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Abstract: In a spatially flat Friedmann–Lemaître–Robertson–Walker background space, we con-
sider a scalar-torsion gravitational model which has similar properties to the dilaton theory. This
teleparallel model is invariant under a discrete transformation similar to the Gasperini–Veneziano
duality transformation. Moreover, in the gravitational action integral, we introduce the Lagrangian
function of a pressureless fluid source which is coupled to the teleparallel dilaton field. This specific
gravitational theory with interaction in the dark sector of the universe was investigated by using
methods of the dynamical system analysis. We calculate that the theory provides various areas
of special interest for the evolution of the cosmological history. Inflationary scaling solutions and
the de Sitter universe are recovered. Furthermore, we calculate that there exist an attractor which
provides a stable solution where the two fluid components, the scalar field and the pressureless
matter, contribute in the cosmological fluid. This solution is of special interest because it can describe
the present epoch. Finally, the qualitative evolution of the cosmographic parameters is discussed.

Keywords: teleparallel; scalar field; dilaton field; scalar-torsion; interaction

1. Introduction

The detailed analysis of the recent cosmological data indicates that General Relativity
may need to be modified in order to describe the observations; for a recent review, we refer
the reader to [1]. The late-time cosmic acceleration has been attributed to a fluid, so-called
dark energy, which has negative pressure and anti-gravity effects [2]. In order to explain
the anti-gravitational effects, cosmologists have proposed the modification of the Einstein–
Hilbert action by using geometric invariants [3]. In this direction, new geometrodynamical
terms are introduced in the field equations which can drive the dynamics in order to
explain, with a geometric approach, the observational phenomena [4,5].

Teleparallelism [6,7] includes a class of modified theories of gravity which have been
widely studied in recent years [8–15]. The fundamental invariant of teleparallelism is the
torsion scalar of the antisymmetric connection which plays an important role, instead of the
Levi–Civita connection in general relativity. In previous studies, it has been discussed that
teleparallel gravity may violate Lorentz symmetry [16], and while Lorentz violation has
not yet been observed, it is common in various subjects of quantum gravity [17]. However,
recent studies have shown that Lorentz symmetry can be preserved in teleparallelism, as
can be seen, for instance, in [18,19]. Specifically, in [18], it was found that the introduction
of a scalar field in the gravitational action integral of teleparallelism preserves the Lorentz
symmetry. For a recent review on teleparallelism, we refer the reader to [20]. In the
literature, teleparallel cosmology has been widely studied. For instance, in f (T) teleparallel
theory, the cosmological perturbations were investigated in [21,22], while in [22] it was
found that f (T) theory can mimic dynamical dark energy models. The mechanism which
describes the Higgs inflation era in scalar-torsion theory was studied in [23]. An extension
of the scalar-torsion theories with the introduction of the boundary term was introduced
in [24]. For other recent studies on teleparallelism, we refer the reader to [25–29] and the
references therein.
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In this study, we focused on the scalar-torsion or teleparallel dark energy mod-
els [30–32] which can be seen as the analogue of the scalar-tensor theories in teleparallelism.
In scalar-torsion theory, a scalar field is introduced in the gravitational action integral which
is non-minimally coupled to the fundamental scalar of teleparallelism, the torsion scalar.
There are various studies in the literature which indicate that the scalar-torsion theories
can explain the recent cosmological observations [33,34]. In the following, we consider
the existence of a matter source with zero pressure in the gravitation action which inter-
acts with the scalar field [35–38]. In our analysis, the interaction between the scalar field
and the pressureless fluid is inspired by the interaction provided in the Weyl integrable
theory [39,40]. The plan of the paper is as follows.

