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Abstract: We review recent developments in the study of the AdS/CFT correspondence in lower
dimensions. We start by summarising the classification of AdS3 × S2 solutions in massive type
IIA supergravity with (0, 4) supersymmetries and the construction of their 2D dual quiver CFTs.
These theories are the seed for further developments that we review next. First, we construct a new
class of AdS3 solutions in M-theory that describe M-strings in M5-brane intersections. Second, we
generate a new class of AdS2 × S3 solutions in massive IIA with four supercharges that we interpret
as describing backreacted baryon vertices within the 5D N = 1 QFT living in D4-D8 branes. Third,
we construct two classes of AdS2 solutions in Type IIB. The first are dual to discrete light-cone
quantised quantum mechanics living in null cylinders. The second class is interpreted as dual to
backreacted baryon vertices within 4D N = 2 QFT living in D3-D7 branes. Explicit dual quiver field
theories are given for all classes of solutions. These are used to compute the central charges of the
CFTs that are shown to agree with the holographic expressions.

Keywords: string theory; AdS/CFT correspondence; supergravity

1. Introduction

Lower dimensional CFTs 1 play a prominent role in the microscopic description of
black holes and black strings. Since these exhibit, in the extremal case, AdS2 and AdS3
geometries close to their horizons, a deeper understanding of the AdS/CFT correspondence
in lower dimensions is of key importance to their study.

The construction of AdS2 and AdS3 geometries and the identification of their dual
superconformal field theories has been the focus of many interesting works. In general, the
possible geometrical structures, supersymmetries preserved and topologies of the solutions
increase as one increases the dimensions of the internal space, giving rise to a plethora of
possible solutions (see for instance [1–45]). However, even if many classes of solutions with
different amounts of supersymmetries have been constructed, this has only been paralleled
with a detailed understanding of their dual CFTs for D1-D5 and D1-D5-D5’ systems, and
orbifolds thereof [16,46–51].

In this work, we review recent progress on the construction of AdS3/CFT2 and
AdS2/CFT1 pairs with four supersymmetries where both sides of the correspondence
are reasonably well-understood. These provide controlled settings where the AdS/CFT
correspondence can be explicitly checked and where the black hole microstate counting
programme can be carried out in detail.

Important progress in our understanding of the AdS3/CFT2 correspondence was
provided by the recent constructions in [26]. These are solutions to massive Type IIA
supergravity with N = (0, 4) supersymmetries (and SU(2) R-symmetry) that are realised
as fibrations of AdS3× S2×M4 on an interval, with M4 either a CY2 or a 4d Kähler manifold.
These solutions are dual to interesting classes of 2D CFTs admitting a quiver description in
the UV that can be used to compute their degrees of freedom [52–54].
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Besides providing explicit AdS3/CFT2 pairs, the constructions in [26,52–54] have been
the seed of many other interesting developments. In a nutshell, new classes of AdS3 solu-
tions in M-theory with the same number of supersymmetries have been constructed in [34],
which provide the holographic duals of the configurations of M-strings described in [55,56].
From the latter, new classes of solutions in massless Type IIA have been generated [36],
which allow for an explicit defect interpretation as surface quivers embedded in a 6D CFT.
Perhaps more interestingly, new examples of explicit AdS2/CFT1 duals have been derived
from these AdS3/CFT2 pairs in both Type II supergravities [38,40,43].

The construction of new AdS2/CFT1 pairs is of special relevance. AdS2 geometries
arise as near horizon geometries of extremal black holes and therefore play a very important
in their microscopical studies. However, it is well-known that the precise realisation of an
AdS2/CFT1 correspondence presents important technical and conceptual problems [57–60]
that mainly originate from the fact that AdS2 possesses two disjoint boundaries [61]. As a
result, this correspondence is in need of a much deeper understanding.

A successful approach taken in [38,40,43] was to exploit its connection with the much
better understood AdS3/CFT2 correspondence. At the geometrical level, AdS3 and AdS2
spaces are related by T-duality. This allows one to construct explicit AdS2/CFT1 pairs
in which the CFT1 arises as a discrete light-cone compactification of the 2D CFT dual to
the AdS3 solution, thus providing an explicit realisation of the constructions in [62–65].
Moreover, if two spheres are present in the internal space of an AdS3 solution, such
solutions are amenable to double analytical continuation techniques, which turn AdS3 × S2

spaces into AdS2 × S3 geometries. This latter class of solutions can then be dual to more
general superconformal quantum mechanics (SCQM) than those arising from discrete
light-cone compactification.

The aim of this review article is to summarise the main features of these recent
developments. The paper is organised as follows. We start in Section 2 by reviewing the
AdS3/CFT2 pairs constructed in [26,52–54], seeds of the forthcoming constructions. In
Section 3, we review their uplift to M-theory, following [34], and briefly address their
interpretation as duals to the M-strings in [55,56]. In Section 4, we turn our attention to the
construction of new AdS2/CFT1 pairs in massive Type IIA, following [40]. We describe
in some detail the associated dual SCQM, which allows one to interpret the solutions as
backreacted D4-D0 baryon vertices in the 5D CFT living in D4′-D8 brane intersections. In
Section 5, we discuss two more AdS2/CFT1 pairs, in this case in Type IIB, following [38,43].
A first class of solutions is constructed from the seed AdS3 solutions reviewed in Section 2
using T-duality. These solutions are dual to explicit 1D CFTs that arise as discrete light-cone
compactifications of the 2D CFTs reviewed in Section 2. The second class of solutions is
constructed by T-dualising the AdS2 class reviewed in Section 4. These solutions allow for
an interesting interpretation as backreacted D5-D1 baryon vertices in the 4D N = 2 QFT
living in D3-D7 brane intersections, that we briefly discuss. Finally, in Section 6, we discuss
open lines for further investigation.

