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Abstract: The accelerated expansion of the Universe is one of the main discoveries of the past decades,
indicating the presence of an unknown component: the dark energy. Evidence of its presence is being
gathered by a succession of observational experiments with increasing precision in its measurements.
However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda
cold dark matter, faces several problems related to the nature of such energy component. This has led
to a growing exploration of alternative models attempting to solve those drawbacks. In this review,
we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well
as some of the most used cosmological samples. Next, we discuss how to constrain each model’s
parameters using observational data. Finally, we summarize the status of dark energy modeling.

Keywords: dark energy; modified gravity; cosmology

1. Introduction

One of the most important discoveries in modern cosmology since the observation of
the Universe expansion by George Lemaître [1] and Edwin Hubble [2] and the detection of
the cosmic microwave background (CMB) [3,4] is the accelerated expansion at late times.
This cosmic acceleration was detected at the end of the 1990s, when two independent
collaborations were observing high redshift type Ia supernovae (SNIa) to measure the
curvature and deceleration parameter of the Universe [5,6]; both groups established a
cosmological constant model of the Universe, with Ωm ≈ 0.3, and ΩΛ ≈ 0.7. Later, this
result was confirmed by different cosmological probes, for example the CMB [7,8], baryon
acoustic oscillations (e.g., [9,10]), and gravitational lensing, both strong (e.g., [11]) and
weak (e.g., [12]).

In recent decades, substantial effort has been made to understand the nature of Dark
Energy (DE) (e.g., see [13] for a recent review) with the Λ Cold Dark Matter model (ΛCDM)
being the cornerstone of modern cosmology and the simplest one, composed of two domi-
nant components, known as cold dark matter (DM) and cosmological constant, and three
subdominant components identified as baryons, photons, and neutrinos. The ΛCDM
model is not only effective at background level (isotropic and homogeneous Universe),
but also robust at linear perturbations, having accurate predictions for the matter power
spectrum and the small differences for photons temperature observed in the CMB [14,15].
As mentioned previously, the ΛCDM model is composed of ∼32% cold dark matter, which
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is essential for the structure formation, being the most suitable explanation for the ro-
tation curves of galaxies (see for instance [16–18]). It is assumed that dark matter is a
non-relativistic particle and the preferred candidates are the particles emerging from the
Supersymmetric theory [19,20]. However, the lack of evidence of these particles strength-
ens the proposition of other candidates such as Axions, Ultra light scalar field dark matter,
and others [21–23]. Despite the remarkable achievements of the ΛCDMmodel, it has impor-
tant afflictions when describing the nature of the cosmological constant (CC) through the
idea of a quantum vacuum fluctuations [24,25]. This idea generates, from the theoretical
point of view, an error of ∼10120 orders of magnitude, and it is known as the fine tuning
problem [26]. In addition, the CC has the coincidence problem [26], i.e., why did the Universe
accelerate at late epochs and not before of after? On top of that, recent observations from
Planck and Supernovae Type Ia differ in their values for H0 (see also [27,28] for recent
values measured using gravitational lens systems), introducing tension between different
observations at different redshifts [29–33]. The community attributes the problem to the
ΛCDM model and in particular to the CC; therefore, new approaches are proposed to
alleviate the discrepancy among observations (see also [34–36]).

In the context of these tensions and the problems with CC, a plethora of alternative
dark energy models have been explored. Our aim is to review a set of those models
consisting of fluids that can be described by a variety of formulations. Some of them can
be described by different fluids and their particles that compose them, like scalar fields,
while others that do not need extra fluids but require modifications to general theory of
relativity (GTR, [37–50]) (for recent overviews of GTR, see, e.g., [51–53] and references
therein). Specifically, the first category contains models avoiding the idea of associating the
Universe acceleration with quantum vacuum fluctuations (like in CC) and thus assume a
fluid expression manageable by the quantum field theory. The second one consist of models
introducing extensions to GTR, generating a Universe acceleration without the addition
of extra fluids. However, the current overabundance of models is overwhelming, posing
difficulties to decide which is the best candidate to compete against the ΛCDM model.

Recent years have also witnessed the increase in observational surveys designed
to obtain precise measurements aimed to probe DE’s nature. With this improvement in
the instrument sensitivity came the mechanism to discriminate between models of DE;
i.e., tensions between different probes could lead to ruling out some of them. In this context,
we consider widely used samples (such as SNIa [5], CMB [15], baryon acoustic oscillations)
as well as other recent compilations (strong gravitational lens systems [54–56], starburst
galaxies [57–62], and observational Hubble parameters [56,63].

The outline of the review is as follows: Section 2 summarizes the basic equations,
Section 3 presents the cosmological samples that we use to constraint the different theoreti-
cal models, and Section 4 describes the DE models, together with the constraints of the
free parameters of each model. Finally, in Section 5, we give a discussion and conclusion
of the models mentioned, discussing the promising models and what the contribution is to
the understanding of the Universe acceleration.

2. Basic Equations for the Background Cosmology

Modern cosmology is based on the general theory of relativity, whose master equation
is the field equation given by

Gµν = 8πGTµν, (1)

where Gµν ≡ Rµν − gµνR/2 is known as the Einstein tensor, composed of the Ricci tensor
(Rµν), the Ricci scalar (R), and the metric tensor (gµν). The right side of Equation (1) shows
the Newton gravitational constant (G) and the energy momentum tensor. Hereafter we
will use natural units (c = h̄ = 1), unless we explicitly mention the opposite.
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Hereafter, we focus our attention on the background cosmology considering a ho-
mogeneous and isotropic Universe. In this vein, we use the standard line element of
Friedmann–Lemaitre–Robertson–Walker (FLRW) with flat geometry k = 0, as

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2), (2)

where dΩ2 ≡ dθ2 + sin2 θdϕ2 and a(t) is the scale factor. The energy-momentum tensor is
written, as always, as

Tµν = pgµν + (ρ + p)uµuν, (3)

where p, ρ, uµ, and gµν are the pressure, density, four-velocity of the fluid, and the metric
tensor, respectively. The covariant derivative of the energy momentum tensor ∇µTµν = 0
generates the continuity equation, given by

∑
i

[
ρ̇i + 3

ȧ
a
(ρi + pi)

]
= 0, (4)

where the sum is over all the species, and dots stand for derivatives with respect to time.
Through the Einstein field equations, we arrive at the Friedmann equation, which is a

first-order non-linear differential equation composed of the scale factor and the densities of
the species. Therefore, the equation takes the form

H2 ≡
(

ȧ
a

)2
=

8πG
3 ∑

i
ρi, (5)

where H is known as the Hubble parameter, which indicates the Universe expansion rate.
Hence, it is possible to define the dimensionless Friedmann equation in the form

E(z)2 ≡
(

H
H0

)2
= ∑

i
Ω(z)i, (6)

where Ω(z) ≡ 8πGρ(z)/3H2
0 is known as the density parameter, a function of the redshift

