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Abstract: Screening mechanisms are often deployed by dark energy models to conceal the effects of
their new degrees of freedom from the scrutiny of terrestrial and solar system experiments. However,
the extreme properties of nuclear matter may lead to a partial failure of screening mechanisms
inside the most massive neutron stars observed in nature, opening up the possibility of probing
these theories with neutron star observations. In this work, we explore equilibrium and stability
properties of neutron stars in two variants of the symmetron model. We show that around sufficiently
compact neutron stars, the symmetron is amplified with respect to its background (cosmological)
value by several orders of magnitude, and that the properties of such unscreened stars are sensitive
to corrections to the leading linear coupling between the symmetron and matter.
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1. Introduction

Due to their high compactness, neutron stars (NSs) offer a unique environment to
probe the strong-field regime of Einstein’s general relativity (GR) and constrain possible
modifications. Moreover, their core is characterized by extreme densities and pressures,
which may lead to additional, matter-induced phenomenology in alternative theories of
gravity, as compared, e.g., to the case of black holes. Exploring these effects becomes
particularly relevant with the increasing accuracy of measurements of NS properties,
inferred through both their electromagnetic and gravitational-wave emission [1–4].

In this work, we focus on scalar extensions of GR where, in addition to the usual spin-2
field, gravity is mediated by a self-interacting scalar degree of freedom, characterized by
a potential V(φ) and an effective coupling α(φ) ≡ (ln A(φ)),φ to matter [5–9]. Scalar–
tensor theories of this kind offer a suitable framework for cosmology [10–12], since a
judicious choice of V(φ) and A(φ) may lead to a model behaving as dark energy [13,14] at
cosmological scales, but still reproducing the successes of general relativity in explaining
solar system and other observational data [15,16]. Typically, this is accomplished through
the suppression, or screening, of scalar field effects at solar system (or galaxy) scales, which
exploits the fact that the scalar field dynamics is governed by a density-dependent effective
potential, Veff(φ) ≡ V(φ)− T ln A(φ), where T is the trace of the energy–momentum tensor
of matter fields (for a non-relativistic fluid, T ≈ −ρ, where ρ is the fluid rest–mass density).

Perhaps the most well-known example of screening (of the type described above) is
that implemented in the chameleon model [17,18]. By combining a power-law potential
and a constant effective coupling to matter, the chameleon field is endowed with a density-
dependent effective mass. Thus, the field becomes massive and short-ranged in high-
density environments (such as the solar system), but light and long-ranged at cosmological
scales, possibly behaving as dark energy.
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Another example of a screening mechanism, which is the focus of the present work,
occurs in the symmetron model [19,20] (see also Refs. [21–24] for generalizations). Screening
in this model relies on the spontaneous breaking of a Z2 symmetry at low densities, and
its restoration in high-density environments. In the latter case, the scalar coupling to
matter is suppressed, since it is proportional to the local vacuum expectation value of
the scalar field, which vanishes in the symmetric phase. Originally, the symmetron was
introduced as an alternative model to explain the late-time accelerated expansion of the
universe [19,20], and its consequences were explored in the context of linear and nonlinear
structure formation [25–30], as well as for dark-matter halo properties [31–33]. More
recently, it has also found applications as a model for dark matter [34–36].

To probe chameleon/symmetron effects, one typically seeks low-density, possibly
unscreened environments, such as those found under special laboratory conditions (see,
e.g., Refs. [37–42] for a review). On the other hand, one might naively expect that NSs would
be completely self-screened once the model parameters have been tuned to suppress dark
energy effects in the solar system, as the NS mean density is several orders of magnitude
larger. Indeed, this is typically the case, as was found in initial investigations in the
chameleon and environmentally dependent dilaton models [43,44].

Interestingly, however, it has been pointed out that a partial failure of screening
mechanisms may occur at the cores of the most massive, most compact NSs found in
nature [45]. For a perfect fluid, the trace of the energy-momentum tensor to which the
scalar field couples is given by T = 3p− ε, where p is the pressure and ε is the energy
density, as measured in the fluid rest frame. If the nuclear equation of state is such that a
pressure-dominated phase, with p > ε/3, occurs in the core of a NS [46,47], then T changes
sign, resulting in a partial descreening of the stellar interior. This effect was analyzed in
Ref. [45] for the chameleon and dilaton models, with a further, in-depth exploration of the
chameleon model presented in Ref. [48].

