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Abstract: Among the famous formulations of quantum mechanics, the stochastic picture developed
since the middle of the last century remains one of the less known ones. It is possible to describe
quantum mechanical systems with kinetic equations of motion in configuration space based on
conservative diffusion processes. This leads to the representation of physical observables through
stochastic processes instead of self-adjoint operators. The mathematical foundations of this approach
were laid by Edward Nelson in 1966. It allows a different perspective on quantum phenomena without
necessarily using the wave-function. This article recaps the development of stochastic mechanics
with a focus on variational and extremal principles. Furthermore, based on recent developments
of optimal control theory, the derivation of generalized canonical equations of motion for quantum
systems within the stochastic picture are discussed. These so-called quantum Hamilton equations
add another layer to the different formalisms from classical mechanics that find their counterpart in
quantum mechanics.

Keywords: stochastic mechanics; quantum mechanics; stochastic foundation of quantum mechanics;
stochastic differential equations

1. Introduction

“Shut up and calculate!” We probably all know this quote by David Mermin [1] about
his time as a young researcher at Havard University. The next sentence is seldom quoted:
“But I won’t shut up”. Both refer, of course, to our relationship as physicists with quantum
mechanics. We mostly agree on how to calculate things, i.e., for non-relativistic problems,
we use the Schrödinger equation, but when it comes to deciding what the theory means,
we are facing a zoo of suggestions and opinions. Why is this possible in an exact science
like physics? Mermin’s complete quote tells us that it is not sufficient to be able to calculate;
as physicists, we are required to understand and we want to understand.

We think that the difficulty in formulating a complete and consistent physical picture
of quantum phenomena lies mainly in the fact that the Schrödinger equation alone does
not offer sufficient mathematical structure to determine the correct physical picture of the
phenomena it describes. Imagine having the Hamilton–Jacobi equation as the only tool
of classical analytical mechanics. The famous cannon ball on its flight from the freshman
physics course would then be described by two fields, the probability density ρ(x(t), t)
and the action S(x(t), t), extending from here to the Orion nebula (if we factor in positional
measurement errors). Once the ball hits the target, these functions would collapse into the
impact position. We would assume a complementarity of particle and field descriptions
and a special role of the measurement process. This is a world view we are taught in the
classroom for quantum mechanics, but would never accept for classical mechanics.

One of the origins of the belief that the Schrödinger equation offers the and not a
complete description of quantum phenomena lies in the no hidden variable theorem first
formulated by John von Neumann [2]. The proof was shown to be wrong shortly after
publication by the young German mathematician Grete Hermann [3], but this went largely
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unrecognized. After David Bohm [4] had given a constructive proof of the possibility of a
hidden variable theory in the 1950s, John Bell rediscovered the fault in von Neumann’s
proof and started to formulate his famous inequalities [5]. The question about the possibility
or not of a hidden variable formulation of quantum mechanics has undergone much
development since then, and discussing it is outside the scope of this article. Today, one can
perhaps summarize the current state of the discussion by saying that the Bell inequalities
and related theorems imply that measured observables are contextual, i.e., a counterfactual
determinism postulating that a property also had a certain value determined by a specific
experimental setup in the past, before the measurement was taken, is excluded.

Nelson’s stochastic mechanics formulation of quantum mechanics, which started its
development with his article On the derivation of the Schrödinger equation from Newtonian
mechanics in 1966 [6], is completely in accord with the requirements of Bells inequalities.
By now, it has been developed to a mathematical rigor that completely parallels the
formulation of classical analytical mechanics. It thus provides sufficient mathematical
structure to suggest a clear physical picture of quantum phenomena. We will discuss this
mathematical structure, which we would like to call quantum analytical mechanics, in the
rest of this review.

Section 2 presents Nelson’s original idea and a synopsis of the different ideas built on
that. In Section 3, we will focus especially on the role of variational principles in stochastic
mechanics, while Section 4 presents the derivation and application of quantum Hamilton
equations. Finally, Section 5 will present an outlook on future developments.

2. Stochastic Mechanics

There is an often implicit assumption in our typical approach as physicists to model
a natural phenomenon: we identify a system, modeled by its Hamiltonian, Hs(r), its
environment, He(R), and their interaction, Hi(r, R). We then assume that the interaction
with the environment is small, Hi(r, R)� Hs(r), and can be treated perturbatively, so that
the model can be reduced to Hs(r) to understand the main properties of the problem.

Nelson’s starting point in his 1966 paper can be described as stating that this does not
work in the quantum world. His assumption of universal Brownian motion means that the
interaction of a quantum particle with the universally present background radiation is not
a small perturbation, but essential to the behavior of a quantum system. This interaction
is unknowable in detail, but only its statistical properties enter, as typical for Brownian
motion. There are three physical assumptions defining the theory:

1. The path of a quantum particle is a realization of a conservative diffusion. It is
driven by Brownian motion and may be written as an Itô stochastic differential
Equation (SDE)

dX(t) = b f (X(t), t)dt + σdW f (t) . (1)

For notational simplicity, we discuss only a one-dimensional motion here. In this
equation, b f (x, t) is the forward drift depending on the current position x = X(t),
σ the square root of the diffusion coefficient and dW f (t) a forward Wiener process,
i.e., a process with Gaussian increments with mean zero and width dt, which is
independent of the future, i.e., of all X(s), s > t. Note that capital letters, e.g., X(t)
and X = (X(t))t∈[t0,t1]

, indicate random variables and the corresponding stochastic
processes, whereas the small letters refer to their values. A conservative diffusion is
non-dissipative and thus time reversible [7], where the backward in time process exists

dX(t) = bb(X(t), t)dt + σdWb(t) . (2)

with increments dWb(t), which are independent of the past, i.e., all X(s), s < t.
2. The diffusion coefficient should vanish for macroscopic objects, so one can assume

that it is inversely proportional to the mass of the particle. The proportionality
constant then has the units of action, and, in view of a later identification, one can
write σ2 = h̄/m. In fact, one can show that the interaction of a Brownian particle
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with the background radiation gives rise to a temperature-independent diffusion
coefficient of this magnitude [8].

3. One knows that the solutions X(t) of the above equations are with probability one
everywhere continuous, but nowhere differentiable. So, how does one define velocity
or acceleration? Nelson suggested an average forward and backward differential

D f X(t) = lim∆t→0 Et

[
X(t+∆t)−X(t)

∆t

]
(3)

DbX(t) = lim∆t→0 Et

[
X(t)−X(t−∆t)

∆t

]
where the capital Et denotes the expectation conditional on X(t) = x. For differen-
tiable curves D f X(t) = DbX(t) = ẋ(t) = v(t), the velocity of the particle. With this,
Nelson postulated the validity of a stochastic Newton law for the stochastic acceleration

ma(X(t)) = m
1
2

(
D f Db + DbD f

)
X(t) = F(X(t)) . (4)

As in classical analytical mechanics, this should amount to a complete descrip-
tion of the motion, so one should be able to derive a Lagrangian, Hamiltonian and
Hamilton–Jacobi formulation of quantum motion based on these three physical assump-
tions. The Hamilton–Jacobi formulation of quantum motion as described by stochastic
mechanics is the Schrödinger equation, the goal with which Schrödinger set out to derive
his equation [9].