(z), and the sum runs for the components of the Universe used in the model (Ωb, Ωdm,
Ωr, Ωde represent baryons, dark matter, radiation, and dark energy, respectively), H0 is
the Hubble constant (this is the Hubble parameter evaluated at z = 0). With the previous
equations, it is possible to define the flat condition as

1 = ∑
i

Ωi; (7)

notice that the density parameters are evaluated at z = 0 and they are denoted with the
label 0. The comoving distance from the observer to redshift z is given by (units of c are
recovered in the following equations)

r(z) =
c

H0

∫ z

0

dz′

E(z′)
. (8)

Therefore, we define the luminosity distance, denoted as dL(z), as

dL(z) =
c

H0
(1 + z)

∫ z

0

dz′

E(z′)
, (9)

where c is the speed of light. The angular diameter distance is related to the comoving
distance as

DA = dL(z)/(1 + z)2, (10)
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In addition, the angular diameter distance between two objects at redshifts z1 and z2
(z1 < z2) is given by

D12(z) =
c

H0(1 + z)

∫ z2

z1

dz′

E(z′)
, (11)

3. Cosmological Samples

Observational samples are required not only to investigate the consistency of any
theoretical model prediction but also to discern between different models. In this section,
we review the most common samples used as “standard candles” to probe those models.
Given a cosmological model, the astronomical distance to an object is generally measured
using the redshift to the object and the distance–redshift relationship provided by the
model (see Equation (9)). However, when the goal is to infer the cosmological model,
an independent distance measurement is needed. The methods to obtain these independent
measurements are based on empirical relationships, and thus, the astronomical objects
following those relations are called standard candles.

Knowing the intrinsic flux of a standard candle(recall the relation between the flux ( f ),
intrinsic luminosity (L), and the luminosity distance (dL): f = L/(4πd2

L)), we can obtain a
relation between the apparent magnitude (m, observed) and the absolute magnitude (M,
acquired from an empirical relation)

m = M + 5 log10

(
dL

10pc

)
. (12)

In the following sections, we include a general description of some of the most used
cosmological samples with emphasis on the quantification of the goodness-of-fit (or figure-
of-merit) by defining a function (χ2) associated with the sample errors or covariances,
which is applied to investigate the cosmological models presented in Section 4.

3.1. Type Ia Supernovae

Type Ia supernova is believed to originate from a white dwarf accreting matter from a
companion star. When the white dwarf exceeds the Chandrasekhar mass limit (∼1.4M�,
where M� is 1 solar mass), there is a collapse and subsequent explosion. As all the SNIa
have roughly the same luminosity (SNIa peak luminosities could have a scatter of∼0.3 mag,
but, after applying a correction related to the correlation between the peak luminosity and
the light-curve decline time (the so-called “stretch”), the scatter is reduced to ≤0.15 mag),
and they can be used as standard candles.

Samples of SNIa (e.g., [31,47,64–66]) provide distance modulus measurements
(see Equation (12)). As the measurements in this kind of sample are correlated, it is
convenient to build the chi square function as

χ2
SNIa = a + log

( e
2π

)
− b2

e
, (13)

where

a = ∆µ̃T · Cov−1
P · ∆µ̃,

b = ∆µ̃T · Cov−1
P · ∆1, (14)

e = ∆1T · Cov−1
P · ∆1,

and ∆µ̃ is the vector of residuals between the theoretical distance modulus and the ob-
served one, ∆1 = (1, 1, . . . , 1)T , and CovP is the covariance matrix formed by adding the
systematic and statistic uncertainties, i.e., CovP = CovP,sys + CovP,stat. The super-index
T on the above expressions denotes the transpose of the vectors.
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The theoretical distance modulus is estimated by

mth =M+ 5 log10[dL(z)/10 pc], (15)

whereM is a nuisance parameter that has been marginalized in (13).

3.2. Baryon Acoustic Oscillations

Another way to establish a constraint of model parameters is through the standard
rules known as Baryon Acoustic Oscillations (BAO). These are primordial signatures in the
matter power spectrum produced by the interaction between baryons and photons in a hot
plasma in the pre-recombination epoch.

The theoretical BAO angular scale (θth) is estimated as

θth(z) =
rdrag

(1 + z)DA(z)
, (16)

where dL and DA are written in Equations (9) and (10), respectively. The parameter rdrag
indicates the sound horizon at baryon drag epoch. The comoving sound horizon, rs(z), is
defined as

rs(z) =
c

H0

∫ ∞

z

cs(z′)
E(z′)

dz′, (17)

where the sound speed cs(z) = 1/
√

3(1 + R̄b/(1 + z)), with R̄b = 31,500 Ωbh2(TCMB/2.7K)−4,
and TCMB is the CMB temperature. The redshift zdrag at the baryon drag epoch is well fitted with
the formula proposed by Eisenstein and Hu [67]

zdrag =
1291(Ωm0h2)0.251

1 + 0.659 (Ωm0h2)0.828 [1 + b1(Ωb0h2)b2 ], (18)

where

b1 = 0.313
(

Ωm0 h2
)−0.419

[
1 + 0.607

(
Ωm0 h2

)0.674
]

, (19)

b2 = 0.238
(

Ωm0 h2
)0.223

. (20)

where Ωm0 and Ωb0 are the matter component (dark matter plus baryons) and baryon
component at z = 0, respectively. For this work, we set the rdrag = 147.21± 0.23, obtained
by Planck collaboration [15]. Notice that, as BAO data points are estimated using rdrag,
which depends on the cosmological model, they could be considered as biased.

The most recent compilation of transversal BAO measurements θBAO(z) is presented
in [68]. A total of 15 measurements [69–73] were obtained using the data releases (DR), DR7,
DR10, DR11, DR12, DR12Q (quasars), of Sloan Digital Sky Survey (SDSS) [74]. As transver-
sal angular BAO points are considered uncorrelated, the chi square function is built as

χ2
BAO =

N

∑
i=1

(
θi

BAO − θth(zi)

σθi
BAO

)2

, (21)

where θi
BAO± σθi

BAO
is the BAO angular scale, N is the number of data and their uncertainty

at 68% measured at zi. It is worth mentioning that there is a sample of six correlated data
points, with their associated covariance matrix, collected in [75] and measured by [76–78].
In this case, the chi square function is

χ2
cBAO = ~XTCov−1X̃ (22)
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where ~X is the difference between the theoretical and observational quantities of dA(zdrag)/
DV(zi) measured at the redshift zi, Cov−1 is the inverse covariance matrix (see [75] for
details), and the dilation scale (DV) is defined as [79]

DV =

[
d2

A(z) c z
H0E(z)

]1/3

(23)

where dA(z) = (1 + z)DA(z) is the comoving angular–diameter distance.