The aim of the present work is to extend the analysis of Ref. [45] for the symmetron
model, by investigating the equilibrium and stability properties of symmetron neutron
stars (SNSs), paying special attention to those with pressure-dominated cores. This work is
organized as follows. We begin, in Section 2, by defining the symmetron model, discussing
the symmetron screening mechanism, and reviewing the background cosmological evo-
lution in the model. We then proceed, in Section 3, to describe our main results for the
equilibrium and stability properties of SNSs. Section 4 gathers our main conclusions. In
what follows, MPl =

√
h̄c/8πG denotes the (reduced) Planck mass, and we use units such

that c = h̄ = 1.

2. Symmetron Model
2.1. Field Equations

The symmetron model belongs to a class of scalar–tensor theories described by the
following action functional [8,21],

S =
∫

d4x
√
−g
[

1
2

M2
PlR−

1
2

gµν∇µφ∇νφ−V(φ)

]
+ Sm[Ψm; A(φ)2gµν], (1)

where Sm denotes the action for matter fields Ψm, which are universally coupled to the
scalar field φ through the conformally rescaled (Jordan-frame) metric g̃µν ≡ A(φ)2gµν.
Variation of Equation (1) with respect to the (Einstein-frame) metric gµν and scalar field φ
yields the following field equations:

Gµν = M−2
Pl

[
Tµν +∇µφ∇νφ− gµν

(
1
2
∇βφ∇βφ + V(φ)

)]
, (2)

∇µ∇µφ =
dV
dφ
− α(φ)T, (3)

where
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α(φ) ≡ d ln A
dφ

, (4)

and T ≡ gµνTµν is the trace of the energy-momentum tensor of matter fields, Tµν ≡
−2(−g)−1/2δSm/δgµν, which obeys

∇νTµν = α(φ)T∇µφ. (5)

It is often convenient to introduce the Jordan-frame energy-momentum tensor, T̃µν ≡
−2(−g̃)−1/2δSm/δg̃µν = A(φ)−2Tµν, since this object is covariantly conserved in the sense
that ∇̃νT̃µν = 0, where quantities with tildes are constructed from the Jordan-frame metric.

More specifically, the symmetron model presented in Ref. [19] is characterized by a
quartic, symmetry-breaking potential,

V(φ) = −1
2

µ2φ2 +
λ

4
φ4, (6)

and a conformal factor that respects its reflection symmetry under φ→ −φ. The simplest
model, therefore, features a quadratic conformal factor,

Aq(φ) = 1 +
φ2

2M2
s

, (7)

where the dimension-full constant Ms can be thought of as a cutoff scale, below which,
corrections to (7) can be safely ignored. However, terms of order O(φ4/M4

s ) or higher must
be considered if the evolution drives the scalar field close to the cutoff scale. Interestingly,
we will see that this can be the case for SNSs. Therefore, in our analysis, we will also
consider the alternative, “regularized” variant

Ar(φ) = 1 +
φ2

2M2
s + MPl|φ|

, (8)

introduced in Ref. [20], which serves the purpose of attenuating the scalar-mediated force
for φ close to the cutoff scale Ms.

2.2. Screening

As is clear from Equation (5), in the symmetron model, free particles do not follow
geodesics of the Einstein-frame metric gµν, but follow forced trajectories instead, with an
acceleration given by

aµ ≡ uν∇νuµ = −Pµν∂ν ln A, (9)

where Pµν ≡ gµν + uµuν projects onto the subspace orthogonal to the particle’s four-velocity.
If one expands the scalar field around its vacuum expectation value (φ0), φ = φ0 + δφ, then
to leading order in the perturbation δφ the force per unit mass in Equation (9) becomes

~fsym = −~∇ ln A = −α(φ)~∇φ ≈
(

φ0

Ms

)
~∇
(

δφ

Ms

)
. (10)

Thus, the coupling between matter and scalar field perturbations is proportional to φ0.
This, in turn, depends on the properties of the local matter environment, as follows.