2. AdS3/CFT2 in Massive IIA

In [26], a thorough classification of AdS3 × S2 solutions to massive IIA supergravity
consistent with a nontrivial Romans mass, with small (0, 4) supersymmetry and SU(2)-
structure, was obtained. The solutions are warped products of the form AdS3× S2×M4×
I, where M4 is either a CY2 or a 4D Kähler manifold. In this review, we restrict ourselves
to the particular case when M4 =CY2, and there is no dependence on the coordinates of
the CY2. These solutions provide the “seed” from which all supergravity backgrounds
summarised in this work are derived. Furthermore, we review the proposal in [52–54] for
their two-dimensional dual CFTs.
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The Neveu–Schwarz (NS) sector of this class of solutions is as follows:

ds2 =
u√
h4h8

(
ds2

AdS3
+

h8h4

4h8h4 + u′2
ds2

S2

)
+

√
h4

h8
ds2

CY2
+

√
h4h8

u
dρ2,

e−Φ =
h

3
4
8

2h
1
4
4
√

u

√
4h8h4 + u′2, H3 =

1
2

d
(
−ρ +

uu′

4h4h8 + u′2

)
∧ volS2 ,

(1)

where Φ is the dilaton, H3 = dB2 is the NS-NS three-form and the metric is written in
string frame. The warping functions h4, h8 and u are functions of ρ, which parameterises
an interval. We denote ′ = ∂ρ. The RR fluxes are

F0 = h′8, F2 = −1
2

(
h8 −

h′8u′u
4h8h4 + u′2

)
volS2 ,

F4 = −
(

d
(

uu′

2h4

)
+ 2h8dρ

)
∧ volAdS3 − h′4volCY2 ,

(2)

with the higher fluxes related to them as Fp = (−1)[p/2] ?10 F10−p. The background in (1)
and (2) is a solution of the equations of motion if the functions h4, h8 and u satisfy

h′′4 (ρ) = 0, h′′8 (ρ) = 0, u′′(ρ) = 0, (3)

away from localised sources, which makes them linear functions of ρ. The first two
equations are Bianchi identities, whereas u′′ = 0 is a BPS equation.

The Page fluxes, defined as F̂ = e−B2 ∧ F, are given by

F̂0 = h′8, F̂2 = −1
2

(
h8 − h′8(ρ− 2πk)

)
volS2 ,

F̂4 = −
(

∂ρ

(
uu′

2h4

)
+ 2h8

)
dρ ∧ volAdS3 − h′4volCY2 .

(4)

Here, we included large gauge transformations of B2 of parameter k, B2 → B2 +
πkvolS2 , for k = 0, 1, . . . , P. The transformations are performed every time a ρ-interval
ρ ∈ [2πk, 2π(k + 1)] is crossed. They ensure that B2 satisfies the condition coming from
String Theory:

1
4π2 |

∫
S2

B2| ∈ [0, 1]. (5)

The most general solution to (3) is that h4 and h8 are piecewise linear functions.
This allows for source branes in the geometry. In turn, u needs to be continuous for the
preservation of supersymmetry. Here, we restrict it to the simpler case in which u =

constant 2. In [52–54], piecewise linear solutions with the ρ direction bounded between 0
and 2π(P + 1), where h4 and h8 vanish, were proposed. These functions read

h4(ρ)=


β0
2π ρ 0 ≤ ρ ≤ 2π,

αk+
βk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1), k = 1, . . . , P− 1

αP − αP
2π (ρ− 2πP) 2πP ≤ ρ ≤ 2π(P + 1),

(6)

h8(ρ) =


ν0
2π ρ 0 ≤ ρ ≤ 2π,

µk +
νk
2π (ρ− 2πk) 2πk ≤ ρ ≤ 2π(k + 1), k = 1, . . . , P− 1

µP − µP
2π (ρ− 2πP) 2πP ≤ ρ ≤ 2π(P + 1).

(7)

The space begins at ρ = 0 in a smooth fashion. In turn, at ρ = 2π(P+ 1), the behaviour
of the metric and dilaton is that of a superposition of D2-branes wrapped on AdS3 and
smeared on the CY2 × S2, and of D6-branes wrapped on AdS3 ×CY2

3.
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The quantities (αk, βk, µk, νk) are integration constants and must satisfy

αk =
k−1

∑
j=0

β j, µk =
k−1

∑
j=0

νj. (8)

in order for the metric and dilaton to be continuous. For the solutions defined by (6) and
(7), the quantised charges associated with the Page fluxes given by (4) in the different
2πk ≤ ρ ≤ 2π(k + 1) intervals are

Q(k)
D2 = αk =

k−1

∑
j=0

β j, Q(k)
D6 = µk =

k−1

∑
j=0

νj

Q(k)
D4 = βk, Q(k)

D8 = νk, Q(k)
NS5 = 1. (9)

The field theory duals to this class of solutions were studied in [52–54] 4. We sum-
marise them in the following subsection.

2.1. Two-Dimensional Dual CFTs

The backgrounds defined by Equations (1)–(3) are associated with the brane inter-
sections depicted in Table 1. In these brane set-ups the D2- and D6-branes play the role
of colour branes, while the D4- and D8-branes play the role of flavour branes. This is
supported by the analysis of the Bianchi identities, which yields

dF0 =
P

∑
k=1

(νk−1 − νk
2π

)
δ(ρ− 2πk)dρ

dF̂4 =
P

∑
k=1

( βk−1 − βk
2π

)
δ(ρ− 2πk)dρ ∧ volCY2 , (10)

indicating that, at the point ρ = 2πk, there is the possibility of having localised D8- and
D4-branes. Indeed, explicit D8- and D4-branes need to be present at ρ = 2πk if the slopes
of h8 and h4 are different at both sides. Their numbers are given by

∆Q(k)
D8 = νk−1 − νk, ∆Q(k)

D4 = βk−1 − βk . (11)

The associated Hanany–Witten brane set-up is then the one depicted in Figure 1.

Table 1. BPS brane intersection underlying the geometry given by (1)–(3). (x0, x1) are the directions
where the 2D CFT lives. The directions (x2, . . . , x5) span the CY2, on which the D6- and the D8-
branes are wrapped. The coordinate x6 is the direction associated with ρ. Finally, (x7, x8, x9) are the
transverse directions realising the SO(3) R-symmetry.

0 1 2 3 4 5 6 7 8 9

D2 x x x
D4 x x x x x
D6 x x x x x x x
D8 x x x x x x x x x

NS5 x x x x x x
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∆Q
(1)

D8D8 ∆Q
(2)

D8D8

∆Q
(1)

D4D4 ∆Q
(2)

D4D4

Q
(1)

D2D2

Q
(1)

D6D6 Q
(2)

D6D6

Q
(2)

D2D2

Figure 1. Generic Hanany–Witten brane set-up associated with the holographic background defined
by the functions in (6) and (7). The vertical lines are NS5-branes, the horizontal lines represent D2-
and D6-branes, and the crosses indicate D4- and D8-branes.