3.3. Cosmic Microwave Background Radiation

In the early Universe, baryons and photons were coupled, leading to coherent oscilla-
tions that are observed in the power spectrumof the CMB (e.g., WMAP [8,80], Planck [15,81])
(the power spectrum is the statistical description of the temperature anisotropies observed
in the CMB map). This is a powerful probe due to its ability to estimate the cosmological
parameters with high precision [82]. The information of the CMB acoustic peaks can be
condensed in three quantities, with the following distance posteriors: the acoustic scale
(lA), the shift parameter (R), and the decoupling redshift (z∗). Several authors have proved
that these quantities are almost independent of the DE model considered, and thus they
can be used to test the parameters of alternative cosmologies [83–85]. The acoustic scale is
defined as

lA =
πr(z∗)
rs(z∗)

, (24)

where rs is the sound horizon (Equation (17)) at the redshift of decoupling z∗ given by Hu
and Sugiyama [86],

z∗ = 1048[1 + 0.00124(Ωb0h2)−0.738][1 + g1(Ωm0h2)g2 ], (25)

where

g1 =
0.0783(Ωbh2)−0.238

1 + 39.5(Ωb0h2)0.763 , g2 =
0.560

1 + 21.1(Ωb0h2)1.81 . (26)

The shift parameter is defined as [87]

R =

√
Ωm0H2

0

c
r(z∗). (27)

where Ωm0 includes the baryon and DM components.
Thus, the χ2 for the CMB data is constructed as

χ2
CMB = XT Cov−1

CMB X, (28)

where Cov−1
CMB is the inverse covariance matrix of the distance posteriors and

X =

 lth
A − lobs

A
Rth − Robs

zth
∗ − zobs

∗

, (29)

the superscripts th and obs refer to the theoretical and observational estimations, respectively.
To infer the parameters of the alternative cosmologies, we employ the distance poste-

riors of WMAP [80] and Planck [88].

3.4. Observational Hubble Parameter

The Hubble parameter is estimated mostly by using the differential age (DA, [63])
methodology and from BAO measurements. The former method consists of measuring the
age between pairs of passive evolving galaxies (dubbed cosmic chronometers) with similar
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metallicity and separated by a small redshift interval with redshift z . 2.0 (for example, the
authors of [89] measure dz ∼ 0.04 at z < 0.4 and dz ∼ 0.3 at z > 0.4). Thus, the expansion
rate is written as

H(z) = − 1
1 + z

dz
dt

, (30)

where dz is measured with high accuracy (reference [89] indicates that spectroscopic
redshifts of galaxies have typical uncertainties σz < 0.001). The OHD from the DA method
are considered cosmological independent measurements. On the other hand, the OHD
from BAO surveys are non-homogeneous, since they depend on the cosmological model
selected. By taking a unique value for rdrg in these data, an OHD homogeneous sample
can be obtained (see [66] for further details).

The observational Hubble parameter data (OHD) represents the most direct way to
constrain the parameter space to mimic the observational expansion rate; the chi square
function can be expressed as

χ2
OHD =

N

∑
i=1

(
Hth(zi)− Hobs(zi)

σi
obs

)2

, (31)

where Hth(zi) is the theoretical estimate using (6) or a generalization, Hobs(zi)± σi
obs is the

observational Hubble parameter (from DA, (non)-homogeneous BAO points, or the joint of
them) with its uncertainty at the redshift zi, and N is the number of points used.

3.5. Strong Gravitational Lens Systems

A strong gravitational lens systems (SLS) offers a unique opportunity to study the
Ωm − w plane because their confidence regions are almost orthogonal to those of standard
rulers (like BAO and CMB). Different groups of SLS have been used to constrain cosmo-
logical parameters with different methods [54–56,90–93]. These systems have lenses in the
region 0 . z . 1 with their respective sources in the range 0.2 . z . 3.5. The chi square
function for SLS takes the form

χ2
SLS =

204

∑
i

[Dth(zL, zS)− Dobs(θE, σ2)]2

(δDobs)2 , (32)

where the observable to confront is Dobs = c2θE/4πσ2, where θE is the Einstein radius of
the lens obtained by assuming the gravitational lens potential is modeled by a Singular
Isothermal Sphere (SIS), defined by

θE = 4π
σ2

SISDLS

c2DS
. (33)

In the above expression, σSIS is the 3D velocity dispersion of the lens galaxy, DS is the
angular diameter distance to the source, and DLS is the angular diameter distance from the
lens to the source defined by Equation (11), where 1→ L and 2→ S. Note that, as SLS data
assumes a lens model for θE and σSIS comes from spectroscopy, the sample is independent
of h and, as consequence, the parameter constraints do not depend on h. The uncertainty
of Dobs is estimated by

δDobs = Dobs

[(
δθE
θE

)2
+ 4
(

δσ

σ

)2
]1/2

, (34)

where δθE and δσ are the uncertainties of the Einstein radius and the observed line-of-sight
(1D) velocity dispersion, respectively.

The theoretical counterpart is estimated by the ratio

Dth ≡ DLS/DS. (35)
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A corrective parameter f is often introduced in Equation (32) to take into account
possible systematic differences among systems (e.g., elliptical instead of spherical profile
for the lens halo, line-of-sight stellar velocity dispersion as opposed to the dark matter halo
velocity dispersion, and steeper mass distribution profile; see, for example [54,94]).

3.6. Ionized Gas in Starburst Galaxies

Authors ([57–61], and references therein) have argued that the correlation between
the measured luminosity L and the inferred velocity dispersion σ of the ionized gas (e.g.,
Hβ, Hα, [OIII] emission lines) in extreme starburst galaxies (i.e., containing a population
of O and/or B stars) may be used as a cosmological tracer to constrain cosmological model
parameters. Compilations provide apparent magnitude, emission line luminosity, and
velocity dispersion (e.g., [61,62]), and the chi square function is estimated as

χ2
HIIG = A− B2/C , (36)

where

A =
153

∑
i=1

(
µth(zi)− µi

obs
σµi

obs

)2

, (37)

B =
153

∑
i=1

µth(zi)− µi
obs

σµi
obs

, (38)

C =
153

∑
i=1

1
(σµi

obs
)2 . (39)

In the above expressions, µi
obs ± σi

obs is the observed distance modulus with its uncer-
tainty at redshift zi. The theoretical estimate at the redshift z is obtained by using (9) and

µth(z) = µ0 + 5 log[ dL(z) ] , (40)

where µ0 is a nuisance parameter that has been marginalized.

3.7. Joint Analysis

Testing the consistency of a given cosmological model requires a range of observational
samples with complementary sensitivity to the cosmological parameters. The constraint
on those parameters is usually achieved by combining several samples also known as
joint analysis.