From Equation (3) we can see that the scalar field responds to the effective potential

Veff(φ) ≡ V(φ)− T ln A(φ), (11)
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so that a constant solution φ = φ0 must obey dVeff/dφ|φ0 = 0. After substituting
Equations (6) and (7), and taking into account only the leading-order contribution from
A(φ), Equation (11) can be written as

Veff(φ) ≈
1
2

(
−T − µ2M2

s

) φ2

M2
s
+

1
4

λφ4. (12)

The sign of the quadratic term of the effective potential is seen to depend on the
local matter content, through the trace of the energy-momentum tensor. If densities are
sufficiently large (ρ > ρ∗ ≡ µ2M2

s ) and matter is non-relativistic, T ≈ −ρ < 0, the effective
potential has a minimum at φ0 = 0, in which case the coupling to matter identically
vanishes [cf. Equation (10)]. On the other hand, in rarefied environments (ρ < ρ∗), the
Z2 symmetry is broken, as the field tends to settle at one of the nontrivial minima of the
effective potential (at φ0 = ±µ/

√
λ for ρ = 0). In this case, symmetron perturbations

couple to matter with strength φ0/M2
s ≈ µ/(M2

s
√

λ), and can have a non-negligible impact
on the cosmological evolution. Thus, the main ingredients of the symmetron screening
mechanism are the restoration of the Z2 symmetry in high-density environments, together
with a coupling to matter that depends on the symmetron vacuum expectation value.

The symmetron model discussed in this work is characterized by three parameters,
µ, Ms, λ, the magnitude of which is guided by the intended applications, and restricted
by observations. In particular, for the symmetron to provide a viable model for dark
energy, it must become tachyonic around the current cosmic density, which means that
the critical density ρ∗ = µ2M2

s for symmetry breaking must be of the order of the current
cosmic density,

H2
0 M2

Pl ≈ µ2M2
s , (13)

where H0 is the Hubble parameter (the background cosmology in the symmetron model
will be revisited in Section 2.3.). Additionally, for the symmetron field to drive cosmic
expansion, it must mediate a force comparable to gravity:

µ

M2
s
√

λ
≈ 1

MPl
. (14)

Conditions (13) and (14) tie together the model constants, leaving only one indepen-
dent parameter, which can be taken as the cutoff scale Ms. This, in turn, can be constrained
by local experiments and astrophysical observations [10,16,19,49]. In particular, requiring
the Milky Way to be screened enforces

Ms . 10−3MPl. (15)

In this case, the range of the symmetron-mediated force in vacuum is of the order of
µ−1 . 10−3H−1

0 ∼ 1 Mpc.
It is worth mentioning that, for other applications—e.g., considering the symmetron

as a model for dark matter [34–36]—one does not need to impose conditions (13) and
(14), leaving a larger space of parameters to be contrasted with observations (see [42]
for a review). For instance, Ref. [37] explores constraints to λ from torsion-pendulum
experiments by fixing µ according to the dark energy scale and Ms ∼ 1 TeV, just beyond
probed Standard Model energies. For definiteness, however, we will consider the model
parameters to be tied together as in Equations (13) and (14) in the present work.

2.3. Cosmology

In this section, we revisit the main aspects of the cosmological solution of a Friedmann–
Lemaitre–Robertson–Walker (FLRW) universe populated with a collection of fluid species
and a symmetron field φ = φ(t). The Einstein-frame metric assumes the (spatially flat)
FLRW form

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2). (16)
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In this coordinate system, the energy-momentum tensor for matter fields has com-
ponents Tµ

ν = ∑i diag(−εi, pi, pi, pi), with pressure and energy density assumed to be
related by a constant equation of state, pi = wiεi, for each fluid species i. Assuming that
Equation (5) holds for each fluid species separately, one finds that

εi = εi,0 a−3(1+wi)A1−3wi , (17)

where εi,0 are constants, from which one can define the fractional abundances Ωi ≡
εi,0/(3H2

0 M2
Pl).

The dynamical equations (2) and (3) imply

3M2
PlH

2 =
1
2

φ̇2 + V(φ) + ∑
i

εi, (18)

φ̈ + 3Hφ̇ +
dV
dφ

+ α ∑
i
(1− 3wi)εi = 0, (19)

where dots stand for time derivatives with respect to the Einstein-frame cosmic time t, and
H ≡ ȧ/a.