The mean forward and backward derivatives of the particle position just give the drift
coefficients in the forward and backward equations

D f X(t) = b f (X(t), t) DbX(t) = bb(X(t), t) . (5)

On the level of probability distributions, the forward and backward stochastic differ-
ential equations are equivalent to two Fokker–Planck equations:

∂

∂t
ρ(x, t) = − ∂

∂x

[
b f (x, t)ρ(x, t)

]
+ h̄

2m
∂2

∂x2 ρ(x, t) (6)

∂

∂t
ρ(x, t) = − ∂

∂x [bb(x, t)ρ(x, t)]− h̄
2m

∂2

∂x2 ρ(x, t) . (7)

The latter equation carries a minus sign in front of the diffusion coefficient, which is
due to the time reversal. The sum of the two Fokker–Planck equations gives the continu-
ity equation

∂

∂t
ρ(x, t) +

∂

∂x
[v(x, t)ρ(x, t)] = 0 , (8)

with the current velocity v(x, t) = (b f (x, t) + bb(x, t))/2. The difference of the forward and
backward drifts u(x, t) = (b f (x, t)− bb(x, t))/2 defines the osmotic velocity. Subtracting
the two Fokker–Planck equations yields

u(x, t) =
h̄
m

∂

∂x
ln[ρ(x, t)] =

h̄
2m

∂

∂x
R(x, t) , (9)

where we wrote the probability as ρ(x, t) = exp{2R(x, t)}. The two coupled forward-
backward stochastic differential equations for the position process thus read

dX(t) = (v(X(t), t) + u(X(t), t))dt + σdW f (t) (10)

dX(t) = (v(X(t), t)− u(X(t), t))dt + σdWb(t) .

From [10], it follows that the current velocity is curl-free (in more than one dimension),
so we can define another scalar field S(x, t) by
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v(x, t) =
1
m

∂

∂x
S(x, t) . (11)

The analogy to classical analytical mechanics suggests the prefactor and identifies
S(x, t) as the action. To derive partial differential equations for R(x, t) and S(x, t), we use
the Itô formula

d f (X(t), t) =
∂

∂t
f (X(t), t)dt +

∂

∂x
f (X(t), t)dX(t) +

1
2

∂2

∂x2 f (X(t), t)(dX(t))2 (12)

where the differentials are evaluated up to linear order in dt. We also assume a conservative
force field F(x) = −dU/dx to obtain (for a more detailed account see [6,7,11])

∂R
∂t

+
1

2m
∂2S
∂x2 +

1
m

∂R
∂x

∂S
∂x

= 0 (13)

∂S
∂t

+ U +
1

2m

(
∂S
∂x

)2
− h̄2

2m

[(
∂R
∂x

)2
+

∂2R
∂x2

]
= 0. (14)

These equations are the Madelung [12] equations, the stochastic mechanics’ coun-
terpart to the Hamilton–Jacobi equations in classical mechanics, which constitute the
hydrodynamic formulation of Newtonian mechanics. They differ from the classical equa-
tions by the additional terms depending on the strength h̄/m of the stochastic forces.
For h̄/m→ 0, the classical Hamilton–Jacobi equations are exactly recovered. The first of
these two equations is nothing but the conservation of probability in another form, the
second is the momentum balance.

Identifying ψ(x, t) = exp{R(x, t) + i
h̄ S(x, t)} one sees that ψ solves the Schrödinger

equation for solutions R and S of the Madelung equations. However, only for node
free ψ(x, t), i.e., in the ground state of a quantum problem, there is true equivalence. It
will become clearer in the discussion of the variational principles in Section 3 how this
limitation to the ground state comes about. The limited equivalence of the Madelung
equations to the Schrödinger equation directly raised the questions about the existence
of the Nelson diffusions for excited states and the behavior around nodes. Carlen [13]
could show that such diffusion processes also exist for the excited states and called them
singular diffusions. For highly excited states in the hydrogen atom, it was possible based
on stochastic mechanics to show that they approach Keplerian orbits [14], which had been
expected based on Bohr’s correspondence principle.

Rather early on, different versions of variational principles have been formu-
lated [10,15–17]. These will be discussed in detail in the next section. An important
ingredient to formulate them on general Riemannian manifolds was provided by the
analysis of stochastic parallel displacements [18]. A particular case of diffusion on a
Riemannian manifold occurs in the description of spin, where the orientation variable
assumes values on the coordinate manifold of SO(3). Dankel transferred Nelson’s approach
to this case based on the description of spinning tops and the Bopp–Haag Hamiltonian [19]
(see also the discussion by Faris [20]). While this description works with a continuous
variation of orientations, there have also been attempts to formulate the stochastic
mechanics of spins assuming the quantization into discrete values from the outset [21].

The physical picture of (point) particles following continuous paths whose statistics is
governed by the Madelung equations or the Schrödinger equation, respectively, is rather
intuitive. Feynman’s path integral approach is a functional integral formulation of this
path statistics [22]. When we accept these paths as a physical reality, the interpretational
problems associated with the Copenhagen interpretation of quantum mechanics do not oc-
cur from the outset [23]. Nevertheless, one has to and can formulate a stochastic mechanics
description of the measurement process [24].
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The formulations of stochastic mechanics discussed above are all operationalized by
solving the Schrödinger equation in the first step and then using the stochastic mechanics’
background to calculate further properties based on this solution. This has led to interesting
numerical applications, where the sample paths of the conservative diffusions described by
the wave function were generated and analyzed [25–30]. This turned out to be especially
fruitful when one asks about the time some quantum processes take. There is no time oper-
ator in quantum mechanics, so there is no direct operational definition for the calculation
of the duration of a process as the expectation value of some self-adjoint operator. For the
underlying diffusion processes, it is quite natural to ask, e.g., how long it takes to traverse
a barrier [31] or to diffuse from the plane of a double-slit to the measurement screen [29].
We will come back to the problem of barrier traversal, aka tunneling times in Section 4.2.

We will discuss the formulation of stochastic mechanics as a stochastic optimal control
problem in the next section. This also allows to derive quantum Hamilton equations [32,
33], which allow for a direct (mostly only numerical) solution without recourse to the
Schrödinger equation. By construction, this proves that the Schrödinger equation is not
the, but only a complete formulation of quantum mechanics, contrary to the claims of the
Copenhagen interpretation. In Section 4.1, we will discuss an example for this way to solve
a quantum problem.

