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Abstract: We discuss the “quantum deformed Schwarzschild spacetime”, as originally introduced
by Kazakov and Solodukhin in 1993, and investigate the precise sense in which it does and does not
satisfy the desiderata for being a “regular black hole”. We shall carefully distinguish (i) regularity
of the metric components, (ii) regularity of the Christoffel components, and (iii) regularity of the
curvature. We shall then embed the Kazakov–Solodukhin spacetime in a more general framework
where these notions are clearly and cleanly separated. Finally, we analyze aspects of the classical
physics of these “quantum deformed Schwarzschild spacetimes”. We shall discuss the surface
gravity, the classical energy conditions, null and timelike geodesics, and the appropriate variant of
the Regge–Wheeler equation.

Keywords: quantum deformed spacetime; regular black hole

1. Introduction

The unification of general relativity and quantum mechanics is of the utmost impor-
tance in reconciling many open problems in theoretical physics today. One avenue of
exploration towards a fully quantized theory of gravity is to, on a case-by-case basis, apply
various quantum corrections to existing black hole solutions to the Einstein equations
and thoroughly analyze the resulting geometries through the lens of standard general
relativity. As with the majority of theoretical analysis, to make progress, one begins by
applying quantum-corrections to the simplest case: the Schwarzschild solution [1].

Historically, various treatments of a quantum-corrected Schwarzschild metric have
been performed in multiple different settings [2–16]. A specific example of such a metric is
the “quantum deformed Schwarzschild metric” derived by Kazakov and Solodukhin in Ref-
erence [1]. Much of the literature sees the original metric exported from the context of static,
spherical symmetry into something dynamical, or else it invokes a different treatment of
the quantum-correcting process to that performed in Reference [1] (see, e.g., Reference [17]).

The metric derived in Reference [1] invokes the following change to the line element
for Schwarzschild spacetime in standard curvature coordinates:

1− 2m
r

−→
√

1− a2

r2 −
2m
r

. (1)

Thence,

ds2 = −
(√

1− a2

r2 −
2m
r

)
dt2 +

dr2√
1− a2

r2 − 2m
r

+ r2 dΩ2
2. (2)
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To keep the metric components real, the r coordinate must be restricted to the range
r ∈ [a, ∞). So, the “center” of the spacetime at r → a is now a 2-sphere of finite area
A = 4πa2. The fact that the “center” has now been “smeared out” to finite r was originally
hoped to be a step towards rendering the spacetime regular.

This metric was originally derived via an action principle which has its roots in the
2-D, more precisely the (1+1)-D, dilaton theory of gravity [1,18]:

S = −1
8

∫
d2z
√
−g
[

r2R(2) − 2(∇r)2 +
2
κ

U(r)
]

. (3)

Here, R(2) is the two-dimensional Ricci scalar, κ is a constant with dimensions of
length, and U(r) is the “dilaton potential”. The action (3) yields two equations of motion,
one of which is then used to derive the general form of the metric:

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2 dΩ2

2, f (r) = −2m
r

+
1
r

∫ r
U(ρ)dρ. (4)

The dilaton potential U(r) is quantized within the context of the D = 2 σ-model [1,18],
resulting in the specific metric (2). Specifically, Kazakov and Solodukhin choose

U(r) =
r√

r2 − a2
. (5)

Note that generic metrics of the form

ds2 = − f (r) dt2 +
dr2

f (r)
+ r2 dΩ2

2, (6)

where one does not necessarily make further assumptions about the function f (r), have a
long and complex history [19–22].

In Kazakov and Solodukhin’s original work [1], it is asserted that the metric (2) is
“regular at r = a”. However, by this they just mean “regular” in the sense of the metric
components (in this specific coordinate chart) being finite for all r ∈ [a, ∞). This is not
the meaning of the word “regular” that is usually adopted in the GR community. We find
it useful to carefully distinguish (i) regularity of the metric components, (ii) regularity
of the Christoffel components, and (iii) regularity of the curvature. Indeed, within the
GR community, the term “regular” means that the spacetime is entirely free of curvature
singularities [23–52], with infinities in the polynomial curvature invariants of the Riemann
tensor being used as the typical diagnostic. (That is, one typically considers the polynomial
scalar curvature invariants, which are constructed purely from contractions on products of
the Riemann curvature tensor. More complicated definitions of regularity using derivatives
of the Riemann tensor could also be envisaged but will not be explored in the current
article.) While the metric (2) is regular in terms of the metric components, it fails to be
regular in terms of the Christoffel components and has a Ricci scalar which is manifestly
singular at r = a:

R =
2
r2 −

2r2 − 3a2

r(r2 − a2)
3
2

=
a

(2a)
3
2 (r− a)

3
2
− 23

4(2a)
3
2 (r− a)

1
2

+O(1). (7)

The specific metric (2) derived by Kazakov and Solodukhin falls in to a more general
class of metrics given by

ds2
n = − fn(r)dt2 +

dr2

fn(r)
+ r2(dθ2 + sin2 θ dφ2), (8)
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where now we take

fn(r) =
(

1− a2

r2

) n
2

− 2m
r

. (9)

Here, n ∈ {0} ∪ {1, 3, 5, . . . }, r ∈ [a, ∞), and a ∈ (0, ∞). (Note that we include n = 0
as a special case since this reduces the metric to the Schwarzschild metric in standard
curvature coordinates, which is useful for consistency checks.) We only consider odd
values for n (except for the n = 0 Schwarzschild solution) as any even value of n will allow
for the r-coordinate to continue down to r = 0, and so produce a black-hole spacetime
which is not regular at its core, and hence not of interest in this work.