It was shown in [52–54] that these brane set-ups define 2D CFTs withN = (0, 4) SUSY.
These CFTs describe the strongly coupled IR fixed points of the two-dimensional quantum
field theories living in them. These field theories are encoded in the quivers depicted
in Figure 2. Since the extension of the D2 and D6 branes is finite in the ρ direction, the
field theory that lives in their intersection is effectively two dimensional at low energies.
The quivers become non-anomalous when adequate flavour groups are attached at each
node, coming from D4- and D8-branes. Their dynamics is described in terms of (0, 4)
vector multiplets and hypermultiplets, coming from the open strings that connect the
different types of branes. This analysis was presented in [69]. It differs slightly from the
one originally considered in [52–54], which also led to anomaly free quivers with the same
central charge to leading order but was not based directly on open string quantisation. We
next summarise the main ingredients of the quivers based on open string quantisation,
following [69]:

• To each gauge node corresponds to a (0, 4) vector multiplet, represented by a circle,
plus a (0, 4) hypermultiplet in the adjoint representation of the gauge group, repre-
sented by a grey line starting and ending on the same gauge group. In terms of (0, 2)
multiplets, the first consists of a vector multiplet and a Fermi multiplet in the adjoint,
and the second consists of two chiral multiplets forming a (0, 4) hypermultiplet.

• Between each pair of horizontal nodes there are two (0, 2) Fermi multiplets, forming
a (0, 4) Fermi multiplet, and two (0, 2) chiral multiplets, forming a (0, 4) twisted
hypermultiplet, each in the bifundamental representation of the gauge groups. The
(0, 4) Fermi multiplet and the (0, 4) twisted hypermultiplet combine into a (4, 4)
twisted hypermultiplet. They are represented by horizontal black solid lines.

• Between each pair of vertical nodes, there are two (0, 2) chiral multiplets forming a
(0, 4) hypermultiplet in the bifundamental representation of the gauge groups. They
are represented by grey lines.

• Between each gauge node and any successive or preceding node, there is one (0, 2)
Fermi multiplet in the bifundamental representation. It is represented by dashed lines.

• Between each gauge node and its adjacent global symmetry node, there is one (0, 2)
Fermi multiplet in the fundamental representation of the gauge group. It is again
represented by dashed lines.

• Between each gauge node and its opposing global symmetry node, there are two (0, 2)
Fermi multiplets, forming a (0, 4) Fermi multiplet, and two (0, 2) chiral multiplets,
forming a (0, 4) twisted hypermultiplet, each in the fundamental representation of
the gauge groups. The (0, 4) Fermi multiplet and the (0, 4) twisted hypermultiplet
combine into a (4, 4) twisted hypermultiplet. They are represented by curvy black
solid lines.
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α3 αK

µK

α1

F1 F2 F3 FK

F̃1 F̃2 F̃3 F̃K

α2

µ1 µ2 µ3

Figure 2. A generic quiver field theory in which the IR is dual to the holographic background defined
by the functions in (6) and (7).

The previous fields contribute to the anomaly of a generic SU(Ni) gauge group as
follows:

• A (0, 2) vector multiplet contributes a factor of −Ni.
• A (0, 2) chiral multiplet in the adjoint representation contributes with a factor of Ni.
• A (0, 2) chiral multiplet in the bifundamental representation contributes with a factor

of 1
2 .

• A (0, 2) Fermi multiplet in the adjoint representation contributes with a factor of −Ni.
• A (0, 2) Fermi multiplet in the fundamental of bifundamental representation con-

tributes with a factor of − 1
2 .

Putting these together, we have that, for generic SU(αk) and SU(µk) colour groups, the
gauge anomaly cancellation conditions are, respectively,

Fk = νk−1 − νk, F̃k = βk−1 − βk, (12)

for the Fk and F̃k flavour groups. This is precisely the number of D8 and D4 flavour (source)
branes in each interval, as shown by Equation (11).

In turn, as shown in [70], the right-handed central charge of the IR SCFT is calculated
by associating it with the U(1)R current two-point function;

cc f t = 3 Tr[γ3Q2
R] , (13)

where QR is the charge with respect to the U(1)R ⊂ SU(2)R and the trace is over all Weyl
fermions in the theory. The two left-handed fermions inside the (0, 4) vector multiplet
have R-charge equal to 1. For hypermultiplets, we have that, for both right-handed
fermions inside a (0, 4) hypermultiplet, the R-charge is −1, while those in a (0, 4) twisted
hypermultiplet have zero R-charge. Finally, the left-handed fermion inside the (0, 2) Fermi
multiplet also has a vanishing R-charge. Putting this together, we find that

cc f t = 6(nhyp − nvec), (14)

where nhyp is the number of (untwisted) (0, 4) hypermultiplets and nvec is the number of
(0, 4) vector multiplets.

In [52–54], a number of dual holographic pairs were presented that provided stringent
support for the validity of the proposed duality. In each example, the field theory central
charge given by expression (14) was shown to coincide (for long quivers with large ranks,
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when the background is a trustable dual description of the CFT) with the holographic
central charge. This was computed from the Brown–Henneaux formula, giving

chol =
3π

2GN
VolCY2

∫ 2π(P+1)

0
h4h8dρ =

3
π

∫ 2π(P+1)

0
h4h8dρ. (15)

Here, we used that GN = 8π6, with gs = α′ = 1, and that VolCY2 = 16π4. For the functions
h4 and h8 displayed above, this gives

chol =
P

∑
k=1

(
6αkµk + 3(αkνk + βkµk) + 2βkνk

)
, (16)

which can be shown to agree in the holographic limit with the expression coming from (14).

3. AdS3 Solutions in M-Theory

In this section, we consider the uplift to eleven dimensions of the solutions discussed
in the previous section, following [34]. In order to carry out this uplift, we need to restrict
it to vanishing Romans’ mass, F0 = 0, which imposes h′8 = 0, and thus both the absence
of D8-branes and the presence of a constant number of D6-branes between all pairs of
NS5-branes. In the uplift to eleven dimensions, this number becomes a modding parameter
of the geometry, associated with the KK-monopole charge.