3. Variational Principles in Stochastic Mechanics

The stochastic formalism introduced by Nelson relies in particular on a postulated,
generalized Newton law for the mean acceleration of a particle (4). Clearly, in the classical
limit, the expectation is not needed, and thus Newton’s 2nd law follows. From classical
mechanics, it is well known that these dynamic differential equations can be reformulated
in various forms, such as integral equations with Hamilton’s principle. This principle of sta-
tionary action states that the dynamics of the system are set by a functional’s extremization,
i.e., the action

S[x] =
∫ t1

t0

L(x, ẋ, t)dt (15)

is stationary with respect to a critical path x = (x(t))t∈[t0,t1]
with fixed end points x(t0),

x(t1), where the Lagrangian L(x, ẋ, t) = m
2 ẋ2 −V(x, t) contains the physical information

of the system. Here and further on, short notations may be used, e.g., x = x(t), ẋ = ẋ(t),
X = X(t). A vanishing functional derivative, i.e., δxS[x]|x=x∗ = 0, leads to the Euler–
Lagrange equations:

∂L
∂x∗
− d

dt
∂L
ẋ∗

= 0 . (16)

Variational principles or, related to that, optimal control problems in the stochastic
picture, where, generally, one searches criticality for non-differentiable paths, should
include the classical variational principles as special cases. The criticality with respect to a
cost functional can certainly not control the path itself due to the noise term. However, it is
possible to adjust the mean of the stochastic behavior, namely the expectation value. In the
stochastic mechanics’ framework, two major suggestions were put forward by Yasue [15,16]
and Guerra and Morato [10] in the 80s. The important aspect here is the time-reversibility
of the diffusion, which means there is a forward and backward diffusion, and secondly
the derivatives are generalized to the smoothed mean forward and backward derivatives
which Nelson introduced. The ’Lagrangian’ approach by Yasue considers a cost functional

S[X] = E
[∫ t1

t0

L(X, b f , bb, t)dt
]

, (17)
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where E denotes expectation with respect to the distribution of the stochastic process X
and in the suitably defined Lagrangian L the velocity is generalized by the two conditional
smooth velocities D f X(t) = b f (X(t), t), DbX(t) = bb(X(t), t) with respect to the present.
The variation of the functional around a critical X∗, i.e., a deviation from the critical
process X∗ by a stochastic process Z, has to fulfill S[X∗ + Z]− S[X∗] = O(|Z|), with fixed
endpoints X(t0), X(t1) yields stochastic Euler–Lagrange equations

∂L
∂X
− D f

(
∂L

∂DbX

)
− Db

(
∂L

∂D f X

)
= 0 . (18)

These resemble the Euler–Lagrange equations in the deterministic case, where D f X =

DbX = ẋ. The choice of L = LY = 1
4 ((D f X)2 + (DbX)2)−V for the Lagrangian leads to

the Nelson–Newton law (4) for (18). Written in terms of the current and osmotic velocities,
the Lagrangian, in that case, resembles the classical one

LY = T −V =
m
2
(v2 + u2)−V . (19)

Different from the ‘Lagrangian’ approach by Yasue using stochastic calculus, Guerra
and Morato [10] use stochastic control theory. The cost functional is to be optimized w. r. t.
to the smoothed (forward) velocity b f (X(t), t) = D f X(t) (works similarly for DbX(t))
subject to the control equation dX(t) = b f (X(t), t)dt + σdW f (t) and fixed initial ρ(·, t0)
and final probabilities ρ(·, t1). Thus, this approach is based on the fluid dynamics picture.
Their Lagrangian is defined as

LG = L(X, D f X, DbX, t) =
m
2

D f X(t) · DbX(t)−V(X(t), t) , (20)

where the variation of the cost functional w. r. t. a deviation from the critical velocity
corresponds here to a variation of the critical drift b∗f by a stochastic process Z. Again, the

quantum Hamilton–Jacobi like Equation (14) for the velocities v = 1
2 (D f X + DbX) and

u = 1
2 (D f X− DbX) are derived. Comparing these two definitions of the Lagrangians LG,

LY, they differ by a sign in front of the osmotic energy

LG =
m
2
(v2 − u2)−V . (21)

The special role of this additional (kinetic) term can be explained by taking the
expectation and by using (9)

E
[m

2
u2(x, t)

]
=
∫ ( h̄

2m
∇2ρ(x, t)

ρ(x, t)

)
ρ(x, t)dx = E[VQ] . (22)

Thus, under expectation, the osmotic energy equals Bohm’s postulated quantum
potential VQ in the pilot-wave theory [4]. From that point of view, the fluctuation of the
kinetic energy with the minus sign −m

2 u2 in (21) could be interpreted as an additional
contribution to the potential V without the need to postulate a non-local potential. Further-
more, in (22) appears the gradient of the so-called Fisher information (functional) that is
used, for example, in the context of optimal mass transport theory. There it was shown that
the nonrelativistic evolution of quantum systems, namely the Madelung fluid equations,
can be deduced from the optimal interpolation of flows in the so-called Wasserstein space
between fixed initial and final measures [34]. Hence, the probability distribution is varied.
In [35], the sign of the dissipation term, and with that the sign of the osmotic energy in
the Lagrangian, is explained by the underlying picture, namely in the particle formulation
(Yasue) or the fluid dynamic (Guerra) formulation.
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All of the suggested variational principles recover the Hamilton–Jacobi like equa-
tion, including the quantum correction terms, which is one of the Madelung equations.
The second equation, namely the continuity equation, is satisfied due to the assumption
of time-reversibility. In [32], Pavon introduced the so-called quantum Hamilton principle
based on two variational principles recovering both of the Madelung equations. For that,
it is proposed to search for saddle-points for the current and osmotic velocity, i.e., two
controls, with the help of Lagrangian functionals. As shown in (21), the Lagrangian is
convex in v, while it is concave in u. Pavon suggests using this Lagrangian and considers it
as a zero-sum stochastic differential game for two players, where the player controlling the
current velocity attempts to minimize the cost, whereas the one controlling the osmotic
part tries to maximize it,

J1[X∗, u∗, v∗] = max
X

min
v

max
u

E

 t1∫
t0

LG(X, u, v, t)dt + S1(X(t1))

. (23)

Here, small letters for the stochastic controls v(t) and u(t) are used and S1(·) is
a given continuous function as final constraint. Instead of final conditions, initial con-
ditions could also be used. Additionally, a second variational principle based on the
systems entropy is postulated based on the configurational entropy of the system SE(t) =∫
−ρ(x, t) ln ρ(x, t)dx and seeks to increase the entropy in the diffusion process,

J2[X∗, u∗, v∗] = max
X

max
v

min
u

E

 t1∫
t0

[
−σ−2 vT u

]
dt + R1(X(t1))

, (24)

where R1(·) is a continuous given function. This so-called saddle-point entropy production
principle corresponds to the continuity equation and thus to a time-reversible diffusion.
Using complex numbers, both variational principles can be written as one principle, which
Pavon called the quantum Hamilton principle. This was reformulated as a stochastic
optimal control problem [33] based on the mathematical theory developed in the last
decades [36,37] with optimal feedback controls for Nelson’s diffusion processes. This subse-
quently allows to derive the stochastic Hamilton equations by analogy to the deterministic
optimal control problem where a stochastic Hamiltonian is pointwise extremized. This is
considered in the next chapter.