The class of metrics described by Equations (8) and (9) has the following regularity
structure:

• n = 0 (Schwarzschild): Not regular;
• n ≥ 1: Metric–regular;
• n ≥ 3: Christoffel–symbol–regular;
• n ≥ 5: Curvature–regular.

We wish to stress that, unlike Reference [1], we make no attempt to derive the class of
metrics described by Equations (8) and (9) from a modified action principle in this current
work. We feel that there are a number of technical issues requiring clarification in the
derivation presented in Reference [1], so instead, we shall simply use the results of Kazakov
and Solodukhin’s work as inspiration and motivation for the analysis of our general class
of metrics. As such, our extended class of Kazakov–Solodukhin models can be viewed as
another set of “black hole mimickers” [53–64], arbitrarily closely approximating standard
Schwarzschild black holes, and so potentially of interest to observational astronomers [65].

2. Geometric Analysis

In this section, we shall analyze the metric (8), its associated Christoffel symbols,
and the various curvature tensor quantities derived therefrom.

2.1. Metric Components

We immediately enforce a 6= 0 since a = 0 is trivially Schwarzschild, and, in fact, we
shall specify a > 0 since a is typically to be identified with the Planck scale. At large r
and/or small a, we have:

fn(r) =
(

1− a2

r2

) n
2

− 2m
r

= 1− 2m
r
− na2

2r2 +O
(

a4

r4

)
. (10)

So, the spacetime is asymptotically flat with mass m for any fixed finite value of n. As
r → a, we note that, for n ≥ 1, we have the finite limit

lim
r→a

fn(r) = −
2m
a

. (11)

This is enough to imply metric-regularity. Note, however, that, for the radial derivative,
we have

f ′n(r) =
na2

r3

(
1− a2

r2

) n
2−1

+
2m
r2 , (12)

and that only for n ≥ 3 do we have a finite limit

lim
r→a

f ′n(r) =
2m
a2 . (13)
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Similarly, for the second radial derivative,

f ′′n (r) =
na2(na2 + a2 − 3r2)

r6

(
1− a2

r2

) n
2−2

− 4m
r3 , (14)

and only for n ≥ 5 do we have a finite limit

lim
r→a

f ′′n (r) = −
4m
a3 . (15)

This ultimately is why we need n ≥ 3 to make the Christoffel symbols regular,
and n ≥ 5 to make the curvature tensors regular.

2.2. Event Horizons

Event horizons (Killing horizons) may be located by solving gtt(r) = fn(r) = 0, and so
are implicitly characterized by

rH = 2m

(
1− a2

r2
H

)− n
2

. (16)

This is not algebraically solvable for general n, though we do have the obvious bounds
that rH > 2m and rH > a. Furthermore, for small a, we can use (16) to find an approximate
horizon location by iterating the lowest-order approximation rH = 2m +O(a2/m) to yield

rH = 2m
{

1 +
na2

8m2 +O
(

a4

m4

)}
. (17)

Iterating a second time

rH = 2m
{

1 +
na2

8m2 −
n(3n− 2)a4

128m4 +O
(

a6

m6

)}
. (18)

We shall soon find that taking this second iteration is useful when estimating the
surface gravity. As usual, while event horizons are mathematically easy to work with,
one should bear in mind that they are impractical for observational astronomers to deal
with—any physical observer limited to working in a finite region of space+time can at best
detect apparent horizons or trapping horizons [66]; also see Reference [67]. In view of this
intrinsic limitation, approximately locating the position of the horizon is good enough for
all practical purposes.

2.3. Christoffel Symbols of the Second Kind

Up to the usual symmetries, the non-trivial non-zero coordinate components of the
Christoffel connection in this coordinate system are:

Γt
tr = −Γr

rr =
2m/r+n(a2/r2)(1−a2/r2)

n
2 −1

2r{(1−a2/r2)
n
2 −2m/r}

;

Γr
tt = {2m/r+n(a2/r2)(1−a2/r2)

n
2 −1}{(1−a2/r2)

n
2 −2m/r}

2r ;

Γr
θθ =

Γr
φφ

sin2 θ
= 2m− r(1− a2/r2)

n
2 .

(19)

The trivial non-zero components are:

Γθ
rθ = Γφ

rφ = 1
r ;

Γθ
φφ = − sin θ cos θ;

Γφ
θφ = cot θ.

(20)
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Inspection of the numerators of Γt
tr, Γr

rr, and Γr
θθ shows that (in this coordinate

system) the Christoffel symbols are finite at r = a so long as n ≥ 3. Indeed, as r → a,
we see

Γt
tr = −Γr

rr → − 1
2a ; Γr

tt → − 2m2

a3 ;

Γr
θθ =

Γr
φφ

sin2 θ
→ 2m; Γθ

rθ = Γφ
rφ → 1

a .
(21)

2.4. Orthonormal Components

When a metric gab is diagonal, then the quickest way of calculating the orthonormal
components of the Riemann and Weyl tensors is to simply set

Râb̂ĉd̂ =
Rabcd
|gac| |gbd|

; Câb̂ĉd̂ =
Cabcd
|gac| |gbd|

. (22)

When a metric gab is diagonal and a tensor Xab is diagonal, then the quickest way of
calculating the orthonormal components is to simply set

Xâb̂ =
Xab
|gab|

. (23)

In both situations, some delicacy is called for when crossing any horizon that might
be present. Let us (using −+++ signature and assuming a diagonal metric) define

S = sign(−gtt) = sign(grr). (24)

Then, S = +1 in the domain of outer communication (above the horizon) and S = −1
below the horizon.

