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Abstract: We consider Einstein–Gauss–Bonnet (EGB) inflationary models using the effective potential
approach. We present evolution equations in the slow-roll regime using the effective potential and
the tensor-to-scalar ratio. The choice of the effective potential is related to an expression of the
spectral index in terms of e-folding number Ne. The satisfaction of the slow-roll regime is mostly
related to the form of the tensor-to-scalar ratio r. The case of r ∼ 1/N2

e leads to a generalization of
α-attractors inflationary parameters to Einstein–Gauss–Bonnet gravity with exponential effective
potential. Moreover, the cosmological attractors include models with r ∼ 1/Ne. And we check the
satisfaction of the slow-roll regime during inflation for models with r ∼ 1/Ne.

Keywords: Einstein–Gauss–Bonnet gravity; slow-roll regime; inflation

1. Introduction

The observations data [1] allow to check different types of inflationary models due to
the known values of the spectral index ns, the amplitude As of scalar perturbations and
the restriction to the tensor-to-scalar ratio r. The first model to historically satisfy current
observation constrains [1] is the R2 inflationary model [2–4] with:

ns = 1− 2
Ne + N0

, r =
12

(Ne + N0)2 (1)

in leading order of inverse e-folding number 1/(Ne + N0), where N0 is a constant, Ne is
number of e-foldings. The generalizations of R2 inflationary scenario [5,6] were introduced
as cosmological attractors models [7–9] which lead to spectrum (1) and at the same time
allow two different relations between the tensor-to-scalar ratio and e-folding number:
r ∼ (Ne + N0)

−2 and r ∼ (Ne + N0)
−1. The case of r ∼ (Ne + N0)

−2 belongs to α-attractor
models. The cosmological attractor models include inflationary scenarios inspired by
particle physics [10–18]. Multi-fields inflationary scenarios [19–21] with scalar fields non-
minimally coupled with Ricci scalar allow α-attractors approximation [22].

The Einstein–Gauss–Bonnet gravity is inspired by string theory framework as a
quantum correction to general relativity [23–30]. The construction-appropriate inflationary
scenarios in the Einstein–Gauss–Bonnet gravity is an actively studied problem [31–52].
The models with the Gauss–Bonnet term and the Ricci scalar multiplied by functions of the
field can be considered such generalizations of the models with minimal coupling [39,40].
The appropriate inflationary scenarios can be obtained both numerically and analytically.
The analytical studying of inflationary scenarios can be performed using the e-folding
numbers Ne presentation[53]. The model of the Einstein–Gauss–Bonnet gravity leading
to the α attractor inflationary parameters was reconstructed in [54] and studied in [55]
using the presentation of inflationary scenarios in terms of the e-folding number Ne. In [34],
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the models inspired by chaotic inflation [56,57] with monomial potential V ∼ φn and an
inverse function before the Gauss–Bonnet term ξ ∼ φ−n were studied in a slow-roll regime.
However, the case of n = 2 leads to deviation from the slow-roll regime before the end of
inflation, as in the case n = 4, the value of the spectral index becomes sufficiently small to
satisfy recently observed data [1]. Models constructed in [34] lead to the tensor-to-scalar
ratio of the form r ∼ 1/Ne. In [31], the correction to function ξ(φ) was introduced to obtain
appropriate inflationary scenarios. However, a more complicate form of the tensor-to-scalar
ratio r was obtained. In the present paper, models without the introduction of V(φ) and
ξ(φ) leading to inflationary parameters of cosmological attractors with r ∼ (Ne + N0)

−1

are considered. In our consideration, the effective potential formulated for Einstein–Gauss–
Bonnet gravity [58] applicable near de Sitter solution [59] or in slow-roll regime [31,55]
is used.