4. Quantum Hamilton Equations

Hamilton’s principle in classical mechanics can be reformulated as an optimal con-
trol problem by introducing the control v(t) that minimizes the action S[v] under a con-
trolled equation

S[v] =
∫ t1

t0

L(x, v, t)dt ,

ẋ(t) = v(t) , x(t0) = xt0 .
(25)

Pontryagin’s maximum principle [38] then states that the tuple of optimal state tra-
jectory x∗, optimal control v∗ and associated costate p∗ have to pointwise maximize the
associated HamiltonianH(x, v, p, t) = pT(t)v(t)−L(x, v, t) for all admissible controls v in
t ∈ [t0, t1], so that the following holds

∂vH(x∗(t), v(t), p∗(t), t) = 0 ,

ṗ∗ = −∂xH|x=x∗ ,

ẋ∗ = ∂pH|p=p∗ ,

(26)
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where the co-state vector p(t) is the canonical momentum in Hamiltonian mechanics. In a
similar fashion, the quantum version of Hamilton’s equation of motion [33] can be derived
in the stochastic setting. It follows from the saddle-point of Pavon’s functionals introduced
in the previous Section [32] within stochastic optimal control theory with respect to the
two competing players v = (v(t))t∈[t0,t1]

and u = (u(t))t∈[t0,t1]
, eventually considered

as feedback controls ṽ(x, t) and ũ(x, t) associated with finite-energy diffusions. One can
either search for a Nash equilibrium [36] for the two variational principles or solve the
complex variational problem by introducing a complex velocity, the so-called quantum
velocity vq = v− iu,

J[vq] = E
[∫ t1

t0

L(t, X(t), vq(t))dt + Φ1(X(t1))

]
. (27)

subject to the control equation

dX(t) = vq(t)dt +
1
2

σ
(
(1 + i)dW(t) + (1− i)dW∗(t)

)
, X(0) = x0. (28)

This SDE can be understood within the theory of backward doubly SDEs. The final (or
if needed initial) value should have the form Φ1(X(t1)) = −ih̄R(t1, X(t1))+ S(t1, X(t1)) =
−ih̄R1(X(t1)) + S1(X(t1)) with differentiable functions R(·, x(·)), S(·, x(·)) in x. An asso-
ciated stochastic optimal control Hamiltonian to (27) [37] can be defined as

H(X, vq, P, Q, t) = −L(X, vq, t) + Pvq −
1 + i

2
σQ , (29)

where adapted complex stochastic costate variables P(t) and Q(t) occur. The additional
stochastic processes P and Q now satisfy a backward SDE, e.g., given in [37] (dt > 0);

dP(t) = −∂xH dt + Q(t)dW∗(t) , P(t1) = ∂xφ1(X(t1)) . (30)

This is the adjoint equation backward in time to the constraint (28). Note that for a
non-euclidean metric space, generally a (pseudo-)Riemannian manifold, σ depends on the
metric and hence, may depend on generalized coordinates, which is not considered here.
If the system’s potential does not depend on the velocity of the particle, then ∂xH = ∂xV.
The SDE for P(t) is backward in time by definition of the Hamilton function, i.e., one could
also introduce a co-state process P(t) that satisfies a forward SDE, depending on initial or
final conditions. Finding critical points of the Hamiltonian corresponds to finding the roots
of the complex functional w. r. t. vq, leading to

P(t) = mvq(t) . (31)

The Madelung equations for the velocities v and u are recovered by applying the
Itô-formula to P̃(X(t), t) = mṽq(X(t), t) = P(t) in (30) and comparing the drift terms.
This means the dynamical SDEs correspond to Nelson’s Newton-like law for the mean
acceleration. The stochastic process Q can be calculated following Itô’s formula

Q(t) = σ∂x ṽq(X(t), t) . (32)

Thus, Equations (30) with (31) and (28) describe the quantum system solely in terms
of SDEs. The following system of coupled FBSDEs for a non-stationary system for the
feedback controls [33]

dX(t) = [ṽ(X(t), t) + ũ(X(t), t)]dt + σdW f (t)

dX(t) = [ṽ(X(t), t)− ũ(X(t), t)]dt + σdWb(t)

md[ṽ(X(t), t) + ũ(X(t), t)] = −∂xV(X(t), t)dt + σ∂x
[
ṽ(X(t), t) + ũ(X(t), t)

]
dWb(t)

(33)
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are called the quantum Hamilton equations, where the imaginary and real part in (30)
were used for the real momentum m[ṽ(X(t), t) + ũ(X(t), t)]. Formally, this set of kinematic
and dynamical equations describes quantum systems that can be related through the
Itô formula to the Madelung equations, which again are the generalized version of the
Schrödinger equation, and thus allow a broader case of solutions in general. For the ground
state of stationary problems, i.e., node-free wavefunction, they are equivalent. However,
as shown in [34,39], the Schrödinger equation is a simplification of these equations, thus,
in general, the Madelung equations allow more solutions than the Schrödinger equation.
The quantum Hamilton equations at hand yield the stable ground state solution, since they
are the unique critical solution of the posed variational problem. The excited states of a
bound spectrum are determined iteratively with a supersymmetric procedure exemplified
in Section 4.1 or Section 4.3.

The similarity of (33) and (30) to Hamilton’s equation of motion can be seen by taking
h̄/m→ 0, where the osmotic velocity u vanishes and P(t) = mṽ(X(t), t),

d
dt

x(t) =
P(t)

m
d
dt

P(t) = − ∂

∂x
V(x, t)

(34)

These are the classical equations of motion. They predict the same outcomes as,
e.g., the Hamilton–Jacobi theory, but from a different point of view. The conceptual
similarities between classical and quantum mechanics on the basis of their mathematical
formulations can be drawn, e.g., for the Hamilton–Jacobi equation and the Schrödinger
equation, Hamilton’s variational principle and Pavon’s quantum Hamilton principle or
Hamilton’s equations of motion and their stochastic generalization. All of them can be
solved independently in their framework while being, at least to some extend, equivalent
in the case of quantum systems.