2.5. Riemann Tensor

We shall now analyze what values of n result in non-singular components of various
curvature tensors in an orthonormal basis (t̂, r̂, θ̂, φ̂). First, the non-zero orthonormal
components of the Riemann tensor are:

Rr̂t̂r̂t̂ = − 2m
r3 −

na2
[

3−(n+1)a2/r2
]
(1−a2/r2)

n
2 −2

2r4 ,

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂ t̂θ̂ t̂ = −Rφ̂t̂φ̂t̂ = −S
{

m
r3 +

na2(1−a2/r2)
n
2 −1

2r4

}
,

Rθ̂φ̂θ̂φ̂ = 2m
r3 + 1−(1−a2/r2)

n
2

r2 .

(25)

Analysis of the numerator of Rr̂t̂r̂t̂ shows that all of the orthonormal components
of the Riemann tensor remain finite at r = a if and only if n ≥ 5. This is sufficient to
conclude that all associated polynomial Riemann curvature invariants, constructed purely
from contractions on products of the Riemann tensor, shall also be finite at r = a (and, in
fact, globally) for n ≥ 5. The n ≥ 5 case, therefore, satisfies our desiderata for curvature
regularity, as defined in Section 1. Indeed, as r → a (where S→ −1), we see

Rr̂t̂r̂t̂ → − 2m
a3 ; Rθ̂φ̂θ̂φ̂ →

1
a2 +

2m
a3 .

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂ t̂θ̂ t̂ = −Rφ̂t̂φ̂t̂ → + m
a3 .

(26)

Conversely, at large r (where S→ +1), we see

Rr̂t̂r̂t̂ = − 2m
r3 +O(a2/r4),

Rr̂θ̂r̂θ̂ = Rr̂φ̂r̂φ̂ = −Rθ̂ t̂θ̂ t̂ = −Rφ̂t̂φ̂t̂ = −m
r3 +O(a2/r4),

Rθ̂φ̂θ̂φ̂ = 2m
r3 +O(a2/r4).

(27)

So, as it should, the spacetime curvature asymptotically approaches that of Schwarzschild.
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2.6. Ricci Tensor

The non-zero orthonormal components of the Ricci tensor are:

Rt̂t̂ = −Rr̂r̂ = −S na2

2r4

[
1− (n− 1)a2/r2](1− a2/r2)

n
2−2,

Rθ̂θ̂ = Rφ̂φ̂ = 1
r2 − 1

r2

[
1 + (n− 1)a2/r2](1− a2/r2)

n
2−1.

(28)

Analysis of the Rr̂r̂ component shows that all of the components of the Ricci tensor
remain finite at r = a so long as n ≥ 5. Indeed, as r → a, we see

Rt̂t̂ = −Rr̂r̂ → 0, Rθ̂θ̂ = Rφ̂φ̂ →
1
a2 . (29)

Conversely, at large r, we have

Rt̂t̂ = −Rr̂r̂ = Rθ̂θ̂ = Rφ̂φ̂ = − na2

2r4 +O(a4/r6). (30)

2.7. Ricci Scalar

As stated in Section 1, our class of metrics is only curvature regular for n ≥ 5, where n
is an odd integer. Indeed, in general, we have

R =
2
r2 − (1− a2/r2)

n
2−2
{

2 + (n− 4)a2/r2 + (n− 2)(n− 1)a4/r4

r2

}
, (31)

and so the spacetime is non-singular at r = a if and only if n ≥ 5. Furthermore, any n ≥ 5
spacetime has positive scalar curvature at r = a, where R→ 2

a2 . As an explicit example,

Rn=5 =
2
r2 −

√
r2 − a2

{
2r4 + a2r2 + 12a4

r7

}
, (32)

which is indeed singularity–free in the region r ∈ [a, ∞) and positive at r = a.

2.8. Einstein Tensor

The non-zero components of the Einstein tensor are:

Gt̂t̂ = −Gr̂r̂ =
S
r2

{
1−

[
1 + (n− 1) a2

r2

](
1− a2

r2

)(n−2)/2
}

,

Gθ̂θ̂ = Gφ̂φ̂ = − na2

2r4

[
1− (n− 1) a2

r2

](
1− a2

r2

)(n−4)/2
.

(33)

Analysis of the Gθ̂θ̂ component reveals that the Einstein tensor remains finite in all of
its orthonormal components if and only if n ≥ 5. Indeed, as r → a (where S→ −1), we see

Gt̂t̂ = −Gr̂r̂ → − 1
a2 , Gθ̂θ̂ = Gφ̂φ̂ → 0. (34)

At large r (where S→ +1), we have

Gt̂t̂ = −Gr̂r̂ = Gθ̂θ̂ = Gφ̂φ̂ = −na2

2r4 +O(a4/r6). (35)

2.9. Weyl Tensor

The non-zero components of the Weyl tensor are

Cr̂t̂r̂t̂ = 2S Cr̂θ̂r̂θ̂ = 2S Cr̂φ̂r̂φ̂ = −2S Cθ̂ t̂θ̂ t̂ = −2S Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂

= − 2m
r3 + (1−a2/r2)

n
2 −2−1

3r2

−a2(1− a2/r2)
n
2−2
{

(5n+4)−(n+2)(n+1)a2/r2

6r4

}
.