Assuming that the symmetron field exits inflation with a value φi . Ms, one finds
that it evolves during the radiation- and matter-dominated eras as follows (see Ref. [20]
for details). Initially, Hubble friction (encapsulated by the second term of Equation (19))
dominates, and the symmetron remains frozen at φi until a ≈ aeqM2

s /(3M2
Pl), where aeq

denotes the scale factor at matter–radiation equality. At this point—which is well before
matter–radiation equality, since Ms � MPl—the coupling to matter overcomes friction,
and the symmetron begins to perform damped oscillations around the minimum of the
effective potential at φ0 = 0. Around a = 0.5, its amplitude would have decayed to a value
∼10−3(M/MPl)

3/2φi. However, as expansion proceeds and matter density drops below
the critical value ρ∗ = µ2M2

s , a phase transition takes place and φ0 moves to one of the
symmetry-breaking minima of the effective potential.

The cosmological evolution of the symmetron field, as per Equations (18) and (19), is
shown in Figure 1, where the phases described above are clearly identifiable. As pointed
out in Ref. [20], for the simplest choice of a quartic potential, as in Equation (6), and taking
conditions (13)–(15) to be valid, the symmetron potential energy is not enough to drive
cosmic acceleration. Thus, in order to reproduce ΛCDM expansion history in this model, a
cosmological constant must be included, e.g., in the form of a nondynamical constant V0
added to the potential or as fluid species with wΛ = −1. In constructing Figure 1 we have
adopted the latter, letting ΩΛ ≈ 1−Ωm, and Ωm = 0.25. The symmetron was initialized to
φi = 10−2Ms, and model parameters were adjusted so that the phase transition occured
at redshift z ≈ 1. One can see that the symmetron field is successfully brought close
to the symmetry-restoring point (at φ0 = 0), before a phase transition takes place at the
present age, amplifying the symmetron to values close to the symmetry-breaking point.
However, in this case, the fractional energy density in the symmetron field still remains
small, which challenges its viability to drive the late-time acceleration of the universe.
Notwithstanding, our discussion also shows that the symmetron model provides a suitable
screening mechanism for astrophysical scales. From now on, we will be interested in the
symmetron field configurations inside dense neutron stars.
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Figure 1. Cosmological evolution of the symmetron field as a function of redshift in a universe
field with radiation (wγ = 1/3, Ωγ ∼ 10−4), pressureless matter (wm = 0, Ωm = 0.25) and a
cosmological constant (wΛ = −1, ΩΛ ≈ 1−Ωm), for the quadratic variant of the symmetron model,
with Ms = 10−4 MPl, µ =

√
15H0 MPl/Ms, and λ = µ2 M2

Pl/M2
s . For this choice of parameters, the

phase transition occurs at z ≈ 1.

3. Equilibrium and Stability Properties of Symmetron Neutron Stars
3.1. Set-Up

To determine the structure of symmetron neutron stars (SNSs), we approximate the
spacetime to be static and spherically symmetric, with line element

ds2 = −e2ν(r)dt2 + e2λ(r) + r2(dθ2 + sin2 θdϕ2). (20)

The NS is modeled as a perfect fluid, with energy-momentum tensor

Tµν = (ε + p)uµuν + pgµν, (21)

where uµ is the four-velocity of fluid elements, and ε and p are the energy density and
pressure as measured by comoving observers. We further define the Jordan-frame pressure
and energy-density, p̃ = A(φ)−4 p and ε̃ = A(φ)−4ε, in terms of which we specify the
equation of state (EOS). We consider a barotropic EOS relating pressure and number density
(ñ): p̃ = p̃(ñ). In turn, the energy density is obtained by the first law of thermodynamics,
d(ε̃/ñ) = − p̃d(1/ñ), assumed to hold in the Jordan frame. Specifically, in this work we
adopt the ENG EOS [50], in a piecewise-polytropic parametrization [51].

With the assumptions given above, one can derive the following set of structure
equations from Equations (2) and (3):

dm
dr

= 4πr2
[

A4ε̃ +
1
2

e−2λψ2 + V
]

, (22)

dν

dr
= re2λ

[m
r3 + 4πA4 p̃ + 2πe−2λψ2 − 4πV

]
, (23)

dp̃
dr

= −( p̃ + ε̃)
d
dr

(ν + ln A), (24)

dφ

dr
= ψ, (25)

d
dr

(
r2eν−λψ

)
= r2eν+λ

[
dV
dφ
− A3 dA

dφ
(3p̃− ε̃)

]
. (26)

Here, the mass aspect function m(r) is defined through m(r) ≡ (r/2)(1− e−2λ(r)). For
simplicity, vacuum is assumed outside of the star.