In Section 2, we introduce the model of our consideration which is the teleparallel
dilaton model coupled to a pressureless fluid source. This model belongs to the family of
scalar-torsion theories from which the field equations are derived. Section 3 includes the
new material of this study. We performed a detailed study of the asymptotic dynamics for
the gravitational field equations for the model of our consideration. We determined the
stationary points and we investigated their stability as we discussed the physical properties
of the exact solutions described by the stationary points. This analysis provides important
information about the cosmological viability of the proposed theory. It is clear that our
model can explain the major eras of cosmological evolution and it can be used as a dark
energy candidate. Furthermore, in Section 4, we discuss the evolution of the cosmographic
parameters as they are provided by our model. Finally, in Section 5, we summarize our
results and we draw our conclusions.

2. Teleparallel Dilaton Model

The gravitational model of our consideration is an extension of the teleparallel dilaton
theory known as scalar-torsion theory where the gravitational action integral is defined:

S =
1

16πG

∫
d4xe

[
e−

φ
2

(
T +

ω

2
φ;µφ;µ + V(φ) + Lm

)]
, (1)

in which T is the torsion scalar of the antisymmetric curvatureless connection, φ
(

xk
)

is a
scalar field with potential function V(φ), ω is a nonzero constant, Lm is the Lagrangian
function for the additional matter source and e is the determinant of the vierbein fields.
Action integral (1) belongs to the family of gravitational models known as teleparallel dark
energy models, or scalar-torsion models [30,31,41,42]. Scalar-torsion models can be seen
as the analogue of scalar-tensor models in teleparallelism, in which instead of the Ricci
scalar, the torsion scalar T is used for the definition of the action integral. The gravitational
field equations are of second-order, however, under conformal transformations, the scalar-
torsion theories are now equivalent with the quintessence model [41]. Under a conformal
transformation, the scalar-torsion action integral is equivalent with that of a modified
higher-order theory known as f (T, B) where B is the boundary term which differs from
the torsion T and the Ricci scalar [41]. This makes the scalar-torsion and scalar-tensor
theories totally different from one another, which means that there is not any conformal
transformation which may connect the solutions of the two theories. In this study, we
assume that the matter source and the scalar field are interacting, i.e., from (1), the mixed

term e−
φ
2 Lm exists.

In the case of a spatially flat Friedmann–Lemaître–Robertson–Walker metric (FLRW)
background space:

ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2). (2)

the gravitational field equations for (1) in the case of the vacuum are invariant under
a discrete transformation with the origin O(d, d) symmetry [43]. The resulting discrete
transformation is a generalization of the Gasperini–Veneziano scale-factor duality trans-
formation for the dilaton field in scalar tensor theory [44]. The existence of this discrete
transformation is important for the study of the pre-Big Bang period of the universe as it
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is described by string cosmology. However, when parameter ω is small, the Gasperini–
Veneziano transformation is recovered. However, in general, the pre-Big Bang period for
the teleparallel dilaton theory differs from that of string cosmology by a term provided by
the nonzero constant ω.

In this study, we assumed that the scalar field φ interacts with the matter source.
For the latter, we assumed it to be a pressureless fluid source, dust fluid, with energy
density ρm, known as dark matter. Models with interaction in the dark sector of the
universe has drawn the attention of cosmologists the last decade [45–49]. Indeed, there
are various theoretical studies which show that such models are viable, while from the
analysis of the cosmological data, it seems that the interacting models are supported by
the observations [50–53]. The action integral (1) can be seen as the teleparallel extension of
some scalar tensor models coupled to dark matter [39,40].

For the background space (2), it follows that T = 6H2, H = ȧ
a , hence, from the action

integral (1) and for a dust fluid for the matter source, we derive the modified gravitational
field equations:

e−
φ
2

(
6H2 −

(ω

2
φ̇2 + V(φ)

)
− ρm

)
= 0 , (3)(

2Ḣ + 3H2
)
+

1
2

(ω

2
φ̇2 −V(φ)

)
− Hφ̇ = 0 , (4)

while for the matter source and the scalar field it follows:

ρ̇m + (3H − φ̇)ρm = 0 , (5)

ω
(

φ̇2 − 2φ̈− 6Hφ̇
)
+ 2
(
V −V,φ

)
= 0. (6)