The quantum Hamilton equations are fully coupled forward backward SDEs in general
which makes them hard to solve analytically and numerically compared to standard non-
relativistic techniques. However, some examples regarding stationary QHEs are given in
the upcoming sections.

4.1. Harmonic Oscillator

The problem of the stationary one-dimensional harmonic oscillator with potential
V0(x) = mω2

2 x2 leads to QHEs [33]

dX(t) = ũ(X(t))dt + σdW f

dX(t) = −ũ(X(t))dt + σdWb

dũ(X(t)) = ω2X(t)dt +

√
h̄
m

∂xũ(X(t))dWb ,

(35)

where the current velocity v vanishes. Taking the expectation values of (35), the averages
E[X(t)] and E[u(t)] follow classical paths, i.e., if (X0(t), u0(t)) is a solution then (X0(t) +
Xclassical(t), u0(t) + uclassical(t)) is a solution to the Problem similar to the coherent states
for the quantum harmonic oscillator. These coupled forward backward SDEs can be solved
numerically [33] or analytically with the help of the Itô formula, leading to the ground state
solution ũ0(x) = −ωx. The stochastic process X0 = (X0(t)) corresponding to ũ0(x) is the
ground state process with a stationary distribution of ρ0(x) = Ne−

mω
h̄ x2

, where N is the
normalization constant. Thus, it is the Gaussian ground state probability corresponding
to the wavefunction for the harmonic oscillator according to Born’s rule and the energy
expectation value is

E
[m

2
ũ2

0(x) + V0(x)
]
=

1
2

h̄ω . (36)
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As mentioned in Section 3, the excited states are not given directly as solutions of the
optimal control formulation, as the ground state yields the one unique optimal control.
However, the complete bound spectrum can be determined using the supersymmetric
construction [40,41], which dates back to a concept in mathematics for a special type of
differential equation, see e.g., [42,43]. This well-known formalism allows to state partner
Hamiltonians through adjusting the potentials, leading to the quantized raising (or low-
ering) of the mean energy. In terms of the QHEs in stochastic mechanics, this is done by
adjusting the partner potential Vn = Vn−1 − h̄∂xũ0

n−1 of the n-th energy level iteratively,
where ũ0

n−1 is the ground state, indicated by the upper index 0, of the (n− 1)-th partner
potential, indicated by the lower index, e.g., the first partner potential calculated from the
ground state ũ0

0 = ũ0 = −ωx is just shifted by a constant V1 = V0 + h̄ω, i.e., the averaged
energy is shifted by h̄ω. From this, it follows that the ground state solution to the partner
potential V1 equals the ground state solution of V0, cf. (35), the n-th partner potential is
Vn = V0 + nh̄ω, and the corresponding mean energy is

E
[m

2
ũ2

0(x) + V(x)
]
=

(
1
2
+ n

)
h̄ω . (37)

Note that the ground state solutions to the partner potential are not the excited states
since they are node-free. The actual excited states of the harmonic oscillator (including
nodes in the probability distribution) can be calculated iteratively based on the osmotic
velocities as follows [44]

ũn
0 (x) = ũn−1

0 (x) +
h̄
m

∂x ln
[
ũ0

0(x) + ũn−1
0 (x)

]
(38)

without the use of the wave function. Thus, the energy spectrum and the bound states can
be determined completely with the quantum Hamilton equations.

4.2. Quantum Tunneling

“How long does it take to tunnel through a barrier?” This is an old question in
quantum mechanics [45] that acquired new urgency with the emergence of attosecond
experiments in recent years. Several papers have been published claiming instantaneous
tunneling, see, e.g., [46,47], and finite time tunneling [48]. The lack of a time operator in
standard quantum mechanics and the non-local behavior of the wave function leaves room
for various definitions of tunneling times, e.g., there is the Wigner (delay) time based on
the wave packet’s peak under the barrier and the related phase shift [49], the traversal
time [50] relying on the transmission analysis of the particle through a static barrier or the
Larmor time which depends on the precession angle due to a magnetic field in the barrier
region [51,52].

In the stochastic picture of quantum mechanics, the “tunneling” time can be directly
obtained from the history of the stochastic process in real-time, i.e., the time spent ‘interact-
ing with’ the barrier can be calculated for each path. The ensemble of these paths allows
calculating a probability distribution for the tunneling times. The “tunneling” itself in
Nelson mechanics is possible because the system is open, thus the energy of the conserva-
tive diffusion is not fixed but fluctuating. This energy fluctuation naturally entails that a
particle can overcome any finite potential barrier.

Hence, in this picture, one can calculate an average time that is needed to cross a
barrier instead of traversing a ‘classically’ forbidden region. Let us consider as an example
a stationary system of the quartic double-well potential V(x) = V0

a4 (x2 − a2)2 with barrier
height V0 and the location of the minima ±a [41]. With the quantum Hamilton equations,
the ground state osmotic velocity ũ0(x) and the excited states can be numerically obtained.
This allows simulating the time a particle needs, starting at position x located in a well, to
arrive at some defined exit point xt after passing the barrier. In Figure 1, a sample path is
shown for the stationary ground state of the double-well for V0 = 2 and a = 1.5. It shows
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the diffusive motion and transition between the two wells. The stochastic energy, which is
not the average ensemble energy, shows that the “tunneling” in the stochastic picture is
due to energy fluctuations. This diffusive motion is similar to thermally activated crossing
of a barrier in a potential VK(x) in Kramer’s theory. Here, ln 1

ρ0(x) plays the role of the

diffusion potential with ũ0(x) ∝ −∇ ln 1
ρ0(x) , see the r. h. s. in Figure 1.

Figure 1. The left figure shows a sample path of the stochastic process X in the ground state
of the double-well potential driven by fluctuations, while the inset displays its stochastic energy
E(t) = m

2 ũ2(X(t))+V(X(t)) (solid black) in comparison to the mean ground state energy E0 (dashed
red). The graphic on the right shows the corresponding double-well potential V(x) (solid black) with
parameters V0 = 2 and a = 1.5 and the osmotic velocity ũ0(x) (dashed red). The dotted black line
depicts the ‘diffusive potential’ according to Kramers’ theory ln 1

ρ0(x) ∝ VK(x) (dotted black) based
on the ground state probability ρ0(x) of the system.