The system (22)–(26), supplemented by the EOS relating pressure and energy density,
can be solved by standard methods, with the following boundary conditions: m(0) = 0, so
that the solution is regular at r = 0; p̃(R) = 0, which defines the (Einstein-frame) stellar
radius R; φ(r) → φ0 for r � R, where φ0 = M2

s /MPl is the (positive, for definiteness)
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symmetry-breaking minimum of the effective potential (11), and ν(r) → −(1/2) ln[1−
2m(r)/r] for r � R, such that the spacetime becomes Schwarzschild–de Sitter far away
from the star. The total mass satisfies M ≈ m(r)− 4π

3 r3V(φ0) for r � R, which only slightly
differs from m(R) in the models that we consider. The results for equilibrium properties of
SNSs will be discussed in Section 3.2.

A fundamental additional step will be to establish whether the equilibrium solutions
we construct are stable under linear radial perturbations. For that purpose, we begin by
promoting ν and λ in Equation (20) to functions of (t, r), such that ν(t, r) = ν0(r) + δν(t, r)
and λ(t, r) = λ0(r) + δλ(t, r), with ν0(r) and λ0(r) denoting background quantities, and
similarly for the scalar field, pressure and energy density. The perturbed fluid four-velocity

uµ(t, r) = e−ν0(1− δν, dξ/dt, 0, 0) (27)

is written in terms of ξ(t, r), the radial Lagrangian displacement of a given fluid element.
The perturbed configuration is completely specified by six functions, δν, δλ, δφ, ξ,

δ p̃, and δε̃. In Ref. [45], it was shown that these functions can be written in terms of ξ
and δφ, which obey a set of two coupled homogeneous second-order partial differential
equations. These master equations were derived under the assumption that both the
perturbed and unperturbed configurations obey the same (cold) EOS. Assuming a harmonic
time dependence of ξ and δφ,

ξ(t, r) = ξ(r)eiωt, δφ(t, r) = δφ(r)eiωt, (28)

with ω ∈ C, the master equations have the schematic form

dx(r)
dr

= M(r)x(r), (29)

where x(r) = (ξ, ξ ′, δφ, δφ′)T (with a prime denoting a radial derivative) and M(r) is a
4× 4 matrix function of background quantities alone1.

The boundary conditions are as follows. Regularity at r = 0 is ensured by taking
ξ(0) = 0 and δφ′(0) = 0, while regularity at r = R gives rise to an additional requirement
of the form F(R)Tx(R) = 0, where F(R) is a vector constructed from background quantities.
Finally, since we will be looking for unstable modes, for which ω2 < 0, we demand
that δφ(r) → 0 for r � R. Since the system (29) is homogeneous, there is an overall
normalization freedom (x→ Cx, with C a constant), and the system is overdetermined by
the four boundary conditions above. As a consequence, solutions can only be found for
a discrete (possibly empty) set of values for ω. These are sought numerically through a
shooting procedure, as described in more detail in Ref. [45].

3.2. Symmetron Neutron Stars

In the Newtonian context, a simple criterion for an astrophysical body to be screened [19]
is that the surface Newtonian potential ΦN needs to be much larger than the ratio M2

s /M2
Pl,

i.e., the parameter

Υ ≡ 6ΦN
M2

Pl
M2

s
� 1 . (30)

Indeed, the parameter Υ determines to what extent the thin shell mechanism operates inside
that object, with the thickness of the thin-shell scaling as ∆R ∼ Υ−1R [19]. Consequently,
Υ−1 also determines the ratio of the scalar-mediated force to gravity.

The naive application of Equation (30) to NSs, for which ΦN ∼ 0.2, would imply
that already for Ms/MPl . 0.1 NSs would be screened (ΥNS & 10). This expectation is
confirmed for a ‘typical’ NS. Figure 2 represents the scalar field profile inside SNSs with
the same central density which, for GR, would yield a 1.4M� object. For Ms ∼ MPl, the
SNS is unscreened, with the scalar field displaying a nontrivial field gradient throughout
the stellar interior. In this case, equilibrium properties, such as the stellar mass and radius,
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show O(1) difference from GR. However, for Ms . 0.1MPl, the thin-shell mechanism
already operates, with the fractional difference between the mass of a SNS and a GR NS
dropping below 0.05%, and similarly for other properties, such as the stellar radius.