The paper is organized as follows. In Section 2, the action and the evolution equa-
tions in the slow-roll regime are briefly introduced and presented in terms of e-folding
numbers using the effective potential formulation. In Section 3, the slow-roll parame-
ters are presented using the effective potential, the tensor-to-scalar ratio and nonminimal
coupling function. The consideration includes the case of minimal coupling of field with
Ricci scalar. The expressions of the effective potential leading to an appropriate spectral
index are considered. Subsequently, the model with an exponential effective potential with
r ∼ (8r0)/(Ne + N0) is studied and the breaking of the slow-roll regime due to the small
value of r0 is clearly demonstrated. In Section 4, the results of our consideration formulate
the conclusion.

2. Slow-Roll Regime in EGB Gravity

In this paper, the gravity model with a scalar field is considered, nonminimally
coupled with both the Ricci curvature scalar and the Gauss–Bonnet term, as described by
the following action:

S =
∫

d4x
√−g

2
[
F(φ)R− gµν∂µφ∂νφ− 2V(φ)− ξ(φ)G

]
, (2)

where the functions F(φ), V(φ), and ξ(φ) are differentiable ones, R is the Ricci scalar and:

G = RµνρσRµνρσ − 4RµνRµν + R2

is the Gauss–Bonnet term. We assume that F(φ) > 0 and V(φ) > 0 during inflation.
The system of evolution equations in the spatially flat Friedmann–Lemaître–Robert-

son–Walker metric with ds2 = −dt2 + a2(t)(dx2 + dy2 + dz2) was obtained and considered
in slow-roll approximation in [34,39]:

φ̇2 � V, |φ̈| � 3H|φ̇|, 4|ξ̇|H � F, |ξ̈| � |ξ̇|H, |F̈| � H|Ḟ| � H2F,

where H = ȧ/a is the Hubble parameter, a(t) is the scale factor, dots denote the derivatives
with respect to the cosmic time t. In [54,55], the slow-roll approximation of evolution
equations in terms of e-folding number Ne was formulated using dA/dt = −HdA/dNe.
The obtained equations can be presented as follows:

H2 ' W
3

,
(
φ′
)2 ' 4WV ′e f f . (3)

where a prime denotes the derivative with respect to Ne, W ≡ V/F and the effective potential [58]:

Ve f f = −
F2

4V
+

ξ

3
. (4)

In our consideration, we use Ne = − ln(a/ae) following the choice of notations in
Ref. [9,53–55]. Note that in many papers [21,31,34,39,50], N = −Ne is used as a new
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independent variable for evolution equations. The slow-roll parameters as functions of Ne
can be presented such as

ε1 =
1
2

ln′(W), ζ1 = − ln′(F), δ1 = −4W
3F

ξ ′, (5)

εi+1 = − ln′(εi), ζi+1 = − ln′(ζi), δi+1 = − ln′(δi). (6)

In our consideration, we use expressions for the tensor-to-scalar ratio r and the spectral
index of scalar perturbations ns obtained in [55]:

r =
32WV ′e f f

F
, (7)

ns = 1 +
V ′′e f f

V ′e f f
. (8)

The model of EGB gravity leading to cosmological attractor inflationary parameters
with r ∼ (Ne + N0)

−2 was assumed in [54]. The model was later studied in detail and
generalized to EGB gravity models with the field nonminimally coupled with Ricci scalar.
In the next section, we consider EGB gravity models leading to the ns coinciding with ns of
cosmological attractors with r ∼ (Ne + N0)

−1.

3. Application

We try to reproduce the cosmological attractor inflationary parameters with r ∼ 1/(Ne + N0)
in EGB gravity. Accordingly, with (8) and the expression of the spectral index with the second order
correction [55], we can write:

V′′e f f

V ′e f f
= − 2

Ne + N0
+

C2

(Ne + N0)2 (9)

The satisfaction of the equation is possible by two ways:

1. If C2 6= 0 we can suppose Ve f f = Ce f f exp
(
− C2

Ne+N0

)
;

2. And if C2 = 0, we can suppose Ve f f =
Ce f f

Ne+N0
.

