite similar to the
charged spherically symmetric Reissner–Nordström solutions [61], but without spacetime
singularities, as now the geometric radius

√
pc never becomes zero.

Before proceeding to the next section, we also note that technically the AOS extended
space approach can be realized directly by taking δb and δc to be constants in the phase space
of (b, c, pb, pc), and then impose the conditions (15) and (16), as by definition, constants
over the whole phase space are also Dirac observables.

3. Canonical Phase Space Approach

Instead of extending the 4D physical phase space to 8D phase space, and then consid-
ering δb and δc as the Dirac observables of the extended phase space, Bodendorfer, Mele,
and Münch (BMM) pointed out [59] that they can be considered directly as the Dirac observ-
ables in the 4D physical phase space of (b, c, pb, pc), as those given by Equation (12). Lately,
García-Quismondo and Marugán argued [60] that δb and δc should in general depend on
both of the two Dirac observables Ob and Oc,

δi = fi(Ob, Oc), (i = b, c), (42)

while Equation (12) only represents a particular choice of the general case. Equation (42)
shows clearly that now δb and δc all depend on the four variables, (b, c, pb, pc), through
Equations (10) and (11) [or Equations (33) and (34) when outside of the LQBH]. Then, the
corresponding Hamilton equations are given by [60]:

∂Ti = Cij

[
si

Lo

G
{i, pi}

∂Oi
∂pi

]
, (43)

∂T pi = Cij

[
−si

Lo

G
{i, pi}

∂Oi
∂i

]
, (44)
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where i, j = b, c, i 6= j, sb = 1, sc = −1, and

Cij ≡
1− ∆jj − ∆ji

(1− ∆ii)
(
1− ∆jj

)
− ∆ij∆ji

, (45)

∆ij ≡
∂Oi
∂δi

∂ fi
∂Oj

. (46)

It is interesting to note that, introducing two new variables, ti, (i = b, c), via the relations:

dti ≡ CijdT, (i 6= j), (47)

Equations (43) and (44) take the forms,

∂ti i = si
Lo

G
{i, pi}

∂Oi
∂pi

, (48)

∂ti pi = −si
Lo

G
{i, pi}

∂Oi
∂i

, (49)

which will lead to the same Hamilton equations as those given by AOS, if we replace T
by tb in the equations for b and pb, and T by tc in the equations for c and pc, as first noted
in [60]. This observation will significantly simplify our following discussions.

To proceed further, in the rest of this section, let us consider the above equations
only in the external region, while the ones in the internal region will be considered in the
next section.

3.1. Dynamics of the external LQBH Spacetimes

In the external region, the Hamilton equations take the form

db
dtb

= −1
2

(
sinh(δbb)

δb
− γ2δb

sinh(δbb)

)
, (50)

dpb
dtb

=
1
2

pb cosh(δbb)

(
1 +

γ2δ2
b

sinh2(δbb)

)
, (51)

for (b, pb), and

dc
dtc

= −2
sin(δcc)

δc
, (52)

dpc

dtc
= 2pc cos(δcc), (53)

for (c, pc). Then, the corresponding solutions for b and pb will be given by Equations (37)
and (39) by simply replacing T by tb, that is,

cosh(δbb) = bo

1 + bo tanh
(

botb
2

)
bo + tanh

(
botb

2

) ,

pb = −mLo

2b2
o

(
b+ + b−e−botb

)
A,

A ≡
[
b2
− + b2

+e2botb − 2
(

b2
o + 1

)
ebotb

]1/2
, (54)

while the solutions for c and pc will be given by Equation (38) with the replacement T by
tc, i.e.,

sin(δcc) =
2aoe2tc

a2
o + e4tc

, pc = 4m2
(

e2tc + a2
oe−2tc

)
. (55)
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The relation between tb and tc is given by Equation (47), from which we find that

dtc =
Ccb
Cbc

dtb. (56)

To study the above relation, let us first note that Equations (33) and (34) lead to:

∂Ob
∂δb

=
pb

2γLoδ2
b

(
1 +

γ2δ2
b

sinh2(δbb)

)[
(δbb) cosh(δbb)− sinh(δbb)

]
,

∂Oc

∂δc
=

pc

γLoδ2
c

[
(δcc) cos(δcc)− sin(δcc)

]
. (57)

Then, we find that:

Cbc =
1
D

(
1−Ωc

∂Oc

∂δc

)
=

1
D

{
1− Ωc pc

γLoδ2
c

[
(δcc) cos(δcc)− sin(δcc)

]}
,

Ccb =
1
D

(
1−Ωb

∂Ob
∂δb

)
=

1
D

{
1− Ωb pb

2γL0δ2
b

(
1 +

γ2δ2
b

sinh2(δbb)

)[
(δbb) cosh(δbb)− sinh(δbb)

]}
, (58)

where

D ≡ 1−ωcc
∂Oc

∂δc
−ωbb

∂Ob
∂δb

+ (ωbbωcc −ωbcωcb)
∂Ob
∂δb

∂Oc

∂δc

= 1− ωcc pc

γLoδ2
c

[
(δcc) cos(δcc)− sin(δcc)

]
− ωbb pb

2γL0δ2
b

(
1 +

γ2δ2
b

sinh2(δbb)

)
[(δbb) cosh(δbb)− sinh(δbb)]

+
ωbbωcc −ωbcωcb

2γ2L2
oδ2

b δ2
c

pb pc

(
1 +

γ2δ2
b

sinh2(δbb)

)
×
[
(δcc) cos(δcc)− sin(δcc)

]
[(δbb) cosh(δbb)− sinh(δbb)], (59)

ωij ≡
∂ fi
∂Oj

, Ωc ≡ ωcc + ωcb, Ωb ≡ ωbb + ωbc. (60)