The first passage time starting from position x can be averaged, resulting in a mean
first passage time tm for a stationary problem [11]

tm(x) =
2m
h̄

∫ xt

x

dx′

ρ0(x′)

∫ x′

−∞
ρ0(x′′)dx′′ , (39)

where the probability density can be calculated from the osmotic velocity ln ρ0(x) =
2m/h̄

∫ x
−∞ ũ0(x′)dx′. The average over all starting points x of the mean first passage time

〈tm(x)〉 can predict the so-called energy splitting [41]

∆E := E1 − E0 = c
h̄π

〈tm〉
, (40)

where c ≈ 2
π is a constant number independent of the barrier parameters. E0, E1 are the

expected energies of the ground and first excited state, respectively. The energy splitting
for V0 = 2, a = 1.5 and numerical results are shown in Figure 2. The inset shows that
the prediction of the energy splitting within the stochastic picture is better compared
to the instanton approach suggested in [53], where the splitting due to tunnel effects is
approximated starting from the harmonic ground state. It agrees with the exact solution as
long as the lowest state energies are smaller than the barrier height.
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Figure 2. The big figure shows the ground state probability ρ0 (solid blue), the first two mean energies
E0 (dashed black) and E1 (dashed red) and the potential V (solid black). The inset compares the ratio
of predicted and exact energy splitting ∆E = E1 − E0 of the mean first passage time (solid black) and
an instanton approximation [53] (dashed red) depending on the barrier height V0.

4.3. Hydrogen Atom

The quantum mechanical hydrogen atom is a two-body system, where proton and

electron with opposite charges e and−e interact through the Coulomb potential V(r) = − e2
0
r

where e2
0 = e2

4πε0
. In analogy to the Kepler problem in classical mechanics, one can make

use of the systems symmetries: (1) translational and (2) rotational symmetry. The first
leads to the conservation of the center of mass momentum under expectation, i.e., a free 3d
Brownian motion or in terms of the wave function a plane wave. The relative coordinate
between nucleus and electron R is a stochastic process and can be treated separately from
the center of mass, leading to stationary stochastic differential equations [44]

dR(t) = ṽq(R(t))dt +

√
h̄
µ

dW f (t)

µdṽq(R(t)) =
e2

4πε0R3(t)
R(t)dt +

√
h̄
µ
∇r ṽq(R(t))dWb(t) ,

(41)

where µ is the reduced mass. This is a Kepler-like system since under expectation

dE[R] = E[ṽq]dt

µdE[ṽq] = E

[
e2

0
R3 R

]
dt ,

(42)

which corresponds to Ehrenfest’s theorem stating that the time derivative of the expectation
values of the position and momentum operators obey the corresponding classical equations
of motion. In classical mechanics, the proton would ‘trap’ the electron for zero angular
momentum. That is where the 3d fluctuations play a role in this stable quantum state.
To make this more clear, the isotropy of the system allows to further reduce the dimension of
the problem, by changing to spherical coordinates where the angular part can be separated
from the radial part [44]. In the stationary case, the current velocity v vanishes in the ground
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state and contributes only to the z-component of the angular momentum for excited states.
This leads to quantum Hamilton equations for the radial part of the osmotic velocity

dR(t) =
(

ũr(R(t)) +
h̄

µ R(t)

)
dt +

√
h̄
µ

dW f (t)

dũr(R(t)) =
1

µR2(t)

(
e2

0 + h̄ũr(R(t)) +
E
[
L̃2]

µR(t)

)
dt +

√
h̄
µ

∂rũr(R(t))dWb(t) .

(43)

where ũr = ũ · R
R is the radial projection of the osmotic velocity and L̃ = µ(R× (ṽ + ũ)) is

the stochastic angular momentum for the stationary problem. The additional drift terms in
(43) occur due to the transformation of variables, e.g., h̄/µR is a probabilistic drift due to the
fluctuations in three dimensions, which try to push the particle away from the center. They
follow from the non-vanishing variance of the stochastic process concerning the position in
the mean square limit.

The solution to (43) for the ground state with zero mean angular momentum is
isotropic, namely ũr = − h̄

a0µ . This corresponds to the s orbital in which the electron moves
diffusively in the ground state around the proton. The most probable distance between
electron and proton is the Bohr radius a0, but different from the Bohr model, there is no
Kepler-like elliptic motion of the electron. This is due to the lack of a mean angular velocity.
Note that the classical Kepler-problem should be recovered in the Bohr correspondence
limit, which was shown for the Nelson diffusion in two dimensions [14]. The excited states
can again be obtained with the help of partner potentials, see [44]. From the QHEs alone,
there is no restriction on the angular momentum to be quantized since they lack the same
additional quantization condition as the Madelung equations mentioned by Wallström [39].
A possible solution to this problem may be found in stochastic electrodynamics where the
stochasticity is due to the zero-point radiation field [54].

The supersymmetric procedure for the QHEs leads to a constant expectation value of
the square of the angular momentum in (43)

E
[

L̃2
]
= −µ2ũ2

ϑ − h̄µ cot ϑ ũϑ +
µ2

sin2 ϑ
ṽ2

ϕ − h̄µ [∂ϑũϑ] = h̄l(l + 1) . (44)

Here, ũϑ = Rũ · ϑ̂ and µṽϕ = L̃z are the angular osmotic velocity and the constant z
component of the angular momentum, respectively, and l is the orbital quantum number
in the solution of the Schrödinger equation. The radial osmotic velocities for the states
corresponding to the energy level n, l = n− 1 read ũn,l=n−1

r = − h̄
(l+1)µa0

+ h̄l
µR while the

osmotic angular velocity depends on the value of the angular momentum ṽϕ, which in
turn corresponds to the magnetic quantum number in standard quantum mechanics.

5. Conclusions

In this short review, we have presented the state of the art of the stochastic mechanics’
formulation of quantum mechanics, an endeavor based on Nelson’s seminal paper from
1966. We have shown that this stochastic theory of quantum mechanics by now exists in a
Newtonian formulation (Nelson’s original work), a Lagrangian formulation, a Hamiltonian
formulation (quantum Hamilton equations which can be used to solve a quantum prob-
lem without touching the Schrödinger equation), and, of course, Schrödinger’s original
Hamilton–Jacobi formulation of quantum mechanics. The theory thus parallels the struc-
ture of classical analytical mechanics, i.e., we have a quantum analytical mechanics at our
disposal. Quantum analytical mechanics is the description of continuous but not differen-
tiable trajectories in configuration space in the same way as classical analytical mechanics
is the description of twice continuously differentiable trajectories in configuration space.
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To date, this has been completely established for the position space of an N-particle
system, for the internal degree of freedom called spin, the quantum Hamilton equation
formulation is still missing, but currently under development in our group.