In [55], the exponential presentation of effective potential with second order tensor-to-
scalar ratio r ∼ 1/(Ne + N0)

2 was considered. After the choice of tensor-to-scalar ratio, the
form of the potential will be related to the choice of nonminimal coupling (7) by

W =

(
F r

32V ′e f f

)
(10)

At the same time, the function ξ can be presented through the effective potential and
the tensor-to-scalar ratio:

ξ = 3 Ve f f +
24 V ′e f f

r
(11)

The dependence of slow-roll parameters ε1, ζ1, δ1 from Ne + N0 related with the
effective potential, the tensor-to-scalar ratio and the nonminimal coupling function:

ε1 =
1
2

(
r′

r
−

V′′e f f

V ′e f f
+

F′

F

)
(12)

δ1 =

(
r′

r
− r

8
−

V′′e f f

V ′e f f

)
F =

(
2ε1 + ζ1 −

r
8

)
F (13)

ζ1 = − F′

F
(14)
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We suppose that at the end of inflation, the nonminimal coupling function tends to 1.
To simplify the analysis of only dealing with Gauss–Bonnet coupling, we consider the case
of constant coupling F = 1. In this case, the expressions for the slow-roll parameters ε1 and
δ1 can be simplified as follows:

ε1 =
1
2

(
r′

r
−

V′′e f f

V ′e f f

)
, δ1 =

(
r′

r
− r

8
−

V′′e f f

V ′e f f

)
= 2ε1 −

r
8

, (15)

the slow-roll parameters ζi are absent. We assume that in the case of

r =
8r0

(Ne + N0)
(16)

the upper values of parameter r0 are rather small to save the slow-roll regime during
inflation. In the next section, our supposition will be estimated.

The first step of the discrimination of models is checking the values first order slow-
roll parameters during inflation. The second step of the discrimination is the consideration
of the second order slow-roll parameters. During the analysis, one should remember the
appropriate values of the tensor-to-scalar ratio. As such, we have two variants of effective
potentials leading to the same spectral index in leading order of inverse e-folding number,
and thus consider the corresponding effective potentials in two different subsections.

3.1. Power-Law Effective Potential

In this subsection, the power-law variant of effective potential is considered:

Ve f f =
Ce f f

(Ne + N0)
(17)

which leads to the exact reproduction of the spectral index without second order correction.
At the same time, the supposition r ∼ (Ne + N0)

−2 leads to constant potential. The first
slow-roll, ε1 = 0, has no end.

The supposition (16) leads to the following model:

V = − r0 (Ne + N0)

4Ce f f
, ξ =

3Ce f f (r0 − 1)
r0 (Ne + N0)

, ξ ′ = −
3Ce f f (r0 − 1)

r0 (Ne + N0)
2 (18)

and slow-roll parameters:

ε1 =
1

2 (Ne + N0)
, ε2 =

1
(Ne + N0)

(19)

δ1 = − r0 − 1
(Ne + N0)

, δ2 = ε2 (20)

We suppose that the exit from inflation is defined at N0 = 1/2 at which ε1(Ne = 0) = 1.
At the N0 = 1/2, the second slow-roll parameters ε2 and δ2 reach 2 , thus the slow roll
regime is infracted during inflation and the slow-roll approach is not applicable to the
considered model.

3.2. Exponential Effective Potential

The case of an exponential potential and r ∼ (Ne + N0)
−2 was considered in [54,59].

Now, we consider the case of the exponential potential and r ∼ (N + N0)
−1 :

Ve f f = Ce f f exp
(
− C2

Ne + N0

)
. (21)
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The choice of effective potential (21) and tensor-to-scalar ratio (16) leads to the follow-
ing model in terms of e-folding number:

V =
r0 (Ne + N0)

4Ce f f C2

(
exp

(
− C2

Ne

)) , ξ =
3 Ce f f exp

(
− C2

Ne+N0

)
(r0 (Ne + N0) + C2)

r0(Ne + N0)
(22)

Which leads to the following slow-roll parameters:

ε1 =
1

2(Ne + N0)
− C2

2(Ne + N0)
2 , ε2 =

−(Ne + N0) + 2 C2

(Ne + N0)(−(Ne + N0) + C2)
(23)