The M-theory solutions are of the form AdS3×S3/Zk×CY2 fibred over an interval.
They read as follows:

ds2
11 =∆

(
u√
h4h8

ds2
AdS3

+

√
h4

h8
ds2

CY2
+

√
h4h8

u
dρ2

)
+

h2
8

∆2 ds2
S3/Zk

,

G4 =− d
(

uu′

2h4
+ 2ρh8

)
∧ volAdS3 + 2h8d

(
−ρ +

uu′

4h4h8 + u′2

)
∧ volS3/Zk

− h′4volCY2 ,

∆ =
h1/2

8 (4h4h8 + u′2)1/3

22/3h1/6
4 u1/3

,

(17)

where k = h8. The quotiented three-sphere is written as a Hopf fibration over S2,

ds2
S3/Zk

=
1
4

[(
dz
k

+ ω

)2
+ ds2

S2

]
with dω = volS2 . (18)

In these solutions, the symmetries SL(2, R)× SL(2, R) and SU(2) are geometrically
realised by the AdS3 and the quotiented three-sphere, respectively.

In the new class of solutions given by (17), the number of Type IIA D6-branes becomes
the orbifold parameter in S3/Zk, k = h8. This is associated with the KK-monopole charge.
The D2- and D4-branes of the Type IIA solution become M2- and M5-branes, respectively.
Their presence is captured by integrating the Page flux Ĝ7 = G7 − G4 ∧ C3 and a nontrivial
flux of G4 through the CY2. In turn, the NS5 branes become M5’-branes. The uplifted
brane set-up is the one depicted in Table 2. Recently, it was shown that the solutions
emerge in the near horizon limit of this intersecting brane system [36]. The KK-monopoles
(wrapped on the CY2) and the M2 branes are stretched between parallel M5’-branes, with
extra M5-branes providing for flavour groups.
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Table 2. 1
8 -BPS brane intersection underlying the AdS3× S3/Zk solutions in M-theory. The 2D

CFT lives in the (x0, x1) directions, (x2, . . . , x5) span the CY2, x6 is the “field theory” direction and
(x7, x8, x9) are the transverse directions on which the SO(3)R symmetry is realised. Finally, x10 is
the extra eleventh direction, which spans the S1/Zk ⊂ S3/Zk and plays the role of the Taub-NUT
direction of the KK-monopoles.

0 1 2 3 4 5 6 7 8 9 10

M2 x x x
M5 x x x x x x
KK x x x x x x x z
M5’ x x x x x x

In [34], it was argued that this brane intersection describes the MA-strings introduced
in [55,56], supplemented with extra M5-branes. The corresponding dual quivers are the
ones depicted in Figure 3, with upper row nodes associated with M2-branes and lower row
nodes associated with KK-monopoles. The M5-branes provide extra flavour groups that
render the quivers non-anomalous (and the supergravity equations of motion satisfied).

α2 α3 α(P−1)α1

k

αP

β(P−1) − βPβ(P−2) − β(P−1)β1 − β2β0 − β1 β2 − β3

k k k k

k k

Figure 3. Generic quiver field theory in which the IR is dual to the AdS3 × S3/Zk ×CY2× I M-theory
solutions defined by the functions in (6) and (7).

Thus, the new solutions in M-theory provide for explicit AdS3 geometries where
MA-strings can be studied holographically. In particular, the matching between the field
theory and holographic computations of the central charge follows directly upon uplift
from ten dimensions. The holographic central charge given by Equation (15) becomes, in
the massless case,

chol =
3
π

h8

∫ 2π(P+1)

0
dρh4 = 6h8

P

∑
k=1

αk = 6h8

P

∑
k=1

Q(k)
M2 = 6kQM2 = 6QMA , (19)

where QMA stands for the total number of MA-strings in the configuration, taking into
account the orbifolding by Zk. This result stresses out that the degrees of freedom of the
strongly coupled conformal field theory that originate from the MA-strings.

Furthermore, in [34], a second class of AdS3 solutions to M-theory of the form
AdS3/Zk× S3× CY2× I was obtained through a double analytic continuation from the pre-
vious solutions. In the background given in (17), the AdS3 and S3 factors can be swapped
as follows:

AdS3 → −S3 , S3 → −AdS3 , (20)

to produce the new class of solutions, together with

u→ −iu , h4 → ih4 , h8 → ih8 , ρ→ iρ . (21)
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These solutions read

ds2
11 =

h2
8

∆2 ds2
AdS3/Zk

+ ∆

(
u√
h4h8

ds2
S3 +

√
h4

h8
ds2

CY2
+

√
h4h8

u
dρ2

)

G4 = −d
(
−uu′

2h4
+ 2ρh8

)
∧ volS3 − 2h8d

(
ρ +

uu′

4h4h8 − u′2

)
∧ volAdS3/Zk

− h′4volCY2 ,

∆ =
h1/2

8 (4h4h8 − u′2)1/3

22/3h1/6
4 u1/3

,

(22)

where k = h8 and the quotiented AdS3 subspace is written as a Hopf fibration over AdS2:

ds2
AdS3/Zk

=
1
4

[(
dz
k

+ η

)2
+ ds2

AdS2

]
with dη = volAdS2 ,

ds2
AdS2

=− dt2 cosh2 r + dr2, η = − sinh rdt.

(23)

Notice that the KK-monopoles become M0-branes, with the Taub-NUT direction of the
KK-monopoles turned into the direction of propagation of the M0-branes, or waves. These
solutions are associated with the M0-M2-M5-M5’ brane intersections depicted in Table 3.
They preserve the same number of supersymmetries as the original AdS3×S3/Zk×CY2×
I solutions.

Table 3. 1
8 -BPS brane intersection underlying the AdS3/Zk× S3 solutions in M-theory. x1 is the

direction of propagation of the M0-branes, (x2, . . . , x5) span the CY2, x6 is the direction along the
ρ-interval and (x7, x8, x9, x10) are the transverse directions on which the SO(4) R-symmetry is realised.