It should be noted that the numerator of Cbc is a function of tc and the one of Ccb is
a function of tb, where tb and tc are related one to the other through Equation (56). In
particular, for tb, tc � 1, from Equation (56), we find:

tc − 2βm2a3
o +O

(
e−4tc

)
= (1 + α2)tb +

α1

bo
ebotb +

α3

2bo
+O

(
e−botb

)
, (tb, tc � 1), (61)

where

α1 =
m(bo + 1)2

2γb2
o δ2

b

(
bo cosh−1 bo − γδb

)
Ωb,

α2 = − mγ2δb

γ2δ2
b + 1

Ωb, (62)

β and α3 are other constants, and their explicit expressions will not be given here, as they
will not affect our following discussions.
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It is interesting to note that for the BMM choice, fi = fi(Oi) [cf. Equation (13)], and
δi given by Equation (26) together with the fact that on-shell we have Ob = m = Oc, we
find that:

ωBMM
bb = − δb

3m
, ωBMM

cc = − δc

3m
, ωBMM

bc = ωBMM
cb = 0,

ΩBMM
b = − δb

3m
, ΩBMM

c = − δc

3m
. (63)

To study the external spacetimes further, in the following let us consider the two cases,
α1 = 0 and α1 6= 0, separately.

3.2. External Spacetimes with α1 6= 0

If α1 6= 0, from Equation (61) we find that:

tc ≈
α1

bo
ebotb . (64)

Then, from Equation (47) we find that dT = dtb/Cbc, and in terms of tb the metric (41)
becomes:

ds2 = −
p2

b
|pc|L2

o
dx2 +

γ2|pc|δ2
b

sinh2(δbb)C2
bc

dt2
b + |pc|

(
dθ2 + sin2 θdφ2

)
, (65)

where Cbc is given by Equation (58), and

gxx ≡
p2

b
|pc|L2

o
'
(

c1e2botb + c2ebotb + c3 + · · ·
)

exp
(
−2α1

bo
ebotb

)
,

gtbtb ≡
γ2|pc|δ2

b

sinh2(δbb)C2
bc

'
(

d1e2botb + d2ebotb + d3 + · · ·
)

exp
(

2α1

bo
ebotb

)
,

gθθ ≡ |pc| ' 4m2 exp
(

2α1

bo
ebotb

)
, (66)

where (ci, di) are constants defined as:

c1 ≡ (bo + 1)4

16b4
o

, c2 ≡ −
(bo + 1)2

4b4
o

, c3 ≡ −
γ2δ2

b
(
γ2δ2

b + 4
)

8b4
o

,

d1 ≡
ω2

bb f 2m4

γ2δ4
b b4

o
(bo + 1)4, d2 ≡

4ωbb f m3

γ2b4
o δ4

b
(bo + 1)2

{
γb2

o δ2
b −mωbb

(
γ3δ3

b − b2
o f
)}

,

d3 ≡ 2m2

(
mωbb

γ2δ4
b b4

o

(
mωbb

(
2γ6δ6

b + f 2
(

γ4δ4
b + 4γ2δ2

b

(
b2

o + 1
)

+8b2
o + 2

)
+ 2γ3 f δ3

b

(
1− 4b2

o

))
+ 8γ f δ2

b b4
o − 4γ4δ5

b b2
o

)
+ 2
)

, (67)

with

f (γδb) ≡ bo cosh−1 bo − γδb = bo ln(bo + γδb)− γδb

=
1
3

γ3δ3
b +O

(
γ5δ5

b

)
, (68)

which is always non-zero for γδb > 0, as shown in Figure 2. The function f (γδb) defined
above must not be confused with the Dirac observables fi(Ob, Oc) (i = b, c) introduced in
Equation (42).

From the above expressions, it is clear that α1 must be positive in order to have the
spacetime asymptotically flat as tb � 1. This is also consistent with Equation (64), as we
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assumed that tb, tc � 1 asymptotically. Therefore, in the rest of this subsection we assume
α1 > 0, which requires:

Ωb > 0. (69)

It is interesting to note that, corresponding to the BMM choices of fi = fi(Oi) and δi
given by Equation (26), we have:

ΩBMM
b = − δb

3m
< 0, (70)

as given in Equation (63). Therefore, the BMM choices cannot be realized in this case.
It is also interesting to note that the spacetimes described by Equations (65)–(68)

actually have similar asymptotic behavior as the AOS solution does, although the two
metrics, given respectively by Equations (65) and (41), look quite different. To show this
claim, let us first introduce a new spacelike coordinate ξ via the relation, ξ = ebotb , and then
we find that the metric (65) becomes

ds2 ' −
(

c1ξ2 + c2ξ + c3 + · · ·
)

e−α0ξ dT2 +

(
d1 +

d2

ξ
+

d3

ξ2 + · · ·
)

eα0ξ dξ2

b2
o

+ 4m2eα0ξ
(

dθ2 + sin2 θdφ2
)

, (71)

where T ≡ x and α0 ≡ 2α1/bo > 0. Then, the corresponding curvature invariants of the
above metric are given by:

gµνRµν '
(

2m
r

)2
[

1
2

(
1

m2 −
b2

o α2
0

d1

)
+

b2
o α0(2d1 + d2α0)

2d2
1ξ

+O
(

1
ξ2

)]
,

RµνRµν '
(

2m
r

)4
[

1
8

(
1

m4 +
2b4

o α4
0

d2
1

)

−
b2

o α0(d2
1 + 3b2

o d1m2α2
0 + b2

o d2m2α3
0)

2(d3
1m2)ξ

+O
(

1
ξ2

)]
,

RµναβRµναβ '
(

2m
r

)4
[

d2
1 − 2b2

o d1m2α2
0 + 7b4

o m4α4
0

4d2
1m4

+
b2

o α2
0(d1d2 − b2

o m2α0(16d1 + 7d2α0))

2d3
1m2ξ

+O
(

1
ξ2

)]
,

CµναβCµναβ '
(

2m
r

)4
[
(d1 − 4b2

o m2α2
0)

2

12d2
1m4

+
2b2

o α0(2d1 + d2α0)(d1 − 4b2
o m2α2

0)

3d3
1m2ξ

+O
(

1
ξ2

)]
, (72)

where r
(
≡ 2meα0ξ/2

)
is the geometric radius of the two spheres ξ, T = constant. Comparing

the above with the ones presented in [55], we can see that now the metric approaches asymp-
totically to the Minkowski spacetime as r−4, which is the same as that of the AOS solution.