In the case where ρm = 0 and V(φ) = V0, the discrete transformation which keeps
invariant the field equations is:

a→ ap1 ep2φ , φ→ p3 ln a + p4φ (7)

in which p1 = − 1+3ω
1−3ω , p2 = ω

1−3ω , p3 = − 12
1−3ω and p4 = 1+3ω

1−3ω when ω 6= 1
3 . However,

in the presence of the matter source, the field equations do not remain invariant under the
action of the discrete transformation. Moreover, when ω is near to zero, the discrete trans-
formation (7) becomes the Gasperini–Veneziano duality transformation [44]. The discrete
transformation (7) follows from the presence of the O(d, d) symmetry for the action integral
(1). In addition, the existence of the O(d, d) symmetry indicates the presence of a conserva-
tion law for the classical field equations which can be used in order to integrate and write
the analytic solution in closed-form expression. Finally, the O(d, d) symmetry is preserved
in the quantization process of the theory. Hence, a quantum operator related to the O(d, d)
symmetry is determined, which helps us solve the Wheeler–DeWitt Equation [43].

Additionally, from Equation (3), we define the energy density for the scalar field
ρφ =

(
ω
2 φ̇2 + V(φ)

)
, thus, in order for ρφ ≥ 0 to not have ghost terms, we assume

ω > 0. The pressure component pφ of the scalar field from Equation (4) is defined as
pφ = 1

2
(

ω
2 φ̇2 −V(φ)

)
− Hφ̇.

In the following Section, we study the general evolution for the cosmological history
as it is provided by the dynamical system (3)–(6).

3. Asymptotic Dynamics

We define the new dimensionless variables:

x =

√
ω

12
φ̇

H
, y2 =

V
6H2 , Ωm =

ρm

6H2 , λ =
V,φ

V
(8)

where the field equations are written as the following algebraic-differential system:

Ωm = 1− x2 − y2 (9)
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dx
dτ

=
3
2

x
(

x2 − y2 − 1
)
+

√
3
ω

y2(1− λ) , (10)

dy
dτ

= y

(
3
2

(
1 + x2 − y2

)
−
√

3
ω

x(1− λ)

)
, (11)

dλ

dτ
= 2
√

3xλ2(Γ(λ)− 1) , Γ(λ) =
V,φφV(
V,φ
)2 , (12)

in which the new independent variable is dt = Hdτ.
In addition, in the new variables, the equation of state parameter for the effective fluid

we f f = −1− 2
3

Ḣ
H2 reads:

we f f (x, y, η, λ) = x2 − y2 − 2√
3ω

x. (13)

As far as the scalar field potential is concerned, we consider the exponential potential:

V(φ) = V0eλ0φ. (14)

For the exponential potential, we infer that λ = λ0 is a constant and Γ(λ) = 1 such
that the rhs of Equation (12) is always zero. Thus, for the exponential potential, the
dimension of the dynamical system is two. Moreover, in order the matter source to be
physically accepted, it follows that Ωm is a constraint as 0 ≤ Ωm ≤ 1, and from (9), it
follows that the variables (x, y) are constrained similarly as x2 + y2 ≤ 1. Furthermore, we
observe that the equations are invariant under the change of variables y → −y, which
means that without loss of generality, we can work on the branch y ≥ 0.

Stationary Points for the Exponential Potential

We proceed our analysis by considering the exponential scalar field potential. For an
arbitrary value of the free parameter λ, the dynamical system (10) and (11) admits the
following stationary points P = P(x, y):

Point A1 with coordinates A1 = (0, 0), in which Ωm(A1) = 1, and we f f (A1) = 0.
At the stationary point the scalar field is constant, i.e., φ = φ0. Hence, the point describes
a universe dominated by the dust fluid source, where the scale factor is a(t) = a0t

2
3 .