For instance, a Bayesian Markov Chain Monte Carlo (MCMC) analysis is able to
constrain the phase-space parameter Θ of a cosmological model given a number of cosmo-
logical samples. In general, the procedure consists of using emcee Python package [95] for
two phases: the burn-in and the MCMC. The first is performed with a certain number of
steps to achieve the convergence of the chains according to the Gelman–Rubin criterion [96].
The second phase is performed with an appropriate number of steps for sampling the
confidence regions. Additionally, for each model, the priors (flat or Gaussian) of the
parameters are chosen according to values provided in the literature. For the joint analysis,
the figure-of-merit to be optimized is given by

χ2
Joint = ∑ χdata, (41)

where the χdata represents the name of the different samples. In general, the joint analysis
is calculated using the combination of at least three data samples, but ideally it should
contain all of them.



Universe 2021, 7, 163 9 of 41

4. Taxonomy of Dark Energy Models

This section is dedicated to describing the different constrictions through the samples
mentioned previously for the different DE models studied in the literature. We divide our
study into DE models linked to a fluid with the capability of accelerating the Universe and
models in which the Einstein field equations of General Theory of Relativity are modified.

Among the featured models, the first category includes the following: constant DE
equation of state, Parameterizations of DE, Chaplygin fluid, Viscous models, and Phe-
nomenological (Generalized) emergent DE (PEDE and GEDE) [37–39]. The second category
includes the following: Brane models (with constant and variable tension), Unimodular
Gravity, Einstein–Gauss–Bonet and Cardassian models [40–49,97].

4.1. Accelerating Universe Fluids

In this subsection we summarize all those models that involve a fluid enabling a late
acceleration without modifications to GTR.

4.1.1. The ΛCDM Model

The ΛCDM is the consensus model dominated by a cold dark matter and a cosmo-
logical constant component with subdominant species of baryons and relativistic particles
(photons and neutrinos), which not only the most favoured by diverse observations but also
the simplest. The dimensionless Friedmann function is given by Equation (6), which reads

E(z)2 = Ωm0(z + 1)3 + Ωr0(z + 1)4 + ΩΛ0. (42)

The flatness condition is satisfied and written in the form

1 = Ωm0 + Ωr0 + ΩΛ0. (43)

Therefore, the CC density parameter can be written in terms of matter, while radiation
takes the form

Ωr0 = 2.469× 10−5h−2(1 + 0.2271Ne f f ), (44)

where Ne f f = 3.04 is the standard number of relativistic species [83] and h = H0/100 km
s−1 Mpc−1, where H0 = 67.66± 0.42 km s−1Mpc−1 with Planck [15], while H0 = 73.2±
1.3 km s−1Mpc−1 with Riess [98], presenting a tension between the observations and
known as H0 tension. Regarding the matter density parameter, the value is constrained as
Ωm0 = 0.3111± 0.0056, using Planck satellite [15], which is a combination of baryonic and
dark matter. Despite the model achievements, ΛCDM is afflicted with several problems,
like the nature of CC [24,25], the σ8 tension [29,30], and the H0 tension [31–33].

4.1.2. The ωCDM Model

This model is the simplest extension of the CC. The dark energy has a constant
equation of state (EoS), but it deviates from w = −1 and should satisfy ω < −1/3 to obtain
an accelerated Universe. The equation E(z) can be written as:

E(z)2
ω = Ωm0(1 + z)3 + Ωr0(1 + z)4 + (1−Ωm0 −Ωr0)(1 + z)3(1+ω), (45)

The ωCDM constraints are obtained assuming flat priors on the parameters. Table 1
presents the mean values for the ωCDM parameters using using independently OHD
(31 data from cosmic chronometers), CMB (Planck), and SNIa (Pantheon) and the joint of
them. Figure 1 shows the mean value curve of the H(z) function (top panel) for the wCDM
model using these data. The bottom panel shows the constraint contours at 1σ, 2σ, and 3σ
confidence levels. Notice that, although SNIa data are not able to constrain the h parameter,
the three different samples provide consistent constraints on the Ωm0 −ω space. Indeed,
the joint analysis provides stringent constraints, which are consistent with those of the
ΛCDM model.
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Figure 1. Top panel: Best fit curve of the H(z) function for the ωCDM model using observa-
tional Hubble parameter data (OHD) (cosmic chronometers), cosmic microwave background (CMB)
(Planck), and SNIa (Pantheon) data and the joint analysis of them. Bottom panel: 2D contours of the
free model parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) confidence levels.

Table 1. Mean values for the ωCDM parameters using the samples OHD, SNIa, CMB (Planck), and
the joint of them.

ωCDM

Data χ2
min Ωm w0 h

OHD 15.24 0.30+0.06
−0.06 −1.19+0.51

−0.49 0.69+0.06
−0.05

SNIa 1035.92 0.32+0.06
−0.08 −1.06+0.20

−0.23 0.60+0.26
−0.27

CMB 0.05 0.29+0.06
−0.05 −1.06+0.21

−0.22 0.69+0.06
−0.06

Joint 1050.59 0.30+0.01
−0.01 −1.02+0.03

−0.03 0.68+0.01
−0.01

4.1.3. Dark Energy Parameterizations

The natural alternatives to the ωCDM is to consider DE to vary with redshift through
a parameterization w(z). These functions are proposed phenomenologically to mimic the
behavior of the CC at late times. In the following, we present some of these models for a
Universe containing dark and baryonic matter, radiation, and dark energy.
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• The Chevallier–Polarski–Linder parametrization (CPL) [99,100]. An approach to study
dynamical DE models is through a parametrization of its EoS. The dimensionless
Hubble parameter E(z) for this Universe is given by

E2(z) = Ωm0(1 + z)3 + Ωr0(1 + z)4 + Ωde fde(z), (46)

We compute Ωr0 in the same form as is given by Equation (44).
The density parameter for DE is written as Ωde = 1−Ωm0 −Ωr0, and the function
fde(z) depends on w(z) as

fde(z) ≡
ρde(z)
ρde(0)

= exp
(

3
∫ z

0

1 + w(z)
1 + z

dz
)

, (47)

where ρde(z) is the energy density of DE at redshift z, and ρde(0) is its present value.
One of the most popular parameterizations is proposed by [99,101], and reads as

ω(z) = ω0 + ω1
z

(1 + z)
, (48)

where ω0 is the EoS at redshift z = 0 and ω1 = dw/dz|z=0. Although this function is
widely used, it has a divergence problem when z = −1. The function fde(z) for the
CPL parametrization is

fde(z)2
CPL = (1 + z)3(1+ω0+ω1) exp

(
−3ω1z
1 + z

)
, (49)

The h, Ωm0, ω0, and ω1 parameters are constrained using the OHD from cosmic
chronometers [66]. Figure 2 shows the reconstruction of H(z) using the best fit
of the MCMC analysis: h = 0.73+0.10

−0.08, Ωm0 = 0.29+0.09
−0.08, ω0 = −1.51+0.80

−0.91, and ω1 =

−0.20+2.38
−2.53. The confidence contours of the parameters at 1σ, 2σ, and 3σ are also shown.