0 1 2 3 4 5 6 7 8 9 10

M0 x x
M2 x x x
M5 x x x x x x
M5’ x x x x x x

4. AdS2/CFT1 in Massive IIA

A new class of AdS2× S3×CY2× I solutions to massless Type IIA supergravity can be
obtained from (22) upon reduction along the Hopf fibre of the AdS3/Zk subspace given
by (23). These backgrounds are associated with D0-F1-D4-D4′ brane intersections that
preserve N = 4 supersymmetries in one dimension. These solutions can also be obtained
through a double analytical continuation from the solutions reviewed in Section 2. In fact,
this allows one to extend them to the massive case. The corresponding brane set-up is
depicted in Table 4. In this manner, we find an AdS2× S3×CY2× I class of solutions to
massive Type IIA supergravity with the NS-NS sector:

ds2 =
u√
h4h8

(
h4h8

4h4h8 − u′2
ds2

AdS2
+ ds2

S3

)
+

√
h4

h8
ds2

CY2
+

√
h4h8

u
dρ2 ,

e−2Φ =
h3/2

8 (4h4h8 − u′2)

4h1/2
4 u

, B2 = −1
2

(
ρ +

uu′

4h4h8 − u′2

)
volAdS2 .

(24)

The background is further supported by the RR fluxes:
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F0 = h′8 , F2 = −1
2

(
h8 +

h′8u′u
4h8h4 − u′2

)
volAdS2 ,

F4 =

(
−d
(

u′u
2h4

)
+ 2h8dρ

)
∧ volS3 − h′4volCY2 .

(25)

The warping functions h8, h4 and u depend on ρ, as in the seed solutions. Note that, in
this case, (4h8h4− u′2) > 0 in order to guarantee a real dilaton and a metric with the correct
signature. Supersymmetry and the Bianchi identities of the fluxes (away from localised
sources) are imposed by Equation (3), which make h8, h4 and u linear functions of ρ.

We quote the Page fluxes, F̂ = e−B2 ∧ F, as follows:

F̂0 = h′8 , F̂2 = −1
2

(
h8 − h′8(ρ− 2πk)

)
volAdS2 ,

F̂4 =

(
2h8dρ− d

(
u′u
2h4

))
∧ volS3 − h′4volCY2 ,

(26)

where we included large gauge transformations of B2 of parameter k, B2 → B2 + πkvolAdS2
(see [40]).

Table 4. Brane set-up associated to the solutions (24) and (25). x0 is the time direction of the ten
dimensional spacetime; x1, . . . , x4 are the coordinates spanning CY2; x5 is the direction where the
F1-strings are stretched; and x6, x7, x8, and x9 are the coordinates where the SO(4) R-symmetry is
realised.

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D0 x
D4 x x x x x
D4′ x x x x x
D8 x x x x x x x x x
F1 x x

An infinite family of backgrounds with u = constant and h4 and h8 being piecewise
continuous as in (6) and (7) were analysed in [40], and together with their dual SCQM
description 5. We summarise this description in the next subsection.

4.1. Dual Superconformal Quantum Mechanics

The superconformal quantum mechanics dual to the previous class of solutions was
studied in [40]. The proposal therein is that a 1D N = 4 quantum mechanics lives on
the D0-D4-D4′-D8-F1 brane set-up depicted in Table 4 that describes the interactions
between D0 and D4 brane instantons and F1 Wilson lines in the 5D gauge theory living
in the intersection of D4′ and D8 branes. This is a generalisation of the ADHM quantum
mechanics described in [71] and of the quiver proposals discussed in [72,73].

In order to describe the quantum mechanics, the D0-D4-D4′-D8-F1 brane system was
split into two subsystems, D4-D4′-F1 and D0-D8-F1, that were first studied independently.
The first subsystem was interpreted as describing BPS F1 Wilson lines introduced in the 5D
theory living on the D4′-branes by D4-branes [74]. Similarly, the D0-D8-F1 subsystem was
interpreted as describing F1 Wilson lines introduced in the worldvolume of the D8-branes
by D0-branes [75]. Indeed, the branes in the D4-D4′-F1 and D0-D8-F1 subsystems are
displayed exactly as in the D3-D5-F1 brane configuration that describes Wilson lines in
antisymmetric representations in 4D N = 4 SYM, studied in [76,77].
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For the solutions defined by (6) and (7), the quantised charges associated with the
Page fluxes given by (26) in the different 2πk ≤ ρ ≤ 2π(k + 1) intervals are

Qe(k)
D4 = αk =

k−1

∑
j=0

β j, Qe(k)
D0 = µk =

k−1

∑
j=0

νj

Qm(k)
D4′ = βk, Qm(k)

D8 = νk, Qe(k)
F1 = 1, (27)

where we use electric and magnetic charges, as explained in [40]. The Hanany–Witten
brane set-up associated to these brane charges is the one depicted in Figure 4. In order to
understand the quantum mechanics associated with this brane configuration, it is useful to
go to Type IIB and S-dualise. Then, after performing Hanany–Witten moves, one can go
back to Type IIA, where one can interpret the resulting brane set-up (depicted in Figure 5) as
describing U(αk) and U(µk) Wilson lines in the completely antisymmetric representations
(β0, β1, . . . , βk−1) of U(αk) and (ν0, ν1, . . . , νk−1) of U(µk), respectively. Given that the
Wilson lines are in the completely antisymmetric representations, the D4-D4′-F1 and D0-
D8-F1 subsystems describe baryon vertices [78].

α1 D4 α2 D4 αP D4

ν0 D8

β0 D4
′

ν1 D8

β1 D4
′

νP−1 D8

βP−1 D4
′

µ1 D0 µ2 D0 µP D0

ρ

Figure 4. Hanany–Witten brane set-up associated with the brane charges of the solutions.

ν0 D8

β0 D4′

νP−1 D8

β1 D4′

βP−1 D4′

µ1 D0 µ2 D0 µP D0

ρ

ν0 F1

β0 F1 β0 F1

β1 F1

β0 F1

β1 F1

βP−1 F1

α1 D4 α2 D4 αP D4

Figure 5. Hanany–Witten brane set-up equivalent to the brane configuration in Table 4.

This is consistent with an interpretation of the AdS2 solutions as describing backre-
acted baryon vertices within the 5D N = 1 QFT living in D4′-D8 branes. In this inter-
pretation, the SCQM arises in the very low energy limit of a system of D4′-D8 branes,
dual to a 5D N = 1 gauge theory, in which one-dimensional defects are introduced. The
one-dimensional defects consist of D4-brane baryon vertices, connected to the D4′ with
F1-strings, and D0-brane baryon vertices, connected to the D8 with F1-strings. In the IR, the
gauge symmetry on both the D4′ and D8 branes becomes global, turning them from colour
to flavour branes. In turn, the D4 and D0 defect branes become the new colour branes of
the backreacted geometry. This is in agreement with the defect interpretation found for
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this class of solutions in [36], where the AdS2 geometries were shown to asymptote locally
to the AdS6 background of Brandhuber–Oz [79].