It is also remarkable to note that for the AOS choices of δb and δc given by Equation (26),
we find that α1 ∝ m2/3 and d1 ∝ m10/3. Then, the above expressions show that they are all
independent of m asymptotically. In particular, we have:

RµναβRµναβ '
A0

r4 +O
(

1
r4ξ

)
, (73)
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where ξ = 2
α0

ln
( r

2m
)
, and A0 is independent of m given by:

A0 ≡
28Ω4

b
ω4

bb
−

8Ω2
b

ω2
bb

+ 4. (74)

This is sharply in contrast to the relativistic case, in which the Kretschmann scalar is given by:

RµναβRµναβ

∣∣∣
GR

=
48m2

r6 . (75)

It is also very interesting to note that the leading order of the Kretschmann scalar of the
AOS solution also behaves like r−4 as r → ∞ [57]. In the current case, even the Dirac
observables fi are chosen so that A0 given by Equation (74) is zero, the next leading order
is O

(
1

r4ξ

)
, which approaches zero still not as fast as r−6. In fact, it is even slower than r−5.

0.00 0.05 0.10 0.15 0.20

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

γδb

f(x)

Figure 2. The function f (x) defined by Equation (68) vs. x ≡ γδb.

To understand the solutions further, we first note that to the leading order the metric
takes the form:

ds2 ' − c1b2
o

α2
1

(
ln
( r

2m
)

r
2m

)2

dT2 +
d1

4m2α2
1

dr2 + r2dΩ2, (76)

for r � 2m. On the other hand, the AOS solution takes the asymptotic form [57]:

ds2
AOS ' −r2(bo−1)dT2 + dr2 + r2dΩ2, (77)

which is identical to the global monopole solution found in a completely different con-
tent [62]. Then, the corresponding effective energy-momentum tensor is given by:

Tνν = uµuνρ + prrµrν + p⊥
(
θµθν + φµφν

)
, (78)

where uµ denotes the unit timelike vector along T-direction, and rµ, θµ and φµ are the
spacelike unity vectors along, respectively, r−, θ−, and φ−directions, and ρ, pr and p⊥ are
the energy density and pressures along the radial and tangential directions. To the leading
order, they are given by:

ρ '
4α2

1m2 − d1

d1r2 , pr ' −
d1 + 4α2

1m2

d1r2 , p⊥ '
4α2

1m2

d1r2 , (79)
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which all approach zero as r−2. This is also consistent with the asymptotical behaviors of
the quantities given in Equation (72).

It should be also noted that, despite these differences, the spacetimes of the current
solutions are also asymptotically flat and the corresponding ADM masses are as well
defined as that of the AOS solution [55].

3.3. External Spacetimes with α1 = 0

When α1 = 0, from Equation (62) and Figure 2 we find that this can be the case
only when

Ωb ≡ ωbb + ωbc = 0. (80)

It is clear that the BMM choices of fi and δi, given by Equations (13) and (26), are not
compatible with this case, too.

Then, to the leading order, Equation (61) yields:

tb ' tc ≡ t, (81)

as tc → ∞. With Equations (80) and (81) we find that:

gxx ' e−2t
(

c1e2bot + c2ebot + c3 + · · ·
)

gθθ ' 4m2e2t, (82)

where cn’s are still given by Equation (67). Finding the asymptotic limit of gtt is not so
straightforward, and this is mainly because of the term Cbc seen in the expression:

gtt =
γ2|pc|δ2

b

sinh2(δbb)C2
bc

. (83)

The numerator of Cbc in Equation (59) is equal to 1 with the choice of ωbb + ωbc = 0
and the remainder of gtt is evaluated with the help of Mathematica, and is given by:

gtt = e2t
(

d1e2bot + d2ebot + d3 + · · ·
)

, (84)

where dns are also given by Equation (67). Introducing the new coordinates,

r = 2met, x =
4b2

o
(bo + 1)2 τ, (85)

we find

ds2 = −gττdτ2 + grrdr2 + r2dΩ2, (86)

where

gττ '
( r

2m

)2(bo−1)
(

1 +
c2

c1

(
2m
r

)bo

+
c3

c1

(
2m
r

)2bo
)

,

grr ' d1

4m2

( r
2m

)2bo
+

d2

4m2

( r
2m

)bo
+

d3

4m2 . (87)
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Then, we find:

gµνRµν '
(

2m
r

)2[ 1
2m2 +

2(2bo − 1)
d1ξ2 +O

(
1
ξ3

)]
,

RµνRµν '
(

2m
r

)4
[

1
8m4 −

bo(c1d2 − c2d1)

2c1d2
1m2ξ3

+O
(

1
ξ4

)]
,

RµναβRµναβ '
(

2m
r

)4[ 1
4m4 −

2
d1m2ξ2 +O

(
1
ξ3

)]
,

CµναβCµναβ '
(

2m
r

)4[ 1
12m4 +

4(bo − 2)
3d1m2ξ2 +O

(
1
ξ3

)]
; (88)

here, ξ ≡ (r/2m)bo . Interestingly, the spacetime is again asymptotically flat, and to the
leading order has the same asymptotic behavior as that in the case α1 6= 0. In particular,
all these scalars are asymptotically independent of the mass parameter m, and approach
zero as r−4, sharply in contrast to the relativistic case given by Equation (75). However,
different from the case α1 6= 0, to the next leader order the Kretschmann scalar behaves like
O
(

1/r2(2+bo)
)

.
To study this case in more details, let us first note that to the leading order the metric

takes the form:

ds2 ' −c1

( r
2m

)2(bo−1)
dT2 +

d1

4m2

( r
2m

)2bo
dr2

+ r2dΩ2, (89)

for r � 2m. Clearly, this is still different from Equation (77) for the AOS solution, despite the
fact that, to the leading order, the Kretschmann scalar approaches zero like r−4 in both cases.
However, because the r−dependence of the grr component, to the next leading order, the

Kretschmann scalar approaches zero like O
(

1/r2(2+bo)
)

. Recall that bo ≡
√

1 + γ2δ2
b ≥ 1.