• The Jassal-Bagla-Padmanabhan (JBP) parametrization. Jassal et al. [102] proposed the
following ansatz to parametrize the dark energy EoS,

ω(z) = ω0 + ω1
z

(1 + z)2 , (50)

where ω0 is the EoS at redshift z = 0 and ω1 = (dw/dz)|z=0. The function fde(z) is

fde(z)JBP = (1 + z)3(1+ω0) exp
(

3ω1z2

2(1 + z)2

)
, (51)

• The Barbosa–Alcaniz (BA) parametrization. Barboza and Alcaniz [103] considered a
EoS given by:

w(z) = w0 + w1
z(1 + z)
1 + z2 . (52)

This ansatz behaves linearly at low redshifts as w0 + w1, and w → w0 + w1z when
z→ ∞. In addition, w(z) is well-behaved for all epochs of the Universe. For instance,
the DE dynamics in the future, at z = −1, can be investigated without dealing with a
divergence. Solving the integral in Equation (47) and using Equation (52) results in:

fde(z)BA = (1 + z)3(1+w0)(1 + z2)
3
2 w1 . (53)
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Figure 2. Top panel: Best fit curve of the H(z) function for the Chevallier–Polarski–Linder (CPL)
parameterization using OHD (cosmic chronometers). Bottom panel: 2D contours of the free model
parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) confidence levels for OHD data.

• Feng–Shen–Li–Li (FSLL, [104]) parametrizations.- The authors suggested two dark
energy EoS given by:

w(z) = w0 + w1
z

1 + z2 , FSLLI (54)

w(z) = w0 + w1
z2

1 + z2 FSLLII. (55)

Both functions have the advantage of being divergence-free throughout the entire
cosmic evolution, even at z = −1. At low redshifts, w(z) behaves as w0 + w1z and
w0 + w1z2 for FSLLI and FSLLII, respectively. In addition, when z→ ∞, the EoS has
the same value (w0) as the present epoch for FSLLI and w0 + w1 for FSLLII. Using
Equations (54) and (55) to solve Equation (47) leads to:

fde±(z) = (1 + z)3(1+w0)exp
[
±3w1

2
arctan(z)

](
1 + z2

) 3
4 w1

(1 + z)∓
3
2 w1 , (56)

where f+ and f− correspond to FSLLI and FSLLII, respectively.
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• Sendra–Lazkoz (SL, [105]) introduced new polynomial parameterizations to reduce
the parameter correlation, so they can be better constrained by the observations at low
redshifts. One of these parameterizations is given by:

w(z) = −1 + c1

(
1 + 2z
1 + z

)
+ c2

(
1 + 2z
1 + z

)2
, (57)

where the constants are defined as c1 = (16w0 − 9w0.5 + 7)/4, and c2 = −3w0 +
(9w0.5 − 3)/4, and w0.5 is the value of the EoS at z = 0.5. This w(z) function
is well-behaved at higher redshifts as (−1 − 8w0 + 9w0.5)/2. The substitution of
Equation (57) into Equation (47) results in the following:

fde(z)SL = (1 + z)
3
2 (1−8w0+9w0.5)exp

[
3z{w0(52z + 40)− 9w0.5(5z + 4) + 7z + 4}

8(1 + z)2

]
. (58)

Notice that, although DE parameterizations are common and they could solve the
coincidence problem, there is not a unique way to choose the form of the function.
Furthermore, in many cases, there are not strong arguments to justify the functional
form by an association with a first-principles theory of quantum fields or gravity.
A different approach, which is model-independent, consists of, for example investi-
gating the cosmographic parameters that characterize the kinematics of the cosmic
expansion (e.g., [106–110]). Some authors have used the Hubble parameter, the de-
celeration parameter (q(a) = −äa/ȧ2), or even higher-order derivatives of the scale
factor a, such as Jerk and Snap (e.g., [111,112]). By estimating these cosmographic
parameters using cosmological data, it is possible to associate its features to a given
DE model (see [111,113–117]).
The cosmological constraints for the aforementioned models are obtained assuming
flat priors on the DE parameters and a Gaussian prior on h. Table 2 provides the mean
values for the Ωm, w0, and w1 (w0.5) parameters of the JBP, BA, FSLLI, FSLLII, and SL
DE parameterizations using the joint of the OHD sample (34 data points from DA and
BAO measurements) in the redshift range 0.07 < z < 2.3 [118], distance posteriors
from Planck [119], and different BAO measurements (see details in [120]). Figure 3
shows the reconstruction of H(z) for these parametrizations using the parameter
mean values (top panel) and the 1σ and 3σ confidence contour of the cosmological
constraints (bottom panel). Notice that the DE parameterizations are consistent for
Ωm0 and ω0.

Table 2. Mean values for the Ωm, w0, and w1(w0.5) parameters using the joint analysis of OHD, CMB,
and BAO data for the JBP, BA, FSLLI, FSLLII, and SL DE parameterizations (see [120]).

DE Parametrizations

Model χ2
min Ωm w0 w1(w0.5) h

JBP 67.22 0.29+0.01
−0.01 −1.22+0.21

−0.16 0.55+0.91
−1.18 0.71+0.014

−0.014
BA 67.46 0.29+0.01

−0.01 −1.12+0.13
−0.13 0.007+0.22

−0.24 0.71+0.015
−0.015

FSLLI 67.01 0.29+0.01
−0.01 −1.22+0.18

−0.17 0.32+0.54
−0.57 0.71+0.015

−0.015
FSLLII 67.61 0.29+0.01

−0.01 −1.09+0.10
−0.10 −0.13+0.39

−0.44 0.70+0.014
−0.014

SL 68.52 0.29+0.01
−0.01 −1.10+0.13

−0.13 −1.13+0.05
−0.05 0.70+0.015

−0.015
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Figure 3. Top panel: Best fit curve of H(z) for the DE parameterization functions from the joint analy-
sis of OHD, CMB, and BAO measurements. Bottom panel: 2D contours of the free model parameters
at 1σ, and 3σ (from darker to lighter color bands) confidence levels using this joint analysis.