However, for more massive, more compact NSs, the Newtonian reasoning above
breaks down. Figure 3 shows sequences of equilibrium solutions for SNSs, for both
the quadratic, Equation (7), and regularized, Equation (8), variants of the symmetron
model. SNSs in both variants closely resemble those of GR as long as the trace of the
energy-momentum tensor remains negative in the entire stellar interior. However, when
a pressure-dominated phase appears, with p̃ > ε̃/3 and T̃ > 0 in the stellar core, SNSs
become unscreened, and global properties change accordingly.

Figure 2. Scalar field profile, rescaled by its asymptotic value (φ0 = M2
s /MPl), as a function of the

radial coordinate, for values of Ms/MPl ranging from 0.06 to 1. In all cases, the central number density
of the SNS was fixed to 0.476 fm−3, which, in GR, yields a 1.4M� equilibrium model for the ENG
EOS used in this work. The masses of SNSs monotonically increase from 0.595M� when Ms = MPl

to 1.3999M� when Ms = 0.06MPl. For this plot, the quadratic variant of the symmetron model was
considered, cf. Equation (7), but the same qualitative conclusions also apply to Equation (8).

Figure 3 makes clear that structural properties of unscreened SNSs may be quite
sensitive to higher-order contributions to the conformal factor A(φ). In both variants, as
soon as a pressure-dominated phase appears (in this case, around ñc = 0.730 fm−3) not only
the scalar field is amplified in the stellar interior, but one also finds a hierarchy of branches
of equilibrium solutions, which can be classified according to the number n of nodes of the
scalar field profile. However, while these new branches exist above some critical central
densities for the regularized variant (8), for the quadratic one (7) the new branches exist
only below some critical central densities. A similar behavior was also found in the context
of massless scalar-tensor theories [52,53].

Figure 4 shows scalar field and density profiles for SNSs with ñc = 0.780 fm−3 within
the quadratic variant of the model. A large, possibly infinite, number of solutions exist,
but only those with n ≤ 12 are represented in the plot. Except for the solution with n = 0
and smallest value of |φc|, all density profiles are non-monotonic, sustained in a delicate
fluid-scalar field balance. It probably should come as no surprise that these solutions are
unstable. Indeed, we find that all solutions with n 6= 0 displayed in the first column of
Figure 3 possess at least one unstable radial mode, including those with a small value of
|φc| (the properties of which resemble those of GR NSs). For the n = 0 branch, we find that
instability sets in at ñc ≈ 0.776 fm−3, marked with a star in Figure 3; solutions with a larger
central value of the scalar field are found to be unstable.
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Figure 3. Sequences of equilibrium solutions describing SNSs for the quadratic—left column—and
regularized—right column—variants of the symmetron model, both with Ms/MPl = 0.1. The central
value of the scalar field (φc) and the total mass (M) are shown as functions of the central number
density (ñc) in the two cases. In the second row, the absolute value of φc is represented in log-scale
for a complementary view of the solutions. Several branches of equilibrium solutions are identified,
and classified according to the number n of nodes in the scalar field profile—note that not all of them
are clearly discernible in the bottom panels due to a significant overlap in their properties. A vertical
line is shown at ñc = 0.730 fm−3, the critical value of the central number density, above which a
pressure-dominated phase appears inside a GR NS. In the left column, a red star marks a marginally
stable solution in the n = 0 branch: solutions with larger values of the scalar field are found to be
unstable under radial perturbations (see discussion in the main text). Note that only solutions with
central value of the scalar field |φc|/Ms . 4 were computed, so that curves in the bottom-left panel
are incomplete, as they would contain configurations with |φc|/Ms > 4.

The choice of a quadratic conformal factor (7) is sufficiently general as long as the scalar
field does not probe values close to the cutoff scale Ms. When this is the case, as around
unscreened SNSs, one needs to care about higher-order corrections to A(φ). The regularized
variant in Equation (8) was introduced in Ref. [20] to prevent the scalar-mediated force
from becoming arbitrarily strong with an increasing scalar field, by forcing it to be, at most,
comparable to gravity. Equilibrium solutions for SNSs in this variant are displayed in the
right column of Figure 3. Again, the scalar field is strongly amplified, rising from ∼10−5Ms
for a star with the critical central density of ñc = 0.730 fm−3 to ∼0.5Ms at the turning point
along the n = 0 branch in the M− ñc diagram. Furthermore, new branches of equilibrium
solutions appear at higher values of the central density, characterized by an increasing
number n of nodes in the scalar field profile. However, in contrast with the case of the
quadratic variant (cf. Figure 2), in the regularized variant, all equilibrium solutions have
monotonically decreasing density profiles.