The previous SCQMs can be given a quiver-like description, which can be used to
compute their central charge. From the brane set-up depicted in Figure 4, one can construct
the quiver shown in Figure 6, where the gauge groups are associated with the colour
D0- and D4-branes and the flavour groups are associated with the D4′- and D8-branes.
The quantised charges are the ones computed in Equation (27). The dynamics of the
quiver is described in terms of (4, 4) vector multiplets, (4, 4) hypermultiplets in the adjoint
representations and (4, 4) hypermultiplets in the bifundamental representations. The
connection between colour and flavour branes is through twisted (4, 4) bifundamental
hypermultiplets (bent black lines) and (0, 2) bifundamental Fermi multiplets (dashed lines).
This follows directly from the analysis of Appendix B in [40].

β0 − β1 β1 − β2

ν0 − ν1 ν1 − ν2

µ2

α2α1

µ1

βk−1 − βk

νk−1 − νk

µk

αk

Figure 6. One-dimensional quiver field theory in which the IR limit is dual to the AdS2 backgrounds
reviewed in Section 4.

As before, a check of the validity of the proposed quivers is given by matching the
field theory and holographic central charges. In the case at hand, however, we are dealing
with a one-dimensional field theory, for which the definition of central charge is subtle.
We interpret the central charge as counting the ground states of the conformal quantum
mechanics. In [40], the same expression used in Section 2.1 for the computation of the
central charge of the 2D dual CFT was proposed to be valid for the 1D quiver mechanics.
For these quivers, nhyp and nvec are, respectively, the numbers of N = 4 (untwisted)
hypermultiplets and vector multiplets. Using this expression, perfect agreement was found
(in the large number of nodes with large ranks limit) between the quantum mechanics
central charge and the holographic central charge, which in this case is obtained through
the following integration:

chol,1d =
3Vint

4πGN
=

3
4π

VolCY2

(2π)4

∫ 2π(P+1)

0
(4h4h8 − u′2) dρ. (28)

This is a striking result, since the superconformal quantum mechanics dual to our class of
solutions does not seem to have a direct relation to 2D CFTs. Compared with the results in
the literature for the dimension of the Higgs branch of N = 4 quantum mechanics with
gauge groups ∏v U(Nv) connected by bifundamentals [80], one sees that the expression
cc f t = 6(nhyp − nvec) may be interpreted as an extension of the formulas therein to more
general N = 4 quivers including flavours. This is an interesting relation that deserves
further investigation.

5. AdS2 Solutions in Type IIB

In this section, we review two classes of AdS2 solutions to Type IIB supergravity with 4
Poincaré supersymmetries. This is based on the works [38,43]. These solutions are obtained
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from the backgrounds reviewed in Sections 2 and 4, respectively, upon T-duality. Moreover,
both solutions are related to each other through a double analytical continuation.

The two classes of solutions consist of AdS2× S2×CY2× S1 geometries foliated over an
interval. Despite this, they have substantially different dual field theory descriptions that
are inherited from their respective T-dual origins. Although we do not review these results
in this paper, it was shown in [43] that both types of solutions fit locally in the general class
of AdS2× S2×CY2 × Σ2 solutions of Type IIB supergravity found in [8,9], when there are
no D3- and D7-branes present. In the presence of these branes, our solutions extend the
previous classifications. In order to show this explicitly, it is necessary to perform a subtle
zooming-in that was explained in [43].

5.1. Type A

Consider the class given by (1) and (2), where the AdS3 subspace is written as a
Hopf fibration over AdS2, as shown by expression (23) for k = 1 and z = ψ. By applying
T-duality on the fibre direction ψ, new AdS2 solutions preserving N = 4 supersymmetry
are obtained. These backgrounds have the structure of an AdS2 × S2 ×CY2 × S1 geometry
warped over an interval. The NS-NS sector reads

ds2 =
u√
h4h8

(
1
4

ds2
AdS2

+
h4h8

4h4h8 + u′2
ds2

S2

)
+

√
h4

h8
ds2

CY2
+

√
h4h8

u
(dρ2 + dψ2) ,

e−2Φ =
h8

4h4

(
4h4h8 + u′2

)
,

H3 =
1
2

d
(
− ρ +

uu′

4h4h8 + u′2

)
∧ volS2 +

1
2

volAdS2 ∧ dψ ,

(29)

where the h4, h8 and u functions are inherited from the backgrounds (1) and (2) and thus
have support on ρ.

The 10-dimensional RR fluxes are given by

F1 = h′8dψ ,

F3 = −1
2

(
h8 −

h′8u′u
4h8h4 + u′2

)
volS2 ∧ dψ +

1
4

(
d
(

u′u
2h4

)
+ 2h8dρ

)
∧ volAdS2 ,

F5 = −(1 + ?) h′4 volCY2 ∧ dψ

= −h′4 volCY2 ∧ dψ +
h′4h8u2

4h4(4h4h8 + u′2)
volAdS2 ∧ volS2 ∧ dρ .

(30)

The Type IIB equations of motion are satisfied by imposing the BPS equations and
Bianchi identities given by (3). In turn, the Page forms F̂ = e−B2 ∧ F are given by

F̂1 = h′8 dψ ,

F̂3 =
1
2
(
h′8(ρ− 2πk)− h8

)
volS2 ∧ dψ +

1
4

(
u′
(
h4u′ − uh′4

)
2h2

4
+ 2h8

)
volAdS2 ∧ dρ ,

F̂5 =
1

16

(
(u− (ρ− 2πk)u′)(uh′4 − h4u′)

h2
4

+ 4(ρ− 2πk)h8

)
volAdS2 ∧ volS2 ∧ dρ

− h′4volCY2 ∧ dψ .

(31)

The analysis of these fluxes suggests that the brane content that underlies this class
of solutions is the one depicted in Table 5. Here, the D1- and D3-branes play the role of
colour branes and the D7- and D3-branes play the role of flavour branes. As for the AdS3
solutions reviewed in Section 2, an infinite family of AdS2 backgrounds can be defined by
the piecewise linear functions h4 and h8 given by Equations (6) and (7). We turn next to the
description of the superconformal quantum mechanics dual to this class of solutions.
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Table 5. Brane set-up underlying the geometry in (29) and (30). x0 is the time direction, (x1, . . . , x4)

span the CY2, x5 is the direction associated with the ρ coordinate, (x6, x7, x8) are the transverse
directions realising the SO(3) R-symmetry and x9 is the ψ direction.