In order to infer the stability of the stationary points, we linearize Equations (10) and (11)
around the stationary point, and we derive the eigenvalues of the linearized matrix, which
are calculated as e1(A1) = − 3

2 , e2(A1) =
3
2 . Hence, because only one of the eigenvalues is

negative, the stationary point is always a saddle point.
The stationary points A±2 = (±1, 0) describe universes where only the scalar field

contributes in the cosmological solution, i.e., Ωm
(

A±2
)
= 0. Because y

(
A±2
)
= 0, it means

that the scalar field potential does not contribute in the total cosmological evolution, while
only the kinematic part contributes, i.e., V(φ) << φ̇2. The effective equation of the state
parameter is derived we f f

(
A±2
)
= 1∓ 2√

3ω
. For point A+

2 , it follows that we f f
(

A+
2
)
< 1.

Furthermore, the asymptotic solution at A+
2 describes an accelerated universe when ω > 4

3 .
On the other hand, the asymptotic solution at the stationary point A−2 gives we f f

(
A−2
)
> 1.

As far as the stability properties of the points are concerned, we derive the eigenvalues

e1
(

A±2
)
= 3±

√
3
ω (λ− 1) , e2

(
A±2
)
= 3. Thus, point A+

2 is a saddle point when λ < 1

and ω < 1
3 (1− λ)2, otherwise A+

2 is a source. Point A−2 a saddle point when λ > 1 and
ω < 1

3
(
1− λ2) .

The stationary point A3 =

(
1−λ√

3ω
,
√

1− (1−λ)2

3ω

)
is physically accepted when

ω > 1
3 (1− λ)2. Point A3 describes a scaling solution for an ideal gas with the parameter for

the equation of state we f f (A3) = −1 + 2λ
3ω (λ− 1), and Ωm(A3) = 0. The point describes

an accelerated universe when the free parameters are constraint as {λ ≤ 0, ω > λ(λ− 1)},
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{0 < λ ≤ 1} and {λ > 1, ω > λ(λ− 1)}. For λ = 0 or λ = 1, the stationary points describe
the de Sitter universe, i.e., we f f (A3) = −1. The eigenvalues of the linearized system are

derived as e1(A3) = −3 + 2
ω (1− λ)2 , e2(A3) = −3 + (1−λ)2

ω . Therefore, point A3 is an
attractor when ω > 2

3 (1− λ)2 and for an arbitrary value for the parameter λ.

Finally, the stationary points A4 =

( √
3

2(1−λ)
,
√

3ω

4(1−λ)2

)
exist when λ 6= 1. The latter

stationary points describe scaling solutions with we f f (A4) =
1

λ−1 , for λ 6= 0, or de Sitter
universes we f f (A4) = −1 when λ = 0. In addition, the contribution of the dust fluid
source is nonzero, i.e., Ωm(A4) = 1− 3ω

2(1−λ)2 . The point is physically accepted, when

0 < Ωm(A4) < 1, i.e., λ 6= 1, 0 < ω < 2
3 (1− λ)2. The eigenvalues of the linearized system

are derived e1(A4) = − 3
4 +

√
12ω−7(λ−1)2

4(λ−1) , e2(A4) = − 3
4 −
√

12ω−7(λ−1)2

4(λ−1) . We infer that
point A4 is always an attractor.

The results for the stationary points and their physical properties are summarized in
Table 1, while in Table 2, we summarize the stability conditions for the stationary points.
In Figure 1, we present the phase-space portrait for the field equations in the plane (x, y) for
different values of the free parameters in which point A3 or A4 are attractors. In Figure 2,
we present the parametric plot with the evolution of the physical variables Ωm and we f f
for numerical solutions of the field equations.

The stationary point A4 is of special interest, because it can describe an accelerated
universe where the dark matter and the dark energy contributes in the cosmological fluid.
This point is always an attractor when it exists. Moreover, from the recent cosmological
observations, we know that the deceleration parameter q = 1

2

(
1 + 3we f f

)
for the Λ-

cosmology is qΛ ' −0.6 where Ωm ' 0.27 [54]. Thus, the effective equation of state
parameter is wΛ

e f f ' −0.73. Therefore, for (ω, λ) ' (0.91,−0.37), the solution of point A4

provides physical variables equal to that of the Λ-cosmology.