(36)
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Thus, the components of the Weyl tensor remain finite at r = a so long as n ≥ 5.
Indeed, as r → a (where S→ −1), we see

Cr̂t̂r̂t̂ = −2Cr̂θ̂r̂θ̂ = −2Cr̂φ̂r̂φ̂ = +2Cθ̂ t̂θ̂ t̂ = +2Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂ → −
1

3a2 − 2m
a3 . (37)

At large r (where S→ +1), we find

Cr̂t̂r̂t̂ = 2Cr̂θ̂r̂θ̂ = 2Cr̂φ̂r̂φ̂ = −2Cθ̂ t̂θ̂ t̂ = −2Cφ̂t̂φ̂t̂ = −Cθ̂φ̂θ̂φ̂ = − 2m
r3 − na2

r4 +O(a4/r6). (38)

2.10. Weyl Scalar

The Weyl scalar is defined by Cabcd Cabcd. In view of all the symmetries of the spacetime
one can show that Cabcd Cabcd = 12(Cr̂t̂r̂t̂)

2, so one gains no additional behavior beyond
looking at the Weyl tensor itself. Thus, for purposes of tractability, we will only display
the result for n = 5 at r = a in order to show that the n = 5 spacetime is indeed regular at
r = a:

(Cabcd Cabcd)n=5

∣∣∣
r=a

=
4(6m + a)2

3a6 . (39)

2.11. Kretschmann Scalar

The Kretschmann scalar is given by

K = RabcdRabcd = CabcdCabcd + 2RabRab − 1
3

R2. (40)

The general result is rather messy and does not provide much additional insight into
the spacetime. Thus, for purposes of tractability we will only display the result for n = 5 at
r = a in order to show that the n = 5 spacetime is indeed regular at r = a:

Kn=5|r=a =
4
a6

(
a2 + 4am + 12m2). (41)

The fact that the Kretschmann scalar is positive definite, and can be written as a sum
of squares, is ultimately a due to spherical symmetry and the existence of a hypersurface
orthogonal Killing vector [68].

3. Surface Gravity and Hawking Temperature

Let us calculate the surface gravity at the event horizon for the generalized QMS
spacetime. Because we are working in curvature coordinates, we always have [69]

κH = lim
r→rH

1
2

∂rgtt√
gtt grr

. (42)

Thence,

κH =
1
2

∂r fn(r)
∣∣∣∣
rH

=
m
r2

H
+

na2

2r3
H

(
1− a2

r2
H

) n
2−1

. (43)

Using Equation (16), we can also rewrite this as

κH =
m
r2

H

{
1 +

na2

r2
H − a2

}
. (44)
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This result is, so far, exact. Given that the horizon location is not analytically known

for general n, we shall use the asymptotic result rH = 2m
{

1 + na2

8m2 −
n(3n−2)a4

128m4 +O( a6

m6 )
}

.
Thence,

κH =
1

4m

{
1− n(n− 1)a4

32m4 +O(a6/m6)

}
. (45)

Note the potential O(a2/m2) term vanishes (which is why we estimated rH up to
O(a4)). As usual, the Hawking temperature is simply kBTH = 1

2π h̄ κH .

4. Stress-Energy Tensor

Let us examine the Einstein field equations for this spacetime. Above the horizon,
for r > rH , we have

8π ρ = Gt̂t̂; 8π pr = Gr̂r̂. (46)

Below the horizon, for r < rH , we have

8π ρ = Gr̂r̂; 8π pr = Gt̂t̂. (47)

But then, regardless of whether one is above or below the horizon, one has

ρ = −pr =
1

8πr2

{
1−

[
1 + (n− 1) a2

r2

](
1− a2

r2

)(n−2)/2
}

,

p⊥ = − na2

16πr4

[
1− (n− 1) a2

r2

](
1− a2

r2

)(n−4)/2
.

(48)

By inspection, for n > 1, we see that p⊥(r) = 0 at r =
√

n− 1 a. Indeed, we see that
p⊥(r) > 0 for r <

√
n− 1 a and p⊥(r) < 0 for r >

√
n− 1 a. The analogous result for ρ(r)

is not analytically tractable (though it presents no numerical difficulty) as by inspection it
amounts to finding the roots of

(r2 − a2)rn − (r2 − a2)
n
2 (r2 + (n− 1)a2) = 0. (49)

We note that asymptotically

ρ = − na2

16πr4 +O(a4/r6), (50)

and

p⊥ = − na2

16πr4 +O(a4/r6). (51)

An initially surprising result is that the stress-energy tensor has no dependence on the
total mass m of the spacetime. To see what is going on here, consider the Misner–Sharp
quasi-local mass

1− 2m(r)
r

= fn(r) =⇒ m(r) = m +
r
2

{
1−

(
1− a2

r2

) n
2
}

. (52)

Then, noting that m = m(r) + 4π
∫ ∞

r ρ(r̄)r̄2dr̄ above the horizon, we see

4π
∫ ∞

r
ρ(r̄)r̄2dr̄ = − r

2

{
1−

(
1− a2

r2

) n
2
}

. (53)
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Here, the RHS is manifestly independent of m. Consequently, without need of any
detailed calculation, ρ(r) is manifestly independent of m. As an aside note that m(rH) =

rH
2 ,

so we could also write m(r) = rH
2 + 4π

∫ r
rH

ρ(r̄)r̄2dr̄.