This can be further understood by the analysis of the corresponding effective energy-
momentum tensor, which can be also cast in the form of Equation (78), but now with,

ρ = − 1
r2

(
1 +

4m2(2bo − 1)

d1
( r

2m
)2bo

)
, pr =

1
r2

(
−1 +

4m2(2bo − 1)

d1
( r

2m
)2bo

)
,

p⊥ = −4m2(2bo − 1)

d1r2
( r

2m
)2bo

, (90)

which are consistent with the behaviors of the quantities given in Equation (88). Fol-
lowing [55], it is not difficult to see that the spacetimes of the current solutions are also
asymptotically flat and the corresponding ADM masses are as well defined as that of the
AOS solution.

4. Canonical Phase Space Approach: Internal Spacetimes

In the internal region of the LQBH, the dynamical Equations (43) and (44) take the form

db
dtb

= −1
2

(
sin(δbb)

δb
+

γ2δb
sin(δbb)

)
, (91)

dpb
dtb

=
1
2

pb cos(δbb)

(
1−

γ2δ2
b

sin2(δbb)

)
, (92)
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for the variables (b, pb), and

dc
dtc

= −2
sin(δcc)

δc
, (93)

dpc

dtc
= 2pc cos(δcc), (94)

for (c, pc). Equations (91) and (92) are identical to Equations (17) and (18), if we replace
T by tb, while Equations (93) and (94) are identical with Equations (19) and (20), if we
replace T by tc. Then, the corresponding solutions can be obtained directly from Equations
(21)–(24) by the above replacements, which lead to:

cos(δbb) = bo

1 + bo tanh
(

botb
2

)
bo + tanh

(
botb

2

) = bo
b+ebotb − b−
b+ebotb + b−

,

pb = −mLo

2b2
o

(
b+ + b−e−botb

)
A, (95)

sin(δcc) =
2aoe2tc

a2
o + e4tc

,

pc = 4m2
(

a2
o + e4tc

)
e−2tc , (96)

but now with

A ≡
[
2
(

b2
o + 1

)
ebotb − b2

− − b2
+e2botb

]1/2
, (97)

where ao and b± are still given by Equation (23), and the range of the variables is given
by Equation (24). Then, it can be seen that the two Dirac observables Ob and Oc are also
given by Equation (25) along the dynamical trajectories. However, instead of imposing
the conditions (26), now we shall leave the choice of δb and δc open, as we did in the last
section. Thus, the corresponding internal spacetimes are described by the metric:

ds2 = −N2dT2 +
p2

b
|pc|L2

o
dx2 + |pc|dΩ2

= −
(

N
Ccb

)2
dt2

c +
p2

b
|pc|L2

o
dx2 + |pc|dΩ2, (98)

where

N ≡ γδb sgn(pc)|pc|1/2

sin(δbb)
=

2m
A

(
b+ebotb + b−

)(
a2

oe−2tc + e2tc
)1/2

. (99)

In the following, let us study the above spacetimes near the horizons (A = 0) and
throat (∂pc/∂tc = 0), separately.

4.1. Spacetimes near the Horizons

The horizons now are located at A = 0, which yields two solutions:

tBH
b = 0, tWH

b = − 2
bo

ln
(

bo + 1
b0 − 1

)
. (100)

Now to find the relation between tb and tc the following expression has to be integrated:

dtc =
Ccb
Cbc

dtb, (101)
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where the expressions of Cbc and Ccb in the interior are:

Cbc =
1
D

(
1−Ωc

∂Oc

∂δc

)
,

Ccb =
1
D

(
1−Ωb

∂Ob
∂δb

)
, (102)

but now with

D ≡ 1−ωcc
∂Oc

∂δc
−ωbb

∂Ob
∂δb

+ (ωbbωcc −ωbcωcb)
∂Ob
∂δb

∂Oc

∂δc
,

∂Ob
∂δb

= − pb

2γLoδ2
b

(
1−

γ2δ2
b

sin2(δbb)

)[
δbb cos(δbb)− sin(δbb)

]
,

∂Oc

∂δc
=

pc

γLoδ2
c

[
δcc cos(δcc)− sin(δcc)

]
. (103)

Similar to the previous subsection, in the following section we consider the cases
α1 = 0 and α1 6= 0, separately.

4.1.1. α1 = 0

In this case, it is remarkable to note that by integrating Equation (56) we find the
following explicit solution,

tb = t0
b + tc +

mΩc

δc

{
cosh(2T ) tan−1

(
e2T
)
− cosh[2(tc − T )] tan−1

[
e−2(tc−T )

]}
, (104)

which holds for any tc, including the region tc ≥ 0, outside the black hole horizon, where
tc = T is the location of the transition surface, defined by Equation (27). Additionally, t0

b is
an integration constant which will be set to zero in the following discussions. When tc = 0
the second term in the right-hand side of the above expression vanishes identically, and as
tc → ∞ it goes to zero as O

(
e−2tc

)
. This is consistent with Equation (61).