Table 1. Stationary points of the field equations and their physical properties for the exponential potential.

Point (x, y) Existence Ωm we f f we f f < − 1
3

A1 (0, 0) Always 1 0 No, dust solution
A±2 (1, 0) Always 0 1∓ 2√

3ω
A+

2 for ω > 4
3

A3

(
± 1−λ√

3ω
,
√

1− (1−λ)2

3ω

)
ω > 1

3 (1− λ)2 0 −1 + 2λ(λ−1)
3ω Yes under conditions

A4

( √
3ω

2(1−λ)
,
√

3ω

4(1−λ)2

)
λ 6= 1 1− 3ω

2(1−λ)2
1

λ−1 Yes under conditions

ω < 2
3 (1− λ)2

Table 2. Stationary points of the field equations and their stability properties for the exponential potential.

Point Eigenvalues Stability

A1 − 3
2 , 3

2 Saddle

A±2 3±
√

3
ω (λ− 1) , 3 A+

2 saddle λ < 1 and ω < 1
3 (1− λ)2

A−2 saddle λ > 1 and ω < 1
3 (1− λ)2

A3 −3 + 2
ω (1− λ)2, − 3 + (1−λ)2

ω Stable for ω > 2
3 (1− λ)2

A4 − 3
4 ±
√

12ω−7(λ−1)2

4(λ−1) Attractor
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Figure 1. Two-dimensional phase-space diagrams for the dynamical system (10) and (11) in the plane (x, y) The left figure

in the first row is for (λ, ω) =
(

1
2 , 1
)

with an attractor point A3. Right figure in the first row is for (λ, ω) =
(
− 1

2 , 1
)

,
with attractor point A4. For the figures of the second row, the left figure is for (λ, ω) = (−1, 1) with attractor point A4,
while the right figure is for (λ, ω) = (1, 1) and an attractor for the de Sitter point A3.
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Figure 2. Parametric plot for the qualitative evolution of the Ωm and of the effective equation of state parameter we f f for
a numerical solution of the dynamical system (9)–(11) with initial conditions near to the matter-dominated era Ωm ' 1.
In Left Fig., lines are for ω = 1, solid line is for λ = − 1

5 , dashed line is for λ = − 1
2 , dotted line is for λ = 0, and the dashed

dot line is for λ = 1
5 . In the Right Fig., lines are for λ = 0, the solid line is for ω = 0.2, dashed line is for ω = 0.5, dotted line

is for ω = 0.7, and the dashed dot line is for ω = 0.9. The attractor is the de Sitter point A4.

4. Cosmographic Parameters

The cosmographic approach is a model independent construction way of the cosmolog-
ical physical variables [55]. Specifically, the scale factor it is written in the expansion form:

a(t)
a0

= 1 + H0(t− t0)−
1
2

q2
0(t− t0)

2 +
1
3!

j0(t− t0)
3 +

1
4!

s0(t− t0)
4 +O[(t− t0)

5] , (15)

where H0 is the value of the Hubble function of today, q0 is the deceleration parameter of
today, j0 and s0 are the present value for the jerk and snap parameters. The H, q, j, s are
kinematical quantities, which are directly extracted from the spacetime. The kinematic
quantities are defined as [56,57]

H(t) =
1
a

da
dt

,

q(t) = −1
a

d2a
dt2

[
1
a

da
dt

]−2
,

j(t) =
1
a

d3a
dt3

[
1
a

da
dt

]−3
,

s(t) =
1
a

d4a
dt4

[
1
a

da
dt

]−4
,

or in terms of the Hubble function, they can be written in the equivalent form:

q = −1− Ḣ
H2 (16)

j =
Ḧ
H3 − 3q− 2 (17)

s =
...
H
H4 + 4j + 3q(q + 4) + 6, (18)
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Thus, from the evolution of the cosmographic q, j, s, one can understand the expansion
of the universe, the rate of acceleration and its derivative. In Figures 3 and 4 we present the
qualitative evolution of the cosmographic parameters for the model of our consideration for
initial conditions near the matter dominated era and for the values of the free parameters
(λ, ω) which are the same as that of the numerical solutions of Figure 2. From the evolution
of the cosmographic parameters presented in Figures 3 and 4, we observe that while the q0
value for the ΛCDM is recovered, this is not true for the jerk and snap parameters which
generally have a different evolution.