The behavior of SNSs for the regularized variant is reminiscent of the spontaneous
scalarization phenomenon, a non-perturbative strong-field effect that has been well-studied
since the 1990s [54–56]. The rationale behind this effect is more easily explained for the
non-interacting case with V = 0, and features as a main ingredient an effective coupling
α(φ) which is linear in φ to leading order: α(φ) ≈ βφ + O(φ2). In this case, φ = 0 is
a solution of the scalar field Equation (3), for which Equation (2) reduces to Einstein’s
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equation; however, this solution may become unstable under a scalar field perturbation
for some stellar backgrounds [57,58]. Indeed, a perturbation δφ around φ = 0 obeys, to
linear order, �δφ = m2

effδφ, where the squared effective mass m2
eff ≡ −βT was defined. If

m2
eff becomes sufficiently negative, a tachyonic instability may develop. For the conformal

factors (7) and (8), β = M−2
s > 0, and a necessary condition for the development of such a

tachyonic-like instability is that T > 0, i.e., a pressure-dominated phase exists inside the
star. Spontaneous scalarization, understood as a discontinuous change of the NS stable
configuration as the baryon number of the star changes continuously [56], can be thought
of as the nonlinear development of this linear tachyonic instability: as the trivial φ = 0
solution becomes unstable, new equilibrium solutions develop, sustained by a nontrivial
scalar field configuration. In this case, the new branches of stable equilibria appear in pairs,
due to the reflection symmetry under φ→ −φ.

Figure 4. Number density (upper panel) and scalar field (bottom panel) as functions of the radial
coordinate, for SNSs with a central number density ñc = 0.780 fm−3, in the quadratic variant of the
symmetron model with Ms/MPl = 0.1. Twenty-six solutions with 0 ≤ n ≤ 12 are displayed, with the
number n of nodes increasing from violet to red.

In the case of SNSs, the picture described above is modified by the presence of the
potential V(φ). Far away from the star, the scalar field asymptotes to the cosmological
value, assumed to be the positive minimum of the effective potential, at φ0 = M2

s /MPl. This
breaks the degeneracy (of the V = 0 case) among pairs of scalarized solutions, which only
differed by a φ→ −φ transformation but otherwise had identical (macroscopic) properties.
Now, the branch of equilibrium solutions before the onset of scalarization is smoothly
connected to the n = 0 scalarized branch, for which φ > 0. At higher central densities,
new branches of scalarized solutions appear in the form of connected loops (see middle
row of Figure 3). However, since local observations constrain Ms/MPl to be small, and
therefore |φ0/Ms| � 1, the nontrivial symmetron potential acts as a small perturbation,
and pairs of scalarized solutions still exist with close macroscopic properties. The situation
has similarities to the effect of spontaneous magnetization in the presence of a small but
non-zero external field, or, in a more closely related setting, to spontaneous scalarization in
massless scalar-tensor theories where α0 ≡ α(0) 6= 0 (see, e.g., Ref. [59]).

Additionally, we have analyzed the stability of the equilibrium solutions found in
the regularized variant of the symmetron model in detail. Figure 5 shows the inverse of
the instability timescale τ−1 ≡

√
−ω2 for unstable modes of the equilibrium solutions

displayed in the right column of Figure 3. Two types of modes are found. Unstable
modes of the first type (labeled “type I” in Figure 5) are associated with instability under
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gravitational collapse. For equilibrium solutions with n = 0, 1, 2 and for one of the legs
of the n = 3 loop, the associated unstable modes of type I emerge from a zero-frequency
mode at the central density corresponding to a turning point in the M− ñc diagram; for the
second leg of the n = 3 loop and for solutions with n > 3, the associated unstable modes of
type I emerge close to a GR unstable fundamental mode frequency.