In Figure 3, we plot the curves of tb vs tc of Equation (104) for different choices of
parameters involved. In particular, we find that the properties of tb across the transition
surface sensitively depend on the signs of Ωc. More specifically, when Ωc > 0, tb decreases
exponentially right after crossing the transition surface, as tc becomes more and more
negative, as shown by Curves b, c and d with the choice Ωc = 0.5, where the dots on the
curves mark the locations of the transition surfaces. On the other hand, when Ωc < 0, tb
increases exponentially right after crossing the transition surface, as shown by Curves b′, c′

and d′ with Ωc = −0.5. However, the locations of the transition surface indeed depend on
the choices of the parameters (m, L0δc), as shown by Equation (27). In particular, Curves b,
c and d respectively correspond to:(

m
mp

,
Loδc

`p

)
=
{(

106, 10−7
)

,
(

106, 0.1
)

, (1, 0.1)
}

,

while Curves b′, c′ and d′ are all for the same choices of (m, δc), as that of the unprimed
curves in respective order. Curves b and c share the same mass, i.e., m/mp = 106, but
with different δc’s. Meanwhile, the locations of the throats (the gray dots) move from the
left-hand side to the right-hand side in the direction closer to the horizon, which means
that the quantum effects increase as δc increases. Curves c and d share the same δc = 0.1,
but different masses. Comparing their throat positions, we find that the smaller mass also
means the more significant quantum effects. On the other hand, outside the horizon, no
matter what the parameters are, tb ' tc, which is consistent with our previous conclusion
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for large tb and tc, as shown by Equation (81). To understand this point further, let us
expand the above expression around the horizon, for which we find:

tb = β1tc + β2t2
c + β3t3

c +O
(

t4
c

)
, (105)

where

β1 ≡ 1 +
mΩc

aoδc

[
ao +

(
a2

o − 1
)

tan−1(ao)
]
,

β2 ≡ − mΩc

ao(a2
o + 1)δc

[
ao

(
a2

o − 1
)
+
(

a2
o + 1

)2
tan−1(ao)

]
,

β3 ≡ 2mΩc

3ao(a2
o + 1)2

δc

[
ao + 6a3

o + a5
o +

(
a2

o − 1
)(

a2
o + 1

)2
tan−1(ao)

]
. (106)

For macroscopic black holes, we have m/mp & M� ' 1038, while the semi-classical
limit requires L0δc � 1. Then, expanding βn in terms: of ao, we find that

β1 = 1 +
mΩc

aoδc

[
ao +

(
a2

o − 1
)

tan−1(ao)
]
' 1 +

γ2L2
oδcΩc

48m
+O

(
a4

o

)
' 1,

β2 = −γ2L2
oδcΩc

24m
+O

(
a4

o

)
' 0,

β3 =
γ2L2

oδcΩc

18m
+O

(
a4

o

)
' 0. (107)

Therefore, for macroscopic black holes, the relation tb ' tc near the horizon is well
justified. Then, we find that the metric components take the form:

gxx =
e2tc ζ(tc)

2

16b4
o(a2

o + e4tc)

(
(bo − 1)e−botc + bo + 1

)2
,

gtctc = 4m2e−2tc
(

a2
o + e4tc

) β−(tc)
2

ζ(tc)
2

{
1−ωcc

∂Oc

∂δc

+mωbbe−botc

(
Ωc

∂Oc

∂δc
− 1
)(2b2

o ebotc − ζ(tc)
2
)

2γδ2
b b2

o ζ(tc)

×
[

γδbζ(tc)− boβ−(tc) cos−1
(

boβ−(tc)

β+(tc)

)]}2

, (108)

ζ(tc) ≡
[
2
(

b2
o + 1

)
ebotc − (bo − 1)2 − (bo + 1)2e2botc

]1/2
,

β±(tc) ≡ (bo + 1)ebotc ± (bo − 1). (109)

To quantify the quantum effects near the horizon, let us compute the Hawking tem-
perature at the horizon. Given a metric of the form:

ds2 = −gttdt2 + gxxdx2 + pcdΩ2, (110)

the Hawking temperature of the black hole is given by [55]:

TH =
h̄

kBP
, P = lim

t→0

4π(gttgxx)
1
2

∂tgxx
, (111)

where kB is the Boltzmann constant. Then, for the metric coefficients given by Equation (108)
we find:
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TH =
TGR

H
(1 + a2

o)(1 + εT)
, (112)

where TGR
H = h̄/(8kBπm) denotes the Hawking temperature of the Schwarzschild black

hole calculated in GR, and

εT ≡
mωcc

aoδc

[
ao +

(
a2

o − 1
)

tan−1(ao)
]
. (113)

For a BH of mass 106, we find that:

a2
o =

(
γδcLo

8m

)2
' 10−22,

and

εT =

(
4mωcc

3δc

)(
1− 2

5
a2

o

)
a2

o +O
(

a6
o

)
.

a

b

b'

c

c'

d

d'

■■

■■

■■
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tc
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-40

-20

20
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Figure 3. Plots of tb vs tc for α1 = 0 defined by Equation (104). Depending on the signs of Ωc, the
dependence of tb on tc is different. Curves b, c and d are all for Ωc = 0.5 but with different choices
of (m, δc). In particular, they correspond to (m, δc) = {(106, 10−7), (106, 0.1), (1, 0.1)}, respectively.
Curves b′, c′ and d′ are all for Ωc = −0.5 but with the same choice of (m, δc) as that of the unprimed
curves in the respective order.

For the AOS choice of Equation (13), we find that 4mωcc/(3δc) ' O(1), so that
εT . 10−44, that is, for macroscopic black holes, the quantum effects are negligible. This is
consistent with what was concluded by AOS [54,55].

The above conclusion can be further verified by comparing the Kretschmann scalars
K with its relativistic counterpart KGR ≡ 48m2/p3

c . In particular, in Figure 4 we plot the
relative difference of K and KGR for m = 106mpl and m = 1012mpl , which indicate negligible
quantum corrections near the horizon for massive LQBHs.
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Figure 4. Plots of the relative difference between the Kretschmann scalars K and KGR in the α1 = 0
case, for (a) m = 106, and (b) m = 1012. Here KGR(≡ 48 m2/p3

c) is the corresponding Kretschmann
scalar given by GR.