From the qualitative evolution, we observed that our model can predict values for the
cosmographic parameters as they are given by the cosmological constraints [58].
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Figure 3. Qualitative evolution for the cosmographic parameters q, j, and s as provided by the field equations (10)–(11) for
different values of the free parameters. The initial condition is a point near to the matter dominated solution A1. The solid line is
for the decellaration parameter q, the dashed line was for the jerk parameter j, and the dotted line was for the snap parameter s.
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Figure 4. Qualitative evolution for the cosmographic parameters q, j and s as provided by the field Equations (10) and (11)
for different values of free parameters. The initial condition is a point near the matter-dominated solution A1. The solid line
is for decellaration parameter q, dashed line is for the jerk parameter j, and the dotted line is for the snap parameter s.

5. Conclusions

In this study, we considered a scalar-torsion model known as the teleparallel dilaton
theory coupled to a pressureless fluid source, which we assumed describes the dark matter.
For this cosmological model, the field equations are of second order and we investigated
the evolution of the cosmological parameters in a spatially flat FLRW background space by
determining the stationary points and studying their stability.

This kind of dynamical analysis is essential for the study of the general evolution of
the dynamical system because it provides us with important information in order to infer
the cosmological viability of the theory. For the model of our consideration, we wrote the
field equations into an equivalent algebraic-differential by using the H−normalization
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approach. Every stationary point of the dynamical system describes an exact asymptotic
solution for the scale factor which corresponds to a specific epoch of the cosmological
history. The stability properties of the stationary points are important to investigate because
they tell us about the general evolution of the dynamical system.

For our model, and for the exponential scalar field potential, we found that the field
equations admit four stationary points which describe four different cosmological epochs.
Point A1 provides the exact solution of the unstable matter-dominated era; points A±2
describe the universes dominated by the kinetic part of the scalar field, where in contrast
to the quintessence of this theory, we calculated we f f

(
A±1
)
= 1∓ 2√

3ω
. Hence for the

ω > 4
3 point, A+

2 describes the cosmic acceleration. Point A3 is a scaling solution in general

we f f (A3) = −1 + 2λ(λ−1)
3ω , where for λ(λ− 1) = 0, the asymptotic solution at point A3

is the de Sitter solution. Finally, point A4 describes an asymptotic solution in which the
dark matter and the scalar field contributes to the cosmological fluid. This solution is of
special interest because it describes the present cosmological era. Moreover, in order to
understand the evolution of the physical variables, we presented the qualitative evolution
of the cosmographic parameters from where we found that the values for some of the
cosmographic parameters at the present era can be recovered.

From the above results, it is clear that while there are similarities of this model with
the dilaton model of scalar tensor theory [59], the two theories are different in the general
evolution of the cosmological history. In the same conclusion, we end by comparing the
results of this work with those of previous studies on the Weyl integrable theory, where the
interaction of the scalar field with the dust fluid is introduced in the gravitational action
integral [60]. Consequently, the present model of study has interesting properties which
can explain the cosmic history and deserves further study. In addition, in the absence of
the dust fluid, we recall that the theory admits a discrete symmetry which can be used
to study the cosmic evolution in the pre-Big Bang era, as in string cosmology. However,
in contrast to string cosmology and the dilaton field for this teleparallel model, the pre-Big
Bang era was not recovered as a reflection of the present epoch.

In a future study, we plan to use the cosmological observations in order to constrain
this specific theory as a dark energy candidate.
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