0 1 2 3 4 5 6 7 8 9

D1 x x
D3 x x x x
D5 x x x x x x
D7 x x x x x x x x

NS5 x x x x x x
F1 x x

Dual Superconformal Quantum Mechanics

TheN = 4 superconformal quantum mechanics dual to the previous class of solutions
was studied in [38]. At the geometrical level, these solutions are related to the AdS3
solutions reviewed in Section 2 through T-duality. At the level of the dual CFTs, the
superconformal quantum mechanics dual to the AdS2 solutions should then arise from the
2D CFTs dual to the AdS3 backgrounds upon dimensional reduction.

More concretely, in the coordinates used to obtain the AdS2 geometry, defined in
Equation (23), the boundaries of AdS3 are two null cylinders [63]. For this reason, the
2D CFT that lives at these boundaries is effectively discrete light-cone quantised (DLCQ)
because just one of the SL(2, R)×SL(2, R) sectors of global AdS3 survives the compact-
ification. T-dualisation in these coordinates is then equivalent to starting with a given
N = (0, 4) 2D CFT, such as those described in Section 2.1, and being discrete light-cone
quantised, keeping N = 4 as the SUSY right sector. This provides an explicit realisation of
the constructions in [62–65]. Field theoretically, we start with the Lagrangian describing
the 2D CFT dual to AdS3 and dimensionally reduce it to a matrix model where only the
time dependence and the zero modes in the T-dual direction are kept.

The concrete proposal in [38] is that the dynamics of the UV quantum mechanics is
decribed by the dimensional reduction along the space-direction of the 2D QFTs discussed
in Section 2.1. The quiver field theories are then the same ones depicted in Figure 2 but
now associated with D1 and D5 colour branes and D3 and D7 flavour branes. In turn, the
matter fields are N = 4 multiplets, realised as dimensionally reduced 2D (0, 4) multiplets.
Note that these quivers inherit the anomaly cancellation condition of the 2D quivers, even
if there is no anomaly cancellation condition in 1D.

As in previous AdS/CFT pairs, one can check the agreement between the field theory
and holographic central charges to test the proposed duality. In this case, the usage of
expression (14) for computing the quantum mechanics central charge is fully justified, since
it arises from a 2D CFT upon compactification. As expected, perfect agreement is found
with the holographic central charge, which is computed from the same expression (15)
given its invariance under T-duality.

5.2. Type B

In this subsection, we review the AdS2 solutions to Type IIB supergravity that arise
from the backgrounds defined in (24) and (25) upon T-duality along the Hopf-fibre of the
three sphere. The resulting class of solutions have an NS-NS sector

ds2 =
u
√

h4h8

4h4h8 − u′2
ds2

AdS2
+

u
4
√

h4h8
ds2

S2 +

√
h4

h8
ds2

CY2
+

√
h4h8

u
(dψ2 + dρ2) ,

e−2Φ =
h8

4h4

(
4h4h8 − u′2

)
,

H3 = −1
2

d
(

ρ +
uu′

4h4h8 − u′2

)
∧ volAdS2 +

1
2

volS2 ∧ dψ ,

(32)
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and RR fluxes,

F1 = h′8dψ ,

F3 = −1
2

(
h8 +

h′8u′u
4h8h4 − u′2

)
volAdS2 ∧ dψ +

1
4

(
−d
(

u′u
2h4

)
+ 2h8dρ

)
∧ volS2 ,

F5 = −(1 + ?10)h′4volCY2 ∧ dψ,

= −h′4volCY2 ∧ dψ−
h8h′4u2

4h4(4h8h4 − u′2)
volAdS2 ∧ volS2 ∧ dρ .

(33)

Here, ψ ∈ [0, 2π] is the T-dual coordinate. Note that 4h4h8 − u′2 ≥ 0 must be imposed
to have well-defined supergravity fields. Supersymmetry holds whenever u′′ = 0. In
the same way, the Bianchi identities of the fluxes impose h′′8 = 0 and h′′4 = 0, away from
localised sources. The ρ coordinate describes an interval that we take to be bounded
between 0 and 2π(P + 1), as in the previous sections.

The Page fluxes read

F̂1 = h′8 dψ ,

F̂3 =
1
2
(
h′8(ρ− 2πk)− h8

)
volAdS2 ∧ dψ +

1
4

(
2h8 +

u′(uh′4 − h4u′)
2h2

4

)
volS2 ∧ dρ ,

F̂5 =
1
4

(
h8(ρ− 2πk)− (u− (ρ− 2πk)u′)(uh′4 − h4u′)

4h2
4

)
volAdS2 ∧ volS2 ∧ dρ

− h′4volCY2 ∧ dψ .

(34)

The analysis of these fluxes yields the brane set-up summarised in Table 6 as underly-
ing this class of solutions. Here, the D1- and D5-branes play the role of colour branes and
the D3- and D7-branes of flavour branes. Both the brane set-up and the warped AdS2×
S2×CY2× S1 structure of this class of solutions are shared with those of the solutions re-
viewed in the previous section. The precise relation between the two types of backgrounds
is through the double analytic continuation:

ds2
AdS2

→ −ds2
S2 , ds2

S2 → −ds2
AdS2

, eΦ → ieΦ, Fi → −iFi,

u→ −iu, h4 → ih4, h8 → ih8, ρ→ iρ, ψ→ −iψ.
(35)

Table 6. Brane set-up underlying the geometry in (32) and (33). x0 is the time direction; x1, . . . , x4 are
the coordinates spanned by the CY2; x5 is the direction associated with the ρ coordinate; (x6, x7, x8)

are the transverse coordinates realising the SO(3) R-symmetry; and x9 is the ψ direction.