The underlying mathematics is that of conservative diffusion processes on Riemannian
manifolds. Interesting questions arise when one considers the transferal of this approach
to the Minkowski space-time of special relativity. Instead of Gaussian diffusion processes,
one will need to consider Lévy processes [55,56], i.e., jump diffusion processes or pure
jump processes [57]. The mathematical theory of stochastic optimal control underlying the
derivation of quantum Hamilton equations is applicable to these cases [36], but all this still
has to be worked out. Another suggestion that has been put forward in this context is to
parameterize the world line of a particle in M4 via the proper time to generalize Nelson’s
idea [58]. Finally, as the stochastic formulation of quantum mechanics is already cast in
the language of motions on manifolds, a unification of quantum mechanics and general
relativity via this route seems most promising [59].

Author Contributions: Conceptualization, M.B. and W.P.; writing—original draft preparation, M.B.
and W.P.; writing—review and editing, M.B.; visualization, M.B.; supervision, W.P.; project adminis-
tration, W.P.; funding acquisition, W.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

QHEs quantum Hamilton equations
SDE stochastic differential equation
FBSDE forward backward stochastic differential equation

References
1. Mermin, D. What’s wrong with this pillow? Phys. Today 1989, 42, 9. [CrossRef]
2. Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955.
3. Hermann, G. Die naturphilosophischen Grundlagen der Quantenmechanik. Naturwissenschaften 1935, 23, 718–721. [CrossRef]
4. Bohm, D. A suggested interpretation of the quantum theory in terms of ‘hidden’ variables, I. Phys. Rev. 1952, 85, 166. [CrossRef]
5. Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 3, 195–200. [CrossRef]
6. Nelson, E. Derivation of the Schrödinger equation from Newtonian Mechanics. Phys. Rev. 1966, 150, 1079. [CrossRef]
7. Nelson, E. Quantum Fluctuations; Princeton University Press: Princeton, NJ, USA, 1985.
8. Gaeta, G. Black body radiation and quantum fluctuations Phys. Lett. A 1991, 155, 73. [CrossRef]
9. Schrödinger, E. Quantisierung als Eigenwertproblem. Ann. Phys. 1926, 385, 437–490. [CrossRef]
10. Guerra, F.; Morato, L.M. Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 1983, 27, 1774. [CrossRef]
11. Paul, W.; Baschnagel, J. Stochastic Processes: From Physics to Finance, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012.
12. Madelung E. Quantentheorie in Hydrodynamischer Form. Z. Phys. 1926, 40, 322. [CrossRef]
13. Carlen, E.A. Existence and sample path properties of diffusions in Nelson’s stochastic mechanics. In Proceedings of the 1st

BiBoS-Symposium, Bielefeld, Germany, 10–15 September 1984; Springer: Berlin/Heidelberg, Germany, 1986; p. 25.
14. Durran, R.; Neate, A.; Truman, A. The divine clockwork: Bohr’s correspondence principle and Nelson’s stochastic mechanics for

the atomic elliptic state. J. Math. Phys. 2008, 49, 032102. [CrossRef]
15. Yasue, K. Quantum mechanics and stochastic control theory. J. Math. Phys. 1981, 22, 1010. [CrossRef]
16. Zambrini, J.C. Stochastic Mechanics according to E. Schrödinger. Phys. Rev. A 1986, 33, 1532. [CrossRef]
17. Pavon, M. Lagrangian dynamics for classical, Brownian and quantum mechanical particles. J. Math. Phys. 1996, 37, 3375.

[CrossRef]
18. Dorn, D.; Guerra, F. Nelson Stochastic Mechanics on Riemannian Manifolds. Lett. Nuov. Cimento 1978, 22, 121. [CrossRef]
19. Dankel, T.G., Jr. Mechanics on Manifolds and the Incorporation of Spin into Nelson’s Stochastic Mechanics. Arch. Rat. Mech. Anal.

1970, 37, 192. [CrossRef]

http://doi.org/10.1063/1.2811173
http://dx.doi.org/10.1007/BF01491142
http://dx.doi.org/10.1103/PhysRev.85.166
http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195
http://dx.doi.org/10.1103/PhysRev.150.1079
http://dx.doi.org/10.1016/0375-9601(91)90567-R
http://dx.doi.org/10.1002/andp.19263840404
http://dx.doi.org/10.1103/PhysRevD.27.1774
http://dx.doi.org/10.1007/BF01400372
http://dx.doi.org/10.1063/1.2837434
http://dx.doi.org/10.1063/1.525006
http://dx.doi.org/10.1103/PhysRevA.33.1532
http://dx.doi.org/10.1063/1.531570
http://dx.doi.org/10.1007/BF02804667
http://dx.doi.org/10.1007/BF00281477


Universe 2021, 7, 166 15 of 15

20. Faris, W.G. Spin correlation in stochastic mechanics. Found. Phys. 1982, 12, 1. [CrossRef]
21. Guerra, F.; Marra, R. Stochastic mechanics of spin- 1

2 particles. Phys. Rev. D 1984, 30, 2579. [CrossRef]
22. Pavon, M. Stochastic mechanics and the Feynman integral. J. Math. Phys. 2000, 41, 6060. [CrossRef]
23. Goldstein, S. Stochastic Mechanics and Quantum Theory. J. Stat. Phys. 1987, 47, 645. [CrossRef]
24. Pavon, M. Derivation of the wave function collapse in the context of Nelson’s stochastic mechanics. J. Math. Phys. 1999, 40, 5565.

[CrossRef]
25. Yasue, K.; Zambrini, J.C. A Cinematic Study of Quantum Kinematics. Ann. Phys. 1985, 159, 99. [CrossRef]
26. McClendon, M.; Rabitz, H. Numerical simulations in stochastic mechanics. Phys. Rev. A 1988, 37, 3479 [CrossRef]
27. Nitta, H.; Kudo, T. Tunneling time and stochastic-mechanical trajectories for the double-barrier potential. Phys. Lett. A 2013,

377, 357.
28. Nitta, H.; Kudo, T. Time of arrival in the Aharonov-Bohm effect. Phys. E 2007, 40, 390. [CrossRef]
29. Nitta, H.; Kudo, T. Time of arrival of electrons in the double-slit experiment. Phys. Rev. A 2008, 77, 014102. [CrossRef]
30. Paul, W. Harmonically confined Tonks-Girardeau gas: A simulation study based on Nelson’s stochastic mechanics. Phys. Rev. A

2012, 86, 013607. [CrossRef]
31. Imafuku, K.; Ichiro, O.; Yamanaka, Y. Tunneling Time Based on the Quantum Diffusion Process Approach. Phys. Lett. A 1995,

204, 329. [CrossRef]
32. Pavon, M. Hamilton’s principle in stochastic mechanics. J. Math. Phys. 1995, 36, 6774. [CrossRef]
33. Köppe, J.; Grecksch, W.; Paul, W. Derivation and application of quantum Hamilton equations of motion. Ann. Phys. 2016,

529, 1600251. [CrossRef]
34. Von Renesse, M. An Optimal Transport View of Schrödinger’s Equation. Can. Math. Bull. 2012, 55, 858–869. [CrossRef]
35. Conforti, G.; Pavon, M. Extremal flows in Wasserstein space J. Math. Phys. 2018, 59, 063502. [CrossRef]
36. Øksendal, B.; Sulem, A. Forward–backward stochastic differential games and stochastic control under model uncertainty. J. Opt.