On the other hand, unstable modes of the second type (labeled “type II” in Figure 5)
are associated with a scalar-field driven instability. For the V = 0 case, it is known that, at
every central density at which new scalarized solutions appear, an additional scalar mode
of the trivial, φ = 0, solution becomes unstable [60]. Correspondingly, in the (regularized
variant of the) symmetron model, we find a zero-frequency mode at the critical central
density at which every new loop of scalarized solutions appear. The inverse instability
timescale τ−1 increases as one moves along (by increasing ñc) the leg with smallest value
of |φc|. When the next loop of scalarized solutions appears, it inherits the unstable mode
frequencies of the previous branches (with smaller values of n) in the rich pattern shown in
Figure 5. Only unscreened SNSs in the n = 0 branch and in its twin leg in the n = 1 branch
are found to be stable (up to the turning point in the M− ñc diagram).

Figure 5. Inverse of the instability timescale of unstable modes as a function of the central density
of the corresponding equilibrium solution, for the regularized variant of the symmetron model,
with Ms/MPl = 0.1. Color-coding is the same as in the right column of Figure 3, and refers to the
number n of nodes in the associated equilibrium solution. Two types of unstable modes are found,
corresponding to a fluid-driven (type I) or a scalar-driven (type II) instability.

Our discussion above has focused on the case where Ms/MPl = 0.1. Although—
as argued in the beginning of this section—this value is low enough for SNSs without
a pressure-dominated core to be screened, one might wonder how the picture changes
for smaller values of Ms/MPl, which are required for consistency with solar system and
terrestrial observations. As Ms/MPl decreases, φ0 is suppressed and so is the typical scalar
field inside SNSs. Moreover, although the qualitative picture described above remains the
same, we find that many more branches of scalarized solutions are found. For instance,
while we find eight branches of equilibrium solutions for Ms/MPl = 0.1 (in the regularized
variant of the symmetron model), their number rises to 63 when Ms/MPl = 0.01. The sheer
amount of equilibrium solutions, together with the increasing numerical fine-tuning needed
to compute their properties, make a comprehensive analysis of their stability impracticable
for Ms/MPl . 0.01. However, several of our findings can be extrapolated to that case.
For instance, Figure 6 shows a mass-radius diagram for the n = 0 branch of equilibrium
solutions in the regularized variant of the symmetron model, both for Ms = 0.1MPl and
Ms = 0.01MPl, where we can see that their properties are only weakly dependent on Ms.
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Figure 6. Mass versus radius diagram for equilibrium solutions with n = 0 in the regularized variant
of the symmetron model, both for Ms = 0.1MPl and Ms = 0.01MPl. The corresponding GR diagram
is also represented for comparison.

4. Conclusions

A partial failure of typical screening mechanisms may occur in the cores of the most
massive, most compact neutron stars observed in nature if the nuclear EOS is such that
a pressure-dominated phase occurs in their interior [45,48]. Here, we have examined the
equilibrium and stability properties of such unscreened NSs (described by the ENG EOS)
in two variants of the symmetron model, characterized by the conformal factors (7) or
(8), for which the effective coupling α(φ) between the symmetron and matter differs in its
higher-than-linear behavior.

In both cases, NSs are screened and have nearly identical properties to their GR
counterparts before the critical density for the appearance of a pressure-dominated phase.
However, their properties differ much more strongly once this critical density is reached, as
shown in Figure 3. For the regularized variant, the stable branches of equilibrium solutions
(with n = 0 and one leg with n = 1) have a lower maximum mass than that of GR, a
decrease of∼4.6%, similar to that found for the chameleon and environmentally dependent
dilaton models in Ref. [45]. For the quadratic variant, stable equilibrium solutions cease
to exist soon after the critical density for the appearance of a pressure-dominated phase,
promoting an abrupt cut before the maximum mass is reached. In both cases, the spectrum
of unstable modes presents a rich structure, as shown in Figure 5 for the regularized variant.

That NSs with pressure-dominated cores should exist in nature is an intriguing possi-
bility. Interestingly, the existence of a strong correlation between pc/εc (the ratio between
pressure and energy density at the NS core) and macroscopic properties such as the NS
compactness or tidal deformability [46,47], makes it possible to access the existence of a
pressure-dominated phase (pc/εc > 1/3) by measuring the properties of the most massive
NSs. In fact, there is a nonnegligible probability that the heavy pulsar J0030+0451 displays
such a phase [47]. If more accurate measurements of massive NSs support this conclu-
sion, these systems could be interesting probes of scalar-tensor theories with screening
mechanisms, as is presently shown for the symmetron model.
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