4.1.2. α1 6= 0

When α1 6= 0, we find that:

tb

(
1 +

mΩb
δbb2

o

)
+

2mΩb
δbb2

o
− mΩb

2γδ2
b b2

o
e−botb β+(tb)ζ(tb) cos−1

(
boβ−(tb)

β+(tb)

)
+

mΩb

2δbb3
o

(
(bo − 1)2e−botb − (bo + 1)2ebotb − 2b3

o tb

)
+ t0

b

= tc +
mΩc

δc

(
cosh(2T ) tan−1

(
e2T
)
− cosh(2(tc − T )) tan−1

(
e−2(tc−T )

))
, (114)
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where t0
b is an integration constant and will be set to zero as done previously in the

α1 = 0 case.
Notice that the tc part of the above expression is precisely the right-hand side of

Equation (104), and we showed explicitly in the last subsection that near the horizon tc = 0
the right-hand side can be well approximated by tc. Now, expanding the tb part of the
above expression around the horizon, we find:

tb + ν2t2
b + ν3t3

b +O
(

t4
b

)
, (115)

where

ν2 =
1
6

mγ2δbΩb, ν3 =
1

60
mγ2δbΩb

(
10− γ2δ2

b

)
. (116)

The above coefficients νi are negligibly small for large black holes. For example,
for a BH of mass 106, they are of the order ∼ 10−9. Hence, for macroscopic black holes
Equation (114) can also be well approximated by:

tb ' tc, (117)

near the black hole horizon, similar to the case α1 = 0. This linear relation can be confirmed
by the plot of Equation (114) for various values, as seen in Figure 5. For plotting the curves
b, c, and d corresponding to positive Ωc, the parameters are chosen respectively as:(

m
mp

)
=
(

106, 108, 1010
)

, (ωcc, ωcb, Ωc) =

(
δc

3m
, 0,

δc

3m

)
,

(ωbb, ωbc, Ωb) =

(
δb
3m

, 0,
δb
3m

)
, (118)

where δi’s are given by Equation (26).
Since in the current case, (α1 6= 0) tb ' tc also holds near the horizon for macroscopic

black holes, the thermodynamics of the black hole horizon is quite similar to the case α1 = 0. In
particular, its temperature is also given by Equations (112) and (113), and the difference to that
of the Schwarzschild black hole calculated in GR is negligibly small for macroscopic black holes.

Again, a plot of the relative difference between the Kretschmann scalar K and KGR is
given in Figure 6 for the α1 6= 0 case, which also shows the negligible quantum effects near
the horizons for massive LQBHs.

b

c

d

throat
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a

-20 -15 -10 -5
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-25

-20

-15

-10

-5

5

tb

Figure 5. Plots of Equation (114) for various choices as given by Equation (118).
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Figure 6. Plots of the relative difference between the Kretschmann scalars K and KGR in the α1 6= 0
case, for (a) m = 106, and (b) m = 1012.

4.2. Spacetimes near Transition Surfaces

It is evident from Figures 3 and 5 that the above approximation, tb ' tc, is no longer
valid once we start to probe the spacetime near and to the other side of the transition
surface. We break this analysis again into two cases, α1 = 0 and α1 6= 0.

4.2.1. α1 = 0

In this case, the relation between tb and tc is given by Equation (104), which is valid
everywhere in the interior. Combining this equation with the metric (98), we can calculate
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the curvature invariants to analyze the spacetime near the transition surface. We find that
this can be performed by xAct [63], a package for tensor computations in Mathematica,
although the exact expressions are too complicated to be written down here. For this
reason, we only plot out the Kretschmann scalar here for illustration, as other scalars such
as the Ricci scalar, Ricci tensor squared, have similar features. In particular, in Figures 7
and 8 we plot the Kretschmann scalar, respectively, for Ωc < 0 and Ωc > 0, but all with
Ωb = 0. In addition, we also provide Table 1, in which we show the explicit dependence
of the maximal amplitude Km of the Kretschmann scalar on the mass m, the location of
the maximal amplitude of the Kretschmann scalar, denoted by τm, and the location of the
transition surface denoted by τts. To compare with the AOS solution, we also provide the
maximal amplitudes of the Kretschmann scalar for the AOS solution.

-12 -10 -8 -6 -4 -2

tc

10
-15

10
-5

10
5

10
15

K

Figure 7. The Kretschmann scalar near the transition surface τts ' −11.6201 denoted by the vertical
line for the case α1 = 0. Here m = 106, (ωcc, ωcb) = (−δc/3m, 0), and (ωbb, ωbc) = (−δb/3m, δb/3m),
so that (Ωb, Ωc) = (0,−δc/3m < 0), where δi’s are given by Equation (26).

-12 -10 -8 -6 -4 -2
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10
-19

10
-14

10
-9

10
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10
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Figure 8. The Kretschmann scalar near the transition surface denoted by the vertical line for the
case α1 = 0. Here m = 106, (ωcc, ωcb) = (δc/3m, 0), and (ωbb, ωbc) = (δb/3m,−δb/3m), so that
(Ωb, Ωc) = (0, δc/3m > 0), where δi’s are given by Equation (26).
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From Figures 7 and 8 and Table 1 we can see that the Kretschmann scalar remains
finite across the transition surfaces, but the maximal amplitude of the Kretschmann scalar
sensitively depends on the mass m, which is in sharp contrast to the AOS solution in which
the maximal amplitude KAOS

m of the Kretschmann scalar remains the same [53–55].