4.1.4. Chaplygin-Like Fluid

One point of view for studying the DE and DM problems is through the unified
dark fluids approach, which is known as Chaplygin gas (see, for instance, [121–125]).
An example of this is the well-known generalized Chaplygin gas [126,127] described by
the EoS p = −Aρ−α, where A and α are constants (the case α = 1 is the original model
proposed by S. Chaplygin [128]). This fluid behaves as DM at early epoch and DE at
late times and may have its origin from the Nambu–Goto d-brane action. Although this
interesting formulation reproduces the accelerated expansion of the Universe, it presents
flaws to describe the CMB anisotropies [129]. In this context, an alternative to Chaplygin gas
was proposed by Hova and Yang [130], dubbed generalized Chaplygin gas-like, with EoS

pd f = −ρd f + ρd f sinc(µπρd f 0/ρd f ) , (59)

where sinc(x) ≡ sin(x)/x and ρd f is the dark fluid density, which plays the role of the
mixture of DE and DM densities. In this case, µ is a dimensionless parameter constrained as
µ & 0.688 to be consistent with the stellar age bound (Hova and Yang Hova and Yang [130]
adopt µ ≈ 0.876 to obtain a Universe age of t ≈ 13.7 Gyrs) and ρd f 0 is the present energy
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density of this fluid, constrained in terms of the density parameter as Ωd f 0 ∼ 0.96 in Hova
and Yang [130]. It behaves as a CC in the late stage of the universe and as DM at the matter
domination epoch. The evolution of the EoS of the dark fluid is given by

ωd f (z) ≡ −1 +
(z + 1)3 tan(λ)

[(z + 1)6 + tan2 λ]ξ(z)
, (60)

where ξ(z) ≡ arctan[(z + 1)−3 tan λ] and λ ≡ µπ/2. To explore the universe dynamics
in this context, we consider a general FLRW metric including baryonic and radiation
components; hence, we write the Friedmann and acceleration equations as

H2 =
8πG

3

(
ρd f + ∑

i
ρi

)
− k

a2 , (61)

ä
a

= −4πG
3

{[
3 sinc

(
2λρd f 0

ρd f

)
− 2

]
ρd f + ∑

i
(1 + 3ωi)ρi

}
, (62)

From Equation (6) we have [130,131]

E(z)2 =
λΩd f 0

ξ(z)
+ ∑

i
Ωi0(z + 1)3(1+ωi) + Ωk(z + 1)2, (63)

where Ωd f 0 ≡ 8πGρd f 0/3H2
0 is the density parameter associated with the Chaplygin

gas-like fluid, Ωi0 and ωi are the density parameters and the EoS for baryonic matter
and radiation (according to Equation (44)), and Ωk ≡ −k/H2

0 is the curvature density
parameter and H0 = h× 100 km s−1Mpc−1. In addition, from (7), we have the constraint
Ωd f 0 + Ωb0 + Ωr0 = 1−Ωk.

Figure 4 shows the best fit curve (top panel) for the Chaplygin-like gas when the
curvature term is neglected using the OHD, SNIa and OHD+SNIa (Joint) samples. Addi-
tionally, 2D contours at 1σ, 2σ, and 3σ confidence level (CL) and 1D posterior distribution
of the free parameters are displayed for each sample. Table 3 presents the best fit values
and their uncertainties at 1σ for the model free parameters.

Table 3. Mean values for the model parameters (Ωb0, h, µ) derived from OHD and SNIa measure-
ments for a flat universe (see [131]).

Data Set OHD JLA Joint

χ2
min 14.9 690.8 706.7

Ωb0 0.042+0.002
−0.002 0.041+0.002

−0.002 0.043+0.002
−0.002

h 0.724+0.015
−0.015 0.724+0.018

−0.017 0.714+0.014
−0.014

µ 0.865+0.018
−0.019 0.816+0.021

−0.023 0.843+0.014
−0.015

a - 0.141+0.007
−0.007 0.142+0.007

−0.007

b - 3.11+0.08
−0.08 3.12+0.08

−0.08

M1
b - −19.00+0.06

−0.06 −19.01+0.04
−0.04

δM - 0.07+0.02
−0.02 0.07+0.02

−0.02
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Figure 4. Top panel: Best fit curve of Chaplygin-like gas and its uncertainty at 1σ. Bottom panel: 2D
contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) CL using
DA OHD, SNIa (JLA), and OHD+SNIa (Joint) data. Adapted from [131].

4.1.5. Viscous Model

The accelerated expansion of the Universe may be also described by considering
dissipative effects in the Universe components, mainly in the matter component. The bulk
viscosity coefficient, which satisfies the cosmological principle, is introduced in the energy-
momentum tensor, Equation (3), as an effective pressure as p → p̃ = p + Π where
Π = −3ξH based on the Eckart formalism. Under this argument, several models for ξ
have been addressed, such as:

• ξ = ξ0ρs
m. This model, where ρm is the energy density of dust matter and ξ0, s are

constants, is probably the simplest one that successfully reproduces the late accelerated
stage of the Universe. Some studies that consider a single fluid in the Universe are
presented in [132] (see, for example [133], for a case in a causal theory). Additionally,
there are other works that include several components such as radiation and DE [65].

• ξ = ξ(z). In spite of the success of the previous model at late epochs of the Universe, it
has problems in early epochs because ξ diverges. This motivates the use of alternative
viscosity models such as those proposed by [134], in particular polynomial forms of
the redshift.
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• ξ = A cosh(bE−n) and ξ = A tanh(bE−n). Alternatively, more complex models
are investigated in [134] by proposing the viscosity as a hyperbolic function of the
dimensionless Hubble parameter E.

When a single dust matter fluid is contained in the Universe, the dimensionless
Hubble parameter is obtained using Equation (6). Then, we obtain the following system to
be solved

− 2(1 + z)
dE(z)

dz
+ 3E(z) = 9λ(z) , (64)

where λ(z) = ξ(z)κ2/3H2
0 . For λ(z) = λ0 + λ1(1 + z)n, we obtain,

E(z) = λ2(1 + z)3/2 − λ1

2n− 3
(1 + z)n +

λ0

3
, (65)

where
λ2 = 1 +

λ1

2n− 3
− λ0

3
. (66)

Figure 5 shows the best fit curve of H(z) (top panel) using non-homogeneous OHD+SNIa
data. Two-dimensional contours at at 1σ, 2σ, and 3σ CL of the free model parameters are also
displayed at the bottom panel for OHD, SNIa, OHD+SNIa data. Additionally, we include the
best fit curves and 2D contours when λ(z) = 1/3 tanh(bE−n) and λ(z) = 1/3 cosh(bE−n).
Tables 4 and 5 show the best fit values and their uncertainties at 1σ of the single fluid models.

Table 4. Best fitting parameters of the polynomial model (see [134] for details).

Data χ2 λ0 λ1 n h M

OHD 15.1 1.112+0.154
−0.256 1.844+0.399

−0.408 −3.628+1.534
−0.990 0.726+0.017

−0.017 -

SNIa 1027.9 1.129+0.459
−0.618 1.159+0.702

−0.668 −2.351+1.374
−1.712 0.732+0.017

−0.017 5.741+0.053
−0.055

OHD+SNIa 1053.2 1.183+0.177
−0.487 1.273+0.363

−0.281 −2.656+1.494
−1.596 0.700+0.009

−0.009 5.634+0.023
−0.023

Table 5. Best fitting parameters of the hyperbolic models (see [134] for details).