δ1 = − r0 − 1
Ne + N0

− C2

(Ne + N0)
2 , δ2 =

(r0 − 1)(Ne + N0) + 2 C2

(Ne + N0)((r0 − 1)(Ne + N0) + C2)
(24)

Solving equation ε1(Ne = 0) = 1, we obtain constant C2:

C2 = −(2 N0 − 1)N0 (25)

The substitution of (25) to expressions for slow-roll parameters leads to:

ε2 =
4 N0

2 + Ne − N0

(Ne + N0)
(

2 N0
2 + Ne

) , (26)

δ1 = − r0 (Ne + N0)− 2 N0
2 − Ne

(Ne + N0)2 , (27)

δ2 =
(r0 − 1)(Ne + N0)− 4 N0

2 + 2 N0

(Ne + N0)
(
(r0 − 1)(Ne + N0)− 2 N0

2 + N0

) (28)

At the end of inflation, this slow-roll parameters can be reduced to:

ε2 =
4 N0 − 1

2N0
2 (29)

δ1 = 2− r0

N0
(30)

δ2 =
−r0 − 1 + 4 N0

N0 (−r0 + 2 N0)
(31)

Evidently, to save the slow-roll regime we should have −1 < δ1 < 1, considering the
biggest r0 and smallest N0. The slow-roll parameter ε2 reaches the value 1 at Ne = 0 if
N0 = 1 +

√
2

2 and after that, the slow-roll parameter ε2 grows and becomes bigger then 1.

Thus, we suppose that N0 = 1 +
√

2
2 is the smallest appropriate value for the sum Ne + N0

during slow-roll regime.
The value of constant r0 included slow-roll parameters related to the restriction of the

tensor-to-scalar ratio:

r =
8r0

Nb + N0
= 0.065 · k, where 0 < k < 1, Nb is a start point of inflation (32)

and parameter r0 can be expressed as

r0 =
0.065 · k · (Nb + N0)

8
= 0.008125 k (Nb + N0). (33)
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The start point of inflation Nb is related to the appropriate value of the spectral index:

ns = 1− 2
Nb + N0

− (2N0 − 1)N0

(Nb + N0)2 . (34)

From here, we obtain an equation for (Nb + N0):

−2 N0
2 + N0 − 2 (Nb + N0)

(Nb + N0)
2 = ns − 1 (35)

having two solutions:

Nb =
−1 +

√
−2 N0

2ns + 2 N0
2 + N0 ns − N0 + 1

ns − 1
− N0 (36)

Nb = −1 +
√
−2 N0

2ns + 2 N0
2 + N0 ns − N0 + 1

ns − 1
− N0 (37)

but only the second solution allows to reproduce 55 < Nb < 65. To obtain r0, we substitute
(37) into (33). After that we substitute the obtained r0 into (30):

δ1 = 2 + ∆δ2, ∆δ2 =
0.008125 k

(
1 +

√
−2 N0

2ns + 2 N0
2 + N0 ns − N0 + 1

)
(ns − 1)N0

. (38)

To save slow-roll regime, the minimal condition −3 < ∆δ2 < −1 should be checked.
Since 0 < k < 1, we would like to analyze ∆δ2/k using the following inequality:

∆δ2

k
= −

0.008125
(

1 +
√

2 N0
2(1− ns)− N0(1− ns) + 1

)
(1− ns)N0

< −1. (39)

From here, we can suppose:

0.008125
(

1 +
√

2 N0
2(1− ns)− N0(1− ns) + 1

)
(ns − 1)N0

= −l, where l > 1. (40)

The solution of (40) can be presented in the form:

ns = 1− 0.00013203125
l2 − 0.01625

lN0
+

0.000066015625
l2N0

. (41)

which can be approximated:

ns ≈ 1− 0.01625
lN0

(42)

due to l > 1, N0 > 1 and orders of numerical values of numbers included to (41). From here,
it is evident that the increase in l and N0 leads to the increase in ns. We substitute the
minimal values of parameters l = 1, N0 = 1+

√
2

2 to expression (41) and obtain ns ≈ 0.99039
as the minimal values of model spectral index. The need value for the spectral index can
be only be reached at l < 1, leading to the breaking of the slow-roll regime.