Table 1. The maximal amplitude Km of the Kretschmann scalar K for the case α1 = 0 with different
choices of the mass parameter m. Here τm denotes the location of the maximal point of K, and
τts the location of the corresponding transition surface (throat). To compare it with that given by
the AOS solution, we also give the maximal values of KAOS

m . Here we choose ωbb = −δb/3m,
ωbc = δb/3m, ωcc = −δc/3m, and ωcb = 0, so that (Ωb, Ωc) = (0,−δc/3m < 0), where δi’s are given
by Equation (26).

m/mp τm Km τts KAOS
m

106 −12.0147 2.46× 1048 −11.6201 82,188.3628
108 −15.0848 1.56× 1052 −14.6902 82,188.3642
1010 −18.1549 3.60× 1075 −17.7603 82,188.3642
1012 −21.225 2.21× 1075 −20.8304 82,188.3642
1014 −24.2951 2.87× 1070 −23.9005 82,188.3642
1016 −27.3653 2.82× 1069 −26.9706 82,188.3641
1018 −30.4354 9.59× 1077 −30.0408 82,188.3618

Another unexpected feature is that the maximal point of the Kretschmann scalar usually
is not precisely at the transition surface, τm 6= τts. Although this looks strange, a closer
examination shows that this is due to two main facts: (1) the appearance of the factor 1/Cbc
in the lapse function of the metric (98), and (2) the dependence of tb on tc, which will lead
to the modifications of gxx(tb, tc), in comparison to the corresponding AOS component
gAOS

xx (tb, tc) in which we have tb = tc = T.
In particular, when α1 = 0, we have 1/Cbc = D, as can be seen from Equation

(102), where D is defined by Equation (103). In Figure 9 we plot out the function D2 for
the same choices of the parameters as given in Figure 7, from which we can see that it
changes dramatically near the maximal point τm ' −12.0147 of the Kretschmann scalar. In
Figures 10 and 11, we plot out the metric components gtctc and gxx given in Equation (98) vs.
tc, where gtt ≡ |gtctc |. From these figures we can see clearly that both of these components
change dramatically near the maximal point τm of the Kretschmann scalar. To compare
it with the AOS solution, in each of these two figures, we also plot the corresponding
quantities for the AOS solution, from which it can be seen that no such behavior appears in
the AOS solution.

We also study the location of the white horizon and find that it is very near the
transition surface. In particular, the ratio between WH and BH horizon radii now is much
smaller than 1 and sensitively depends on the mass parameter m, as shown explicitly in
Table 2. Whereas in the AOS model this ratio is very close to 1.

Table 2. The ratio of the WH and BH horizon radii for the case α1 = 0 with different choices of the
mass parameter m. Here we use the same choices as those in Figure 8, except for m.

m/mp
rW H
rBH

106 5.5872× 10−5

108 2.9462× 10−6

1010 1.5148× 10−7

1012 7.6577× 10−9

1014 3.8242× 10−10

1016 1.8923× 10−11

1018 9.2972× 10−13
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tc

0.001

1


2

Figure 9. The function D2 defined by Equation (103) for the case α1 = 0, for which we have
Cbc = 1/D. The vertical (green) line marks the position of the transition surface. When plotting this
curve, we have chosen the relevant parameters exactly as those given in Figure 7.

Figure 10. The metric component gtctc given in Equation (98), where gtt ≡ |gtctc |. The inserting is
the plot of the same quantity for the AOS solution. When plotting this curve, we have chosen the
relevant parameters exactly as those given in Figure 7.
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Figure 11. The metric component gxx given in Equation (98). The inserting is the plot of the same
quantity for the AOS solution. When plotting this curve, we have chosen the relevant parameters
exactly as those given in Figure 7.

4.2.2. α1 6= 0

In this case, the explicit relation between tb and tc is given by Equation (114). This
relation allows us to write down the metric and calculate the curvature invariants. Similar
to the α1 = 0 case, the exact expressions of them are too complicated to be written down
explicitly here, and instead we find that it sufficient to simply plot them out. Since they
all have similar behavior, we plot out only the Kretschmann scalar. In particular, we plot
it for Ωc < 0 and Ωc > 0, respectively in Figures 12 and 13. The vertical line in each
of these figures represents the location of the transition surface, and is usually different
from the maximal point of the Kretschmann scalar, quite similar to the case α1 = 0 and for
similar reasons.

-13.0 -12.5 -12.0 -11.5 -11.0 -10.5

tc
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1000.0

10
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K

Figure 12. The Kretschmann scalar for the case α1 6= 0 with Ωc < 0. In particular, the parameters are
chosen as m = 106, (ωcc, ωcb, Ωc) = (− δc

3m , 0,− δc
3m ), (ωbb, ωbc, Ωb) = (− δb

3m , 0,− δb
3m ), where δi’s are

given by Equation (26).



Universe 2022, 8, 543 27 of 31

-14 -13 -12 -11

tc

10
-8

10
-7

10
-6

10
-5

10
-4

K

Figure 13. The Kretschmann scalar for the case α1 6= 0 with Ωc > 0. In particular, the parameters
are chosen as m = 106, (ωcc, ωcb, Ωc) = ( δc

3m , δc
3m , 2δc

3m ), (ωbb, ωbc, Ωb) = ( δb
3m , δb

3m , 2δb
3m ), where δi’s are

given by Equation (26).

5. Conclusions

In this paper, we studied the 4-dimensional canonical phase space approach, explored
respectively by BMM [59] and GM [60] recently, in which the two parameters δi (i = b, c)
appearing in the polymerization quantization [35],

b→ sin(δbb)
δb

, c→ sin(δcc)
δc

, (119)

are considered functions of the two Dirac variables Ob and Oc [60],

δi = fi(Ob, Oc), (i,= b, c), (120)

where Ob and Oc are given by Equations (10) and (11). Note that BMM only considered the
particular case δi = fi(Oi) [59], the same as the AOS choice given in Equation (14), although
AOS considered them in the extended 8-dimensional phase space Γext. The corresponding
dynamical equations are given by Equations (48) and (49), which allow analytical solutions
in terms of tb and tc, where tb and tc are all functions of T only, given by Equation (47).