5. Energy Conditions

The classical energy conditions are constraints on the stress-energy tensor that attempt
to keep various aspects of “unusual physics” under control [70–90]. While it can be
argued that the classical energy conditions are not truly fundamental [77,80,86], often
being violated by semi-classical quantum effects, they are nevertheless extremely useful
indicative probes, well worth the effort required to analyze them.

5.1. Null Energy Condition

A necessary and sufficient condition for the null energy condition (NEC) to hold is
that both ρ + pr ≥ 0 and ρ + p⊥ ≥ 0 for all r, a, m. Since ρ = −pr, the former inequality is
trivially satisfied, and, for all r ≥ a, we may simply consider

ρ + p⊥ =
1

8πr2

{
1− (1− a2/r2)

n
2−2

2

[
2 + (3n− 4)a2/r2 − (n + 2)(n− 1)a4/r4

]}
. (54)

Whether or not this satisfies the NEC depends on the value for n. Furthermore, for no
value of n is the NEC globally satisfied.

Provided n ≥ 5, so that the limits exist, we have

lim
r→a

(ρ + p⊥) = +
1

8πa2 . (55)

So, the NEC is definitely satisfied deep in the core of the system. Note that, at
asymptotically large distances,

ρ + pt = −
na2

8πr4 +O(a4/r6). (56)

So, the NEC (and consequently all the other classical point-wise energy conditions)
are always violated at asymptotically large distances. However, for some values of n, there
are bounded regions of the spacetime in which the NEC is satisfied. See Figure 1.

5.2. Weak Energy Condition

In order to satisfy the weak energy condition (WEC), we require the NEC be satisfied,
and in addition ρ ≥ 0. But, in view of the asymptotic estimate (50) for ρ, we see that the
WEC is always violated at large distances. Furthermore, it can be seen from Table 1 that the
region in which the NEC is satisfied is always larger than that in which ρ is positive (this
would be as good as impossible to prove analytically for general n). Thus, we can conclude
(see Table 2) that the WEC is satisfied for smaller regions than the NEC for all values of n.
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Figure 1. Plots of the NEC for several values of n. Here, the y-axis depicts 8πr2(ρ + p⊥), plotting
against r/a on the x-axis. Of particular interest are the qualitative differences in behavior as r/a→ 1;
we see divergent behavior for the n = 1 and n = 3 cases, whilst, for n ≥ 5, we see 8πr2(ρ + p⊥)→ 1
as r → a. This is ultimately due to the fact that the n ≥ 5 cases are curvature regular, with globally
finite stress-energy components.

5.3. Strong Energy Condition

In order to satisfy the strong energy condition (SEC), we require the NEC to be satisfied,
and in addition ρ + pr + 2p⊥ = 2p⊥ ≥ 0. But regardless of whether one is above or below
the horizon, the second of these conditions p⊥ ≥ 0 amounts to

0 < a < r ≤ a
√

n− 1. (57)

However, it can be seen from Table 1 that the region in which the NEC is satisfied
is always smaller than that in which p⊥ is positive (this would be as good as impossible
to prove analytically for general n). Thus, we can conclude (see Table 2) that the SEC is
satisfied in the same region as the NEC for all values of n.

5.4. Dominant Energy Condition

The dominant energy condition is the strongest of the standard classical energy
conditions. Perhaps the best physical interpretation of the DEC is that, for any observer
with timelike 4-velocity Va, the flux vector Fa = Tab Vb is non-spacelike (timelike or null). It
is a standard result that, in spherical symmetry (in fact, for any type I stress-energy tensor),
this reduces to positivity of the energy density ρ > 0 combined with the condition |pi| ≤ ρ.
Since, in the current framework, for the radial pressure, we always have pr = −ρ, the only
real constraint comes from demanding |p⊥| ≤ ρ. But this means we want both ρ + p⊥ ≥ 0
and ρ− p⊥ ≥ 0. The first of these conditions is just the NEC, so the only new constraint
comes from the second condition. By inspection, it can be seen from Table 1 that the region
in which the NEC is satisfied is always larger than that in which ρ− p⊥ is positive (this
would be as good as impossible to prove analytically for general n). Thus, we can conclude
(see Table 2) that the DEC is satisfied for smaller regions than the NEC for all values of n.
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Table 1. Regions of the spacetime where the orthonormal components of the stress-energy tensor
satisfy certain inequalities.

n ρ + p⊥ ≥ 0 ρ ≥ 0 p⊥ ≥ 0 ρ− p⊥ ≥ 0

0 a < r < ∞ a < r < ∞ a < r < ∞ a < r < ∞

1 globally violated globally violated globally violated globally violated

3 a < r / 1.26595a a < r / 1.07457a a < r / 1.41421a globally violated

5 a < r / 1.70468a a < r / 1.37005a a < r ≤ 2a a < r / 1.00961a

7 a < r / 2.05561a a < r / 1.62933a a < r / 2.44949a a < r / 1.11129a

9 a < r / 2.35559a a < r / 1.85537a a < r / 2.82843 a < r / 1.23076a

11 a < r / 2.62173a a < r / 2.05757a a < r / 3.16228a a < r / 1.34552a

...
...