0 1 2 3 4 5 6 7 8 9

D1 x x
D3 x x x x
D5 x x x x x x
D7 x x x x x x x x

NS5 x x x x x x
F1 x x

5.2.1. Dual Superconformal Quantum Mechanics

The superconformal quantum mechanics dual to this new class of solutions was dis-
cussed in [43]. Given that they are obtained via T-duality from the class of AdS2 solutions
reviewed in Section 4.1, they should be dual to the same superconformal quantum me-
chanics. In this case, the Wilson lines arise from the massive fermionic strings that stretch
between D1-branes (and D5-branes) in the kth interval and D7-branes (and D3-branes)
in all other intervals. In turn, the Wilson lines are in the (ν0, . . . , νk−1) and (β0, . . . , βk−1)
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completely antisymmetric representation of the U(µk) and U(αk) gauge groups, respec-
tively. As we indicated in Section 4.1, given that the Wilson lines are in the completely
antisymmetric representation, the D1-D7-F1 and D5-D3-F1 subsystems describe baryon
vertices [78].

This is consistent with an interpretation of our AdS2 solutions as describing backre-
acted baryon vertices within the 4D N = 2 QFT living in D3-D7 branes. In this interpreta-
tion, the SCQM arises in the very low energy limit of a system of D3-D7 branes, dual to a 4D
N = 2 QFT, in which one-dimensional defects are introduced. The one-dimensional defects
consist of D5-brane baryon vertices, connected to the D3 with F1-strings, and D1-brane
baryon vertices, connected to the D7 with F1-strings. In the IR, the gauge symmetry on both
the D7 and D3 branes becomes global, turning them from colour to flavour branes. In turn,
the D5 and D1 defect branes become the new colour branes of the backreacted geometry. It
would be very interesting to explicitly realise this defect interpretation geometrically.

6. Discussion

In this review article, we summarised the salient features of the recent developments
in [26,34,38,40,43,52–54], in relation to the construction of AdS3/CFT2 and AdS2/CFT1
pairs with four supercharges. For clarity, we summarised the connections between these
new classes of solutions in Figure 7.

AdS3 × S2 × CY2 × Iρ AdS2 × S3 × CY2 × Iρ

AdS2 × S2 × CY2 × Iρ × SψAdS2 × S2 × CY2 × Iρ × Sψ

T-duality T-duality

Analytic

Continuation

Analytic

Continuation

AdS3 ↔ S3

S2 ↔ AdS2

AdS2 ↔ S2

S2 ↔ AdS2

AdS3 × S3/Zk × CY2 × Iρ AdS3/Zk × S3 × CY2 × Iρ

Reduction on S3 Reduction on AdS3

Analytic

Continuation

AdS3 ↔ S3

S3 ↔ AdS3

Figure 7. Connections between the different classes of solutions reviewed in this paper.

The construction of these new dual pairs extends existing classifications of AdS3 and
AdS2 solutions to the case with four supersymmetries. Moreover, the analysis in these
references complements the construction of the backgrounds with a comprehensive study
of the 2D and 1D CFTs dual to them. The proposed CFTs are described in the UV by means
of explicit quivers from which observables such as the central charge can be computed and
checked against holographic calculations. The holographic central charge is interpreted as
the entanglement entropy of black strings or black holes with AdS3 or AdS2 near horizon
geometries. This can then be cross-checked against the field theory computation, within
a well controlled setting where the microstate counting programme can be put to work.
This line of research remains to be further exploited. See [81–83]. In particular, it would be
interesting to apply exact calculational techniques (see [84]) to the new classes of solutions,
since this would provide for a deeper understanding of the IR regime of the different
theories.

A study that would be interesting to pursue further is the interpretation of the new
classes of solutions as surface or line-defect CFTs within higher dimensional conformal field
theories. Recent progress in this direction has shown that some subclasses of the AdS3 and
AdS2 solutions to massive IIA supergravity (constructed in Sections 2 and 4) asymptote
locally to the AdS6 background of Brandhuber–Oz [79]. This means that they can be
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interpreted as surface or line-defect CFTs, respectively, within the 5D Sp(N) fixed point
theory dual to the Brandhuber–Oz solution [36]. In the AdS2 case, this is in nice agreement
with our proposed interpretation of these solutions as backreacted D4-D0 baryon vertices
in a system of D4′-D8 branes. In this description, the one-dimensional defects consist of
D4-D0 baryon vertices connected to the D4′-D8 branes with (fermionic) F1-strings. In the
IR, the gauge symmetry on the D4′-D8 branes becomes global, turning them from colour
to flavour branes. In turn, the D4-D0 defect branes become the new colour branes of the
backreacted geometry.

In order to complete the previous picture, we should keep in mind that D4-D8 brane
set-ups must include O8 orientifold fixed planes in order to flow to a 5D fixed point theory
in the UV [85]. It would be interesting to clarify to what extent the behaviour found
in [40] at both ends of the space, compatible with the presence of O8 orientifold fixed
planes, would provide for a fully consistent global picture. It is expected that, in this
set-up, baryon vertices affected by the orbifold projection are removed from the spectrum,
corresponding to the fact that USp baryons are unstable against their decay into mesons. A
similar interpretation for the D2-D6-NS5 brane surface defects within the D4′-D8 brane
intersection, put forward in [36] for the AdS3 case, still remains to be elucidated. In both
the AdS2 and AdS3 cases, an explicit realisation of the quiver CFTs as embedded in the 5D
quiver CFT associated with the D4′-D8 brane system remains to be found.

This is in contrast with the interpretation of a subclass of the M-theory pairs reviewed
in Section 3 as surface defects within the 6D (1, 0) CFT living in M5-branes on ALE
singularities, found in [36]. In this case, it has been possible to explicitly realise the 2D
quiver CFTs as embedded in the 6D quiver CFT associated with the M5-branes intersecting
with KK-monopoles.

We argued that the Type B AdS2 solutions reviewed in Section 5.2 describe backreacted
D5-D1 baryon vertices in the 4D N = 2 QFT living in D3-D7 intersections. In this case,
there is no holographic analogue, and it would be interesting to see if these solutions
asymptote locally to an AdS5 background. This would provide further support to the
proposed defect interpretation.

Finally, we stress that the full class of AdS3 solutions discussed in [26,52–54], which
constitute the basis for the developments reviewed in this paper, is much broader than
the subset of solutions that have been the focus of our CFT analysis. In particular, there is
evidence that interesting new CFTs arise when there is dependence on the internal structure
of the CY2 manifold. Work is in progress in this direction [69].
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Notes
1 By which we mean one and two dimensional.
2 The u 6= constant case was studied in [37,54].
3 This is also compactible with a superposition of O2-O6 planes. The string theory interpretation of smeared orientifold fixed

planes is however unclear.
4 See [66–68] for further developments.
5 A concrete example with u′ 6= 0 was analysed in [45].
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