To compare the AOS and BMM/GM approaches, in Section 2 we first presented the
AOS model, and discuss how to uniquely fix the two Dirac observables δi’s [cf. Equations
(15) and (16)] in the extended phase space. In the large mass limit, these conditions lead to
δi’s given explicitly by Equation (26).

In the BMM/GM model, the black and white horizons, in general, all exist, and
naturally divide the whole spacetime into the external and internal regions, where T is
timelike in the internal region and spacelike in the external region. In Section 3, we briefly
introduce the BMM/GM approach and focused on studies of the external region of the
spacetime. We found that the asymptotical flatness condition of the spacetime requires

Ωb ≥ 0, (121)

where Ωb is defined in Equation (60), which excludes the BMM choice δi = fi(Oi) [59],
for which we always have ΩBMM

b < 0, as shown explicitly by Equation (63). Despite
the significant difference of the metrics of the AOS and BMM/GM models, we found
that, to the leading order, the asymptotical behavior of the spacetime in the two models
is universal and independent of the mass parameter m for the curvature invariants [cf.
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Equations (72) and (88)]. However, to the next leading order, they are different. In particular,
the Kretschmann scalar behaves as:

K ' A0

r4 +O
(

1
r4ξ

)
, (122)

as r → ∞, where A0 is a constant and independent of m, and r the geometric radius of
the two-spheres. For the case α1 6= 0, we have ξ = 2

α0
ln
( r

2m
)
, and for α1 = 0, we have

ξ =
( r

2m
)bo . Here α1 is defined in Equation (62). The differences from the next leading order

can be understood more clearly from the metric and the effective energy-momentum tensor,
given, respectively, by Equations (76), (79), (89) and (90). On the other hand, asymptotically,
the AOS solution takes the global monopole form (77), found previously in a completely
different content [62]. Nevertheless, the leading behavior of the Kretschmann scalar in both
cases is in sharp contrast to the classical case [55,57], for which we have KGR = 48 m2/r6.

In Section 4, we conducted our studies on the internal region of the spacetime. We first
showed that the quantum gravitational effects near the black hole horizon are negligible
for massive black holes, and both the Kretschmann scalar and Hawking temperature are
indistinguishable from those of GR, as shown explicitly by Figures 4 and 6, and Equa-
tion (112). However, despite the fact that all the physical quantities are finite, and the
Schwarzschild black hole singularity is replaced by a transition surface whose radius is
always finite and non-zero, the internal region near the transition surface is dramatically
different from that of the AOS model in several respects: (1) First, the location of the maxima
of the curvature invariants, such as the Kretschmann scalar is displaced from the transition
surface as shown explicitly by Figures 7, 8, 12 and 13. Detailed investigations of the metric
components reveal that this is because of the dependence of the two Dirac observables δi’s
on the 4D phase space of the Ashtekar variables (b, c, pb, pc), which considerably modifies
the structure of the spacetime. In particular, we plotted the metric components gtctc and
gxx, respectively in Figures 10 and 11, and then compared them with those given in the
AOS model, where the maxima are always located at the transition surface [53–55]; (2) The
maxima of these curvature invariants depend on the choice of the mass parameter m. In
particular, Table 1 shows such dependence for the Kretschmann scalar, which also shows
that such dependence is absent in the AOS model; (3) The location of the white hole horizon
is very near to the transition surface, and the ratio of the two horizon radii is much smaller
than 1, and depends sensitively on m as shown in Table 2. All these results are significantly
different from those obtained in the AOS model.

In review of the results presented in this paper, it is clear that further investigations
are highly demanded for LQBH models, in which the two polymerization parameters δb
and δc appearing in Equation (119) are considered Dirac observables of the 4-dimensional
phase space, spanned by (b, pb; c, pc), before accepting them as viable LQBH models in LQG.
In particular, in [49] the consistent gauge-fixing conditions in polymerized gravitational
systems were studied, and it would be very interesting to check how these conditions affect
the results presented in this paper as well as results obtained in other LQBH models.

Notes-in-addition: When we were finalizing our manuscript, we came across three
very interesting and relevant articles [64–66]. We will briefly comment on them here. First,
in [64] the authors studied the physical meaning of the three integration constants, C1, C2
and p̄0

c , obtained from the integration of the three dynamical equations for the variables c, b
and pc, respectively, and found that C1 is related to the location of the transition surface, C2
can be gauged away by the redefinition of time t → t + t0, where t0 is a constant, while
p̄0

c is related to the mass parameter. A similar consideration was also carried out in [38]
but for the BMM polymer black hole solution [31]. Second, in [65], the authors studied
the integrability of Gb(tb) ≡

∫ 0
tb

Fcb(t′b)dt′b =
∫ 0

tc
Fbc(t′c)dt′c ≡ Gc(tc), the invertibility of

ti = G−1
i [Gj(tj)], and the overlap of the images of Gi’s. It was shown that Fij’s are always

integrable so that Gi’s always exist. The images of Gi’s can be always made overlapped
by using the redefinitions of the two time-variables t′i = ti + t0

i . In addition, ti = G−1
i is
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always invertible except at the zero points Gi(text
i ) = 0. Moreover, these zero points never

correspond to the same moment T, so at least one of the two Gis is invertible at any given
moment T. It must be noted that all the studies carried out in [65] were restricted to the
internal region. When restricting our studies to this region, our results are consistent with
theirs whenever the problems of the integrability, invertibility and overlap of the images, all
studied in [65], are concerned. Finally, in [66], the authors considered the quantization of the
AOS extended phase space model, and found the conditions that guarantee the existence
of physical states in the regime of large black hole masses, among other interesting results.
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Note
1 It should be noted that in LQC, there exists only one parameter µ̄ corresponding to the area operator p, and APS set it to

µ̄2|p| =
(

4
√

3πγ
)
`2

p ≡ ∆ [56], where `p denotes the Planck scale.
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