...
...

...

Table 2. Regions of the spacetime where the energy conditions are satisfied.

n NEC WEC SEC DEC

0 a < r < ∞ a < r < ∞ a < r < ∞ a < r < ∞

1 globally violated globally violated globally violated globally violated

3 a < r / 1.26595a a < r / 1.07457a same as NEC globally violated

5 a < r / 1.70468a a < r / 1.37005a same as NEC a < r / 1.00961a

7 a < r / 2.05561a a < r / 1.62933a same as NEC a < r / 1.11129a

9 a < r / 2.35559a a < r / 1.85537a same as NEC a < r / 1.23076a

11 a < r / 2.62173a a < r / 2.05757a same as NEC a < r / 1.34552a

...
...

...
...

...

6. ISCO and Photon Sphere Analysis

It should be noted that particle orbits around quantum-corrected Schwarzschild black
holes have previously been explored in Reference [91], for the case of timelike test particles,
and in Reference [92], for a treatment of the photon ring. For ease of exposition, we feel it
is worthwhile presenting a unified pedagogical derivation of the locations of the orbits of
interest via the following discussion.

We have the generalized quantum modified Schwarzschild metric

ds2 = −
{(

1− a2

r2

) n
2

− 2m
r

}
dt2 +

dr2(
1− a2

r2

) n
2 − 2m

r

+ r2 dΩ2
2. (58)

Let us now find the location of both the photon sphere for massless particles, and the
ISCO for massive particles, as functions of the parameters m, n, and a. Consider the tangent
vector to the worldline of a massive or massless particle, parameterized by some arbitrary
affine parameter, λ:

gab
dxa

dλ

dxb

dλ
= −gtt

(
dt
dλ

)2
+ grr

(
dr
dλ

)2
+ r2

{(
dθ

dλ

)2
+ sin2 θ

(
dφ

dλ

)2
}

. (59)
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We may, without loss of generality, separate the two physically interesting cases
(timelike and null) by defining:

ε =

{
−1 massive particle, i.e., timelike worldline

0 massless particle, i.e., null worldline.
(60)

That is, ds2/dλ2 = ε. Due to the metric being spherically symmetric, we may fix
θ = π

2 arbitrarily and view the reduced equatorial problem:

gab
dxa

dλ

dxb

dλ
= −gtt

(
dt
dλ

)2
+ grr

(
dr
dλ

)2
+ r2

(
dφ

dλ

)2
= ε. (61)

The Killing symmetries yield the following expressions for the conserved energy E
and angular momentum L per unit mass:{(

1− a2

r2

) n
2

− 2m
r

}(
dt
dλ

)
= E ; r2

(
dφ

dλ

)
= L. (62)

Hence, {(
1− a2

r2

) n
2

− 2m
r

}−1{
−E2 +

(
dr
dλ

)2
}
+

L2

r2 = ε, (63)

implying

(
dr
dλ

)2
= E2 +

{(
1− a2

r2

) n
2

− 2m
r

}{
ε− L2

r2

}
. (64)

This gives “effective potentials" for geodesic orbits as follows:

Vε(r) =

{(
1− a2

r2

) n
2

− 2m
r

}{
−ε +

L2

r2

}
. (65)

6.1. Photon Orbits

For a photon orbit, we have the massless particle case ε = 0. Since we are in a
spherically symmetric environment, solving for the locations of such orbits amounts to
finding the coordinate location of the “photon sphere”. These circular orbits occur at
V
′
0(r) = 0. That is:

V0(r) =

{(
1− a2

r2

) n
2

− 2m
r

}{
L2

r2

}
, (66)

leading to:

V
′
0(r) =

L2

r4

{
6m + r

(
1− a2

r2

) n
2−1[

(n + 2)
a2

r2 − 2
]}

. (67)

Solving V
′
0(r) = 0 analytically is intractable, but we may perform a Taylor series

expansion of the above function about a = 0 for a valid approximation (recall a is associated
with the Planck length).

To fifth-order, this yields:

V
′
0(r) =

2L2

r4 (3m− r) +
2L2na2

r5 − 3na4L2(n− 2)
4r7 +O

(
L2a6/r9

)
. (68)
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Equating this to zero and solving for r yields:

rγ = 3m
{

1 +
a2n

(3m)2 −
n(11n− 6)a4

8(3m)4 +O(a6/m6)

}
. (69)

The a = 0, (or n = 0), Schwarzschild sanity check reproduces rγ = 3m, the expected result.
To verify stability, we check the sign of V

′′
0 (r):

V
′′
0 (r) = −

L2

r4

{
24m

r
−
(

1− a2

r2

) n
2−2[

6− (7n + 12)
a2

r2 + (n + 2)(n + 3)
a4

r4

]}
. (70)

We now substitute the approximate expression for rγ into Equation (70) to determine
the sign of V′′0 (rγ). We find:

V′′0 (rγ) = −
2L2

81m4

{
1− 3na2

(3m)2 +
n(67n− 6)a4

8(3m)4 +O(a6/m6)

}
. (71)

Given that all bracketed terms to the right of the 1 are strictly subdominant in view of
a� m, we may conclude that V

′′
0 (rγ) < 0, and, hence, the null orbits at r = rγ are unstable.