At the same time, the appropriate values of the spectral index lead to the deviation of
a slow-roll regime via the parameter δ1. Let us present this fact explicitly. The slow-roll
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parameter δ1 includes the constant r0 which is related with the value of Nb + N0. The
second solution (37) to equation (34) can be presented in the form:

(Nb + N0) = −
1 +

√(
N0 − 2 N0

2
)
(ns − 1) + 1

ns − 1
(43)

The substitution N0 = 1 +
√

2
2 to this equation leads to:

(Nb + N0) = −
2 +

√
−(6
√

2 + 8) (ns − 1) + 4

2(ns − 1)
(44)

Using (44), the parameter r0 is obtained, included in tensor-to-scalar ratio:

r0 = −
0.0040625 k

(
2 +

√
−(6
√

2 + 8) (ns − 1) + 4
)

(ns − 1)
(45)

and it is substituted for slow-roll parameter δ1:

δ1 = 2 +
0.0040625 k

(
2 +

√
−(6
√

2 + 8) (ns − 1) + 4
)

(ns − 1)
(

1 + 1/
√

2
) (46)

The (ns − 1) is less than zero and to obtain the smallest value of δ1, we assume k = 1.
The consideration of (46) in the case of k = 1 leads to δ1 > 1 at appropriate values of the
spectral index. Let us present minimal values of δ1 at key values of ns:

1. if ns = 0.961 then δ1 ≥ 1.7465,
2. if ns = 0.965 then δ1 ≥ 1.7186,
3. if ns = 0.969 then δ1 ≥ 1.6834.

The saving of appropriate values of spectral index ns = 0.965± 0.04 leads to the
divination of δ1 from the slow-roll regime during inflation.

Thus, the reconstruction of a minimally coupled model in EGB gravity leading to
inflationary parameters of the cosmological attractor with r ∼ (Ne + N0)

−1 during the
slow-roll regime is impossible.

4. Conclusions

The introduction of effective potential and the tensor-to-scalar ratio allows to repro-
duce the expression for ξ in the case of minimal coupling between the field and the Ricci
scalar. In the case of nonminimal coupling, the reproduction of ξ will be related to the form
of the coupling function. The question of satisfaction of slow-roll regime is rather important
for analytically formulated models due to the effective potential approach [55,58] and to
have the positive square of sound speed in Einstein–Gauss–Bonnet gravity models [54].
The reheating after inflation is rather a popular problem [60–63]. However, the reheating
is a rather open question in the Einstein–Gauss–Bonnet gravity [41]. And the deviation
from can coincide with start of prereheating processes [64,65]. Therefore, we try to check
satisfaction of the slow-roll regime during inflation.

In the case of r = 8r0/(Ne + N0)
2 and the exponential effective potential, the slow-roll

regime can be satisfied during inflation [55]. However, the slow-roll parameter δ1 related
with the e-folding number derivative of the function before the Gauss–Bonnet term in the
initial action ξ ′ leads to the deviation from the slow-roll regime for the models with the
same effective potential and the following tensor-to-scalar ratio r = 8r0/(Ne + N0). We
demonstrate this using the representation of the function ξ thought the effective potential
and the tensor-to-scalar ratio. To satisfy the restriction of observable data [1], we restrict the
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value of parameter r0 considering the tensor-to-scalar ratio r in the beginning of inflation.
In the models with r ∼ (Ne + N0)

−2, the upper value of r0 is bigger then in models with
r ∼ (Ne + N0)

−1. As a result, the value of r ∼ 8r0(Ne + N0)
−1 is rather small to satisfy

the condition |δ1| = (2ε1 − r/8)F < 1 due to the supposition of F limits to 1 in the end
of inflation Ne = 0. We plan to generalize our consideration for the case of nontrivial
nonminimal coupling. The detailed analysis of this situation was made for F = 1 and the
effective potential of the exponential form.
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