Tanh Model

Data χ2 b n h M

OHD 28.8 0.937+0.088
−0.087 1.230+0.376

−0.350 0.713+0.014
−0.015 -

SNIa 1026.3 0.894+0.109
−0.094 1.727+1.271

−1.005 0.733+0.018
−0.018 5.747+0.054

−0.056

OHD+SNIa 1055.7 0.853+0.050
−0.050 0.933+0.236

−0.222 0.699+0.009
−0.009 5.644+0.023

−0.023

Cosh Model

Data χ2 b n h M

OHD 26.7 1.580+0.084
−0.098 1.790+0.939

−0.605 0.724+0.016
−0.016 -

SNIa 1041.5 1.417+0.106
−0.096 1.348+1.225

−0.782 0.733+0.017
−0.017 5.747+0.051

−0.053

OHD+SNIa 1054.7 1.420+0.056
−0.059 1.014+0.339

−0.273 0.700+0.009
−0.010 5.640+0.023

−0.024
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Figure 5. Top panel: Best fit curves of H(z) in the single viscous fluid model for different bulk viscosity coefficient and its
uncertainty at 1σ and 3σ. Bottom panel: 2D contours of the free model parameters for the polynomial (left), tanh (middle),
cosh (right) models, respectively, at 1σ, 2σ, and 3σ (from darker to lighter color bands) CL and 1D posterior distributions of
the model parameters using nonhomogeneous OHD, SNIa, OHD+SNIa data. Figure adapted from [134].

A generalized form of the previous model (Equation (65)) considers one additional
fluid to the dust matter component. The authors of [135] analyze the case that includes a
DE component with EoS w = −1 to describe the late time stage of the Universe. Notice that
the radiation component at this time can be considered negligible. In this case, the Hubble
parameter is given by

E(z) =
√

Ω(z)

[
1 +

λ0

3
√

Ωde0
sinh−1

(√
Ωde0

Ωm0(1 + z)3

)

− λ0

3
√

Ωde0
sinh−1

(√
Ωde0
Ωm0

)]

+
√

Ω(z)
[

λ1

2n
√

Ωde0
(1 + z)n×

2F1

(
1
2

,
n
3

, 1 +
n
3

,−Ωm0(1 + z)3

Ωde0

)
− λ1

2n
√

Ωde0
2F1

(
1
2

,
n
3

, 1 +
n
3

,−Ωm0

Ωde0

)]
, (67)

where E(0) = Ω(0) = 1, Ω(z) = Ωm0(1 + z)3 + Ωde0, and 2F1 is the hypergeometric
function. Based on the results obtained in [134], Equation (67) is obtained assuming
n = −2. It is straightforward that the case for a constant viscosity coefficient is obtained
when λ1 = 0. Figure 6 displays the best fit curves (top panel) of Equation (67) over OHD
data, obtained by confronting to OHD+SNIa+SLS data, and 2D contours at 1σ, 2σ, and 3σ
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CL of the free model parameters are presented at the bottom panel for OHD, SNIa, SLS,
and OHD+SNIa+SLS data. Table 6 shows the best fit values and their uncertainties at 1σ of
the free model parameters.

0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

300

H
(z

) [
km

s
1
M

pc
1 ]

LCDM
PVM
±1
±3
OHD

0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

300

H
(z

) [
km

s
1
M

pc
1 ]

LCDM
CVM
±1
±3
OHD

0.3 0.6 0.9 1.2
0

0.3

0.33

m
0

0.664 0.680
h

0.3

0.6

0.9

1.2

0

0.30 0.33
m0

OHD
SNIa
SLS
Joint

0.8 1.6 2.4 3.2
1

0.3

0.31

0.32

0.33

m
0

0.4

0.8

1.2

1.6

0

0.664 0.680
h

0.8

1.6

2.4

3.2

1

0.300.310.320.33
m0

0.4 0.8 1.2 1.6
0

OHD
SNIa
SLS
Joint

Figure 6. Top panel: Best fit curve of viscous fluid model and its uncertainty at 1σ and 3σ and ΛCDM.
Bottom panel: 2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter
color bands) CL and 1D posterior distribution of the model parameters using nonhomogeneous
OHD, SNIa, SLS and OHD+SNIa+SLS (Joint) data. Figure adapted from [135].

Table 6. Best fitting values of the free model parameters (see [135] for details).

Sample χ2 h Ωm0 λ0 λ1 M
ξ0 = Constant

OHD 25.9 0.679+0.004
−0.004 0.312+0.005

−0.005 0.053+0.047
−0.035 – –

SNIa 1027.1 0.676+0.004
−0.004 0.312+0.005

−0.005 0.080+0.071
−0.072 – −19.400+0.016

−0.016

SLS 602.3 0.677+0.004
−0.004 0.311+0.006

−0.006 0.737+0.175
−0.188 – –

Joint 1684.1 0.680+0.004
−0.004 0.311+0.006

−0.005 0.071+0.047
−0.040 – −19.400+0.012

−0.012

ξ0 = Polynomial

OHD 20.9 0.676+0.004
−0.004 0.311+0.006

−0.006 0.551+0.237
−0.228 0.929+0.412

−0.401 –

SNIa 1044.5 0.676+0.004
−0.004 0.311+0.006

−0.006 0.461+0.441
−0.280 0.580+0.620

−0.395 −19.400+0.019
−0.019

SLS 603.6 0.676+0.004
−0.004 0.311+0.006

−0.006 0.927+0.284
−0.235 0.312+0.484

−0.231 –

Joint 1668.8 0.679+0.004
−0.004 0.311+0.006

−0.006 0.347+0.183
−0.164 0.465+0.301

−0.263 −19.400+0.014
−0.014

4.1.6. Interacting Viscous Models

A generalized case of the viscous models presented in the previous section is to
consider a flat FLRW Universe that contains a non-perfect fluid as dust matter (dm)
component that interacts with a perfect fluid as the DE component, together with the
radiation fluid. Similarly, through the energy-momentum tensor, Equation (3), the viscous
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term is included in the field equations by changing p→ p̃ = p + Π as the sum of the total
barotropic pressure of the fluids (p) and the bulk viscosity coefficient (Π), where ρ is the
energy density of the fluid and uµ is the associated four-velocity. Inspired by the viscosity
behavior in fluid mechanics that is proportional to the speed, we assume Π = −3ζH.
Furthermore, the matter component and DE interact through an energy exchange term
Q and a viscosity effect encoded in the terms containing the bulk viscosity coefficient ζ.
In this approach, the Friedmann, continuity, and acceleration equations are [65]

H2 =
8πG

3
(ρr + ρdm + ρde), (68)

ρ̇r + 4Hρr = 0 , (69)

ρ̇dm + 3Hρdm = 9H2ζ + Q , (70)

ρ̇de + 3γdeHρde = −Q , (71)