Let us now recall the generalized form of Equation (66), and specialize to n = 5 (the
lowest value for n for which our quantum deformed Schwarzschild spacetime is regular).
We have:

V0(r, n = 5) =
L2

r2


(

1− a2

r2

) 5
2

− 2m
r

 ; (72)

V′0(r, n = 5) =
L2

r4

{
6m−

√
r2 − a2

(
2− 9a2

r2 +
7a4

r4

)}
. (73)

Once again, setting this to zero and attempting to solve analytically is an intractable
line of inquiry, and we instead inflict Taylor series expansions about a = 0.

To fifth-order, we have the following:

V′0(r, n = 5) = − 2L2

r3

{
1− 3m

r −
5a2

r2 + 45L2a4

8r4 +O(a6/r6)
}

;

=⇒ rγ = 3m
{

1 + 5a2

(3m)2 − 245a4

8(3m)4 +O(a6/m6)
}

,
(74)

which is consistent with the result for general n displayed in Equation (69).

6.2. ISCOs

For massive particles, the geodesic orbit corresponds to a timelike worldline, and we
have the case that ε = −1. Therefore:

V−1(r) =

{(
1− a2

r2

) n
2

− 2m
r

}{
1 +

L2

r2

}
, (75)

and it is easily verified that this leads to:

V
′
−1(r) =

2m(3L2 + r2)

r4 +
(1− a2/r2)

n
2−1

r3

[
na2 + L2

(
(n + 2)

a2

r2 − 2
)]

. (76)

For small a, we have

V−1(r) =
{

1 +
L2

r2

}{
1− 2m

r
− na2

2r2 +
n(n− 2)a4

8r4 +O
(

a6

r6

)}
, (77)
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and

V
′
−1(r) =

2(L2(3m− r) + mr2)

r4 +
(2L2 + r2)na2

r5 − (3L2 + 2r2)n(n− 2)a4

4r7 +O
(

a6

r7

)
. (78)

Equating this to zero and rearranging for r presents an intractable line of inquiry.
Instead, it is preferable to assume a fixed circular orbit at some r = rc, and rearrange the
required angular momentum Lc to be a function of rc, m, and a. It then follows that the
innermost circular orbit shall be the value of rc for which Lc is minimized. It is of course
completely equivalent to perform this procedure for the mathematical object L2

c , and we do
so for tractability.

Hence, if V
′
−1(rc) = 0, we have:

L2
c =

na2
(

1− a2

r2

) n
2
+ 2mr

(
1− a2

r2

)
(

1− a2

r2

) n
2
[
2− (n + 2) a2

r2

]
− 6m

r

(
1− a2

r2

) . (79)

For small a, we have

L2
c =

mr2

r− 3m
+

nr(r−m)a2

2(r− 3m)2 −
n{(2n + 4)r2 + (5n− 18)mr− 9(n− 2)m2}a4

8r(r− 3m)3 +O(a6). (80)

As a consistency check, for large rc (i.e., rc � a, m), we observe from the dominant
term of Equation (80) that Lc ≈

√
mrc, which is consistent with the expected value when

considering circular orbits in weak-field GR. Indeed, it is easy to check that, for large r, we
have L2

c = mrc +O(1). Note that, in classical physics, the angular momentum per unit
mass for a particle with angular velocity ω is Lc ∼ ωr2

c . Kepler’s third law of planetary
motion implies that r2

c ω2 ∼ GNm/rc. (Here, m is the mass of the central object, as above.)
It, therefore, follows that Lc ∼

√
GNm/rc rc. That is Lc ∼

√
mrc, as above.

Differentiating Equation (79) and finding the resulting roots is not analytically feasible.

We instead differentiate Equation (80), obtaining a Taylor series for ∂L2
c

∂rc
for small a:

∂L2
c

∂rc
= mrc(rc−6m)

(rc−3m)2 −
mn(5rc−3m)a2

2(rc−3m)3

− n{16r3
c+(n−2)(4r3

c+21mr2
c−36m2rc+27m3)}a4

8r2
c (rc−3m)4 +O(a6) .

(81)

Solving for the stationary points yields:

rISCO = 6m
{

1 +
na2

8m2 −
n(49n− 22)a4

3456m4 +O
(

a6

m6

)}
, (82)

and the a = 0 Schwarzschild sanity check reproduces rc = 6m as required.

6.3. Summary

Denoting rH as the location of the horizon, rγ as the location of the photon sphere,
and rISCO as the location of the ISCO, we have the following summary:

• rH = 2m× {1 + na2

2(2m)2 −
n(3n−2)a4

8(2m)4 +O( a6

m6 )};

• rγ = 3m×
{

1 + na2

(3m)2 −
n(11n−6)a4

8(3m)4 +O( a6

m6 )
}

;

• rISCO = 6m×
{

1 + na2

8m2 −
n(49n−22)a4

3456m4 +O( a6

m6 )
}

.