Theory Appl. 2014, 161, 22–55. [CrossRef]
37. Bahlali, S.; Gherbal, B. Optimality conditions of controlled backward doubly stochastic differential equations. Rand. Opt. Stoch.

Eq. 2010, 18, 247–265. [CrossRef]
38. Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Wiley:

New York, NY, USA, 1962.
39. Wallstrom, T.C. On the derivation of the Schrödinger equation from stochastic mechanics. Found. Phys. Lett. 1989, 2, 113–126.

[CrossRef]
40. Grigorenko, A.N. Excited states in stochastic mechanics. Phys. Rev. A 1991, 155, 348–350. [CrossRef]
41. Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W. Quantum Hamilton equations of motion for bound states of one-dimensional

quantum systems. J. Math. Phys. 2018, 59, 062102. [CrossRef]
42. Darboux, G. Leçons sur la Théorie Générale des Surfaces; Gauthier-Villars: Paris, France, 1894.
43. Witten, E. Supersymmetry and Morse theory. J. Diff. Geom. 1982, 17, 661–692. [CrossRef]
44. Beyer, M.; Patzold, M.; Grecksch, W.; Paul, W. Quantum Hamilton equations for multidimensional systems. J. Phys. A 2019, 52,

165301. [CrossRef]
45. MacColl, L. Note on the transmission and reflection of wave packets by potential barriers. Phys. Rev. 1932, 40, 621–626. [CrossRef]
46. Sainadh, U.S.; Xu, H.; Wang, X.; Atia-Tul-Noor, A.; Wallace, W.C.; Douguet, N.; Bray, A.; Ivanov, I.; Bartschat, K.; Kheifets, A.;

et al. Attosecond angular streaking and tunnelling time in atomic hydrogen. Nature 2019, 568, 75–77. [CrossRef]
47. Serov, V.; Cesca, J.; Kheifets, A. Numerical and laboratory attoclock simulations on noble-gas atoms. Phys. Rev. A 2021, 103,

023110. [CrossRef]
48. Ramos, R.; Spierings, D.; Racicot, I.; Steinberg, A.M. Measurement of the time spent by a tunnelling atom within the barrier

region. Nature 2020, 583, 529–532. [CrossRef]
49. Wigner, E.P. Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 1955, 98, 145–147. [CrossRef]
50. Büttiker, M.; Landauer, R. Traversal time for tunneling. Phys. Rev. Lett. 1982, 49, 1739–1742. [CrossRef]
51. Baz, A.I. Lifetime of intermediate states. Yad. Fiz. 1966, 4, 252.
52. Rybachenko, V.F. Time of penetration of a particle through a potential barrier. Sov. J. Nucl. Phys. 1967, 5, 895.
53. Vaı̆nshteı̆n, A.I.; Zakharov, V.I.; Novikov, V.A.; Shifman, M.A. ABC of instantons. Sov. Phys. Usp. 1982, 25, 195. [CrossRef]
54. De la Peña, L.; Cetto, A.M.; Valdés-Hernández, A. Connecting two stochastic theories that lead to quantum mechanics. Front.

Phys. 2020, 8, 162. [CrossRef]
55. Garbaczewski, P.; Klauder, J.R.; Oliewicz, R. Schrödinger problem, Lévy processes and noise in relativistic quantum mechanics.

Phys. Rev. E 1995, 51, 4114. [CrossRef]
56. Petroni, N.C.; Pusterla, M. Lévy processes and Schrödinger equation. Phys. A 2009, 388, 824. [CrossRef]
57. Nasagawa, M. Stochastic Processes in Quantum Physics. In Monographs in Mathematics 94; Springer: Basel, Switzerland, 2000.
58. Zastawniak, T. A relativistic version of Nelson’s stochastic mechanics. Europhys. Lett. 1990, 13, 13. [CrossRef]
59. Smolin, L. Stochastic mechanics, hidden variables, and gravity. In Quantum Concepts in Space and Time; Penrose, R., Isham, C.J.,

Eds.; Oxford University Press: Oxford, UK, 1986; p. 1.

http://dx.doi.org/10.1007/BF00726872
http://dx.doi.org/10.1103/PhysRevD.30.2579
http://dx.doi.org/10.1063/1.1286880
http://dx.doi.org/10.1007/BF01206150
http://dx.doi.org/10.1063/1.533046
http://dx.doi.org/10.1016/0003-4916(85)90193-9
http://dx.doi.org/10.1103/PhysRevA.37.3479
http://dx.doi.org/10.1016/j.physe.2007.06.049
http://dx.doi.org/10.1103/PhysRevA.77.014102
http://dx.doi.org/10.1103/PhysRevA.86.013607
http://dx.doi.org/10.1016/0375-9601(95)00507-Y
http://dx.doi.org/10.1063/1.531187
http://dx.doi.org/10.1002/andp.201600251
http://dx.doi.org/10.4153/CMB-2011-121-9
http://dx.doi.org/10.1063/1.5018402
http://dx.doi.org/10.1007/s10957-012-0166-7
http://dx.doi.org/10.1515/rose.2010.014
http://dx.doi.org/10.1007/BF00696108
http://dx.doi.org/10.1016/0375-9601(91)91037-E
http://dx.doi.org/10.1063/1.5026377
http://dx.doi.org/10.4310/jdg/1214437492
http://dx.doi.org/10.1088/1751-8121/ab0bcf
http://dx.doi.org/10.1103/PhysRev.40.621
http://dx.doi.org/10.1038/s41586-019-1028-3
http://dx.doi.org/10.1103/PhysRevA.103.023110
http://dx.doi.org/10.1038/s41586-020-2490-7
http://dx.doi.org/10.1103/PhysRev.98.145
http://dx.doi.org/10.1103/PhysRevLett.49.1739
http://dx.doi.org/10.1070/PU1982v025n04ABEH004533
http://dx.doi.org/10.3389/fphy.2020.00162
http://dx.doi.org/10.1103/PhysRevE.51.4114
http://dx.doi.org/10.1016/j.physa.2008.11.035
http://dx.doi.org/10.1209/0295-5075/13/1/003

	Introduction
	Stochastic Mechanics
	Variational Principles in Stochastic Mechanics
	Quantum Hamilton Equations
	Harmonic Oscillator
	Quantum Tunneling
	Hydrogen Atom

	Conclusions
	References