2Ḣ − 24πGHζ = −8πG
(

ρdm +
4
3

ρr + γdeρde

)
, (72)

where ρr, ρdm, and ρde are the relativistic species, dust matter, and dark energy densities,
respectively. Note that the DE component behaves as CC when γde = 0. In particular,
the typical ansatz for the viscosity coefficient is considered and given by

ζ =
ξ

κ2

(
ρdm
ρdm0

)1/2
, (73)

where ρdm0 is the dm density at present epoch and ξ is a free parameter with units
of [ξ] = [eV]. It is convenient to use the dimensionless parameter of ξ defined as
ξ0 =

√
3ξ/κρdm0. Additionally, the interacting term Q is considered to be [136]

Q = βH
ρdeρdm

ρde + ρdm
, (74)

where β is a free parameter. It is straightforward that a Universe with only viscosity effects
is obtained when β = 0. Figure 7 shows the best fit curve (top panel) to OHD data for
interacting viscous model (ξ0 6= 0, β 6= 0), viscous model (β = 0), interacting model
(ξ0 = 0) and ΛCDM, respectively. 2D contours at 1σ, 2σ, and 3σ CL and 1D posterior
distributions of the free model parameters are presented at the bottom panel. Authors
in [65] found that the energy density dynamics of the mentioned models are similar to the
evolution of ΛCDM. Table 7 reports the best fit values and their uncertainties at 1σ for the
free parameters of IVM, IM, VM, and LCDM models.

Table 7. Best fit values for the free parameters of IVM, IM, VM, and LCDM models using the OHD
sample. The uncertainties are at 1σ (see [65] for details).

Model χ2 h Ωde0 ξ0 β

IVM 30.5 0.701+0.012
−0.013 0.682+0.040

−0.040 0.028+0.033
−0.020 0.200+0.260

−0.145

IM 29.2 0.707+0.011
−0.012 0.721+0.026

−0.037 0 0.283+0.290
−0.197

VM 29.1 0.705+0.011
−0.012 0.698+0.038

−0.054 0.040+0.035
−0.026 0

LCDM 28.9 0.715+0.010
−0.010 0.753+0.014

−0.015 0 0
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Figure 7. Top panel: Best fit curve of IVM and ΛCDM. Bottom panel: 2D contours of the free model
parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) CL using nonhomogeneous OHD
data. Figure adapted from [65].

4.1.7. Phenomenological Emergent Dark Energy Model

The phenomenological emergent dark energy model (PEDE) was proposed by [37]
and assumes that the DE is negligible at early times, emerging at late times. These kind of
models are known as emergent and contribute to elucidate a solution to the H0 tension.
The idea consists in proposing a function that mimics the evolution of DE density parameter
from a phenomenological point of view. The PEDE model has the same degrees of freedom
as the ΛCDM model.

We consider a FLRW metric that contains matter (m, dark matter plus baryons),
radiation (r), and PEDE. The dynamics of this Universe are described by the Friedmann
Equation (5) and the continuity equation for each component as follows:

ρ̇DE + 3H(1 + wDE)ρDE = 0, (75a)

ρ̇m + 3H(1 + wm)ρm = 0, (75b)

ρ̇r + 3H(1 + wr)ρr = 0, (75c)
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By solving Equations (75a)–(75c) we can rewrite Equation (6) in terms of the density
parameters and redshift, as

H(z)2 = H2
0

[
Ωm0(1 + z)3 + Ωr0(1 + z)4 + Ω̃DE(z)

]
, (76)

where Ω̃DE(z) = ΩDE0 f (z), where ΩDE follows Equation (7). Notice that the authors
of [37] propose a phenomenological functional form for f (z), described by Equation (47)
and hence Ω̃DE(z) as (where it is defined that Ω̃DE(z) ≡ ρDE/ρ

(0)
c .)

Ω̃DE(z) = Ω(0)
DE
[
1− tanh

(
log10(1 + z)

)]
, (77)

where Ω̃DE → 0 at z → ∞ and Ω̃DE → 1.4 at z → −1,(where it is defined that Ω̃DE(z) ≡
ρDE/ρ

(0)
c ). Notice that

ΩDE(z) =
H2

0
H(z)2 Ω̃DE(z) =

H2
0

H(z)2 Ω(0)
DE
[
1− tanh

(
log10(1 + z)

)]
, (78)

Therefore, the dimensionless Friedmann equation results as

E(z)2 = Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩDE0[1− tanh(log10(1 + z))], (79)

where the radiation density parameter at current epoch is calculated with Equation (44).
To constrain the PEDE parameters, different OHD are employed: those from the DA tech-
nique (i.e., cosmic chronometers), and a full sample (homogeneous and non-homogeneous)
of BAO measurements. Results of the constrictions are presented in Figure 8; the top panel
illustrates the H(z) reconstruction and the bottom panel the confidence contours for the
case Ωm(zt) = Ωde(zt). Table 8 presents the constraints for the model free parameters
together with the associated χ2 (see [39] for details).

Table 8. Mean values of the free parameters for the PEDE model using homogeneous, non-homogeneous and DA OHD
and a Gaussian prior on h = 0.7403± 0.0142 [32]. The last column shows the estimated redsfhit zt using the condition
Ωm(zt) = ΩDE(zt) (see [39], for details). The uncertainties reported correspond to 1σ confidence level. In parenthesis are
the best fit values when a flat prior on h is considered in the region [0, 1].

Sample χ2 h Ω
(0)
m ∆ zt

PEDE

homogeneous OHD 24.5 (24.5) 0.740+0.011
−0.011 (0.738+0.018

−0.018) 0.252+0.016
−0.015 (0.254+0.024

−0.022) 1.0 0

non-homogeneous OHD 32.1 (32.1) 0.740+0.010
−0.010 (0.740+0.014

−0.014) 0.249+0.013
−0.013 (0.249+0.018

−0.016) 1.0 0

DA OHD 14.7 (14.6) 0.739+0.014
−0.014 (0.723+0.049

−0.044) 0.319+0.035
−0.039 (0.329+0.057

−0.045) 1.0 0

4.1.8. Generalized Emergent Dark Energy

Recently, the authors of [38] proposed a generalization for the PEDE model, also
known as Generalized Emergent Dark Energy Model (GEDE) model, by introducing

Ω̃DE(z) = Ω(0)
DE

1− tanh
(

∆ log10(
1+z
1+zt

)
)

1 + tanh
(
∆log10(1 + zt)

) , (80)

where zt is a transition redshift, ΩDE(zt) = Ωm0(1+ zt)3, ∆ is an appropriate dimensionless
non-negative free parameter with the characteristic that if ∆ = 0 the ΛCDM model is
recovered, and when ∆ = 1 and zt = 0 the previously PEDE model is obtained. As zt
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can be related to Ωm0 and ∆, then zt is not a free parameter. Notice that the DE density
parameter is given by

ΩDE =
H2

0
H2 (1−Ωm0 −