7. Regge–Wheeler Analysis

Now, considering the Regge–Wheeler equation, in view of the unified formalism
developed in Reference [93] (also see References [64,94,95]), we may explicitly evaluate the



Universe 2021, 7, 165 15 of 19

Regge–Wheeler potentials for particles of spin S ∈ {0, 1} in our spacetime. Firstly, define a
tortoise coordinate as follows:

dr∗ =
dr(

1− a2

r2

) n
2 − 2m

r

. (83)

This tortoise coordinate is, for general n, not analytically defined. However, let us
make the coordinate transformation regardless; this yields the following expression for
the metric:

ds2 =

{(
1− a2

r2

) n
2

− 2m
r

}{
− dt2 + dr2

∗

}
+ r2

(
dθ2 + sin2 θ dφ2

)
. (84)

It is convenient to write this as:

ds2 = A(r∗)2
{
− dt2 + dr2

∗

}
+ B(r∗)2

(
dθ2 + sin2 θ dφ2

)
. (85)

The Regge–Wheeler equation is [93–95]:

∂2
r∗ φ̂ + {ω2 − VS}φ̂ = 0, (86)

where φ̂ is the scalar or vector field, V is the spin-dependent Regge–Wheeler potential for
our particle, and ω is some temporal frequency component in the Fourier domain. For a
scalar field (S = 0), examination of the d’Alembertian equation quickly yields:

VS=0 =

{
A2

B2

}
`(`+ 1) +

∂2
r∗B
B

. (87)

For a massless vector field, (S = 1, e.g., photon), explicit conformal invariance in
3+1 dimensions guarantees that the Regge–Wheeler potential can depend only on the ratio
A/B, whence normalizing to known results implies:

VS=1 =

{
A2

B2

}
`(`+ 1). (88)

Collecting results, for S ∈ {0, 1}, we have:

VS∈{0,1} =

{
A2

B2

}
`(`+ 1) + (1− S)

∂2
r∗B
B

. (89)

The spin 2 axial mode is somewhat messier and (for current purposes) not of immedi-
ate interest. Note that, for our metric,

∂r∗ =

{(
1− a2

r2

) n
2

− 2m
r

}
∂r, (90)

and B(r) = r. We have:

∂2
r∗B
B =

∂r∗

{(
1− a2

r2

) n
2 − 2m

r

}
r

= 1
r2

{(
1− a2

r2

) n
2 − 2m

r

}{
n
(

1− a2

r2

) n
2−1 a2

r2 + 2m
r

}
.

(91)
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For small a:

∂2
r∗B
B

=
2m(1− 2m/r)

r3 +
n(r− 3m)

r5 a2 +
n{5(n− 2)m− 4(n− 1)r}

4r7 a4 +O
(

ma6

r9

)
. (92)

Therefore:

VS∈{0,1} =
1
r2

[(
1− a2

r2

) n
2

− 2m
r

]{
`(`+ 1) + (1− S)

[
n
(

1− a2

r2

) n
2−1 a2

r2 +
2m
r

]}
. (93)

This has the correct behavior as a→ 0, reducing to the Regge–Wheeler potential for
Schwarzschild:

lim
a→0
VS∈{0,1} =

1
r2

[
1− 2m

r

]{
`(`+ 1) + (1− S)

2m
r

}
. (94)

In the small a approximation, we have the asymptotic result

VS∈{0,1} =
(1− 2m

r )
r2

{
`(`+ 1) + (1− S) 2m

r
}
− na2

2r4

{
`(`+ 1) + 2(1− S)

[ 3m
r − 1

]}
+ na4

2r6

{
(n−2)

4 [`(`+ 1)]− (1− S)
[
2(n− 1) + 5

(
1− n

2
)m

r
]}

+O
(

a6

r8

)
.

(95)

The Regge–Wheeler equation is fundamental to exploring the quasi-normal modes of
the candidate spacetimes, an integral part of the “ringdown” phase of the LIGO calculation
to detect astrophysical phenomena via gravitational waves. Explorations of the quasi-
normal modes of various quantum-corrected black hole spacetimes have been performed
in References [96–100].

8. Discussion and Conclusions

The original Kazakov–Solodukhin “quantum deformed Schwarzschild spacetime” [1]
is certainly more “regular” than Schwarzschild spacetime, but it is not “regular” in the
sense normally intended in the general relativity community. While the metric components
are regular, both Christoffel symbols and curvature invariants diverge at the “center” of
the spacetime, a 2-sphere where r → a with finite area A = 4πa2. The “smearing out” of
the “center” to r → a is not sufficient to guarantee curvature regularity.

We have generalized the original Kazakov–Solodukhin spacetime to a two-parameter
class compatible with the ideas mooted in Reference [1]. Our generalized two-parameter
class of “quantum corrected” Schwarzschild spacetimes contains exemplars which have
much better regularity properties, and we can distinguish three levels of regularity: metric
regularity, Christoffel regularity, and regularity of the curvature invariants.

Furthermore, our generalized two-parameter class of models distorts Schwarzschild
spacetime in a clear and controlled way—so providing yet more examples of black-hole
“mimickers” potentially of interest for observational purposes. In this regard, we have
analyzed the geometry, surface gravity, stress-energy, and classical energy conditions. We
have also perturbatively analyzed the locations of ISCOs and photon spheres, and set up
the appropriate Regge–Wheeler formalism for spin-1 and spin-0 excitations.

Overall, the general topic of “quantum corrected” Schwarzschild spacetimes is cer-
tainly of significant interest, and we hope that these specific examples may serve to encour-
age further investigation in this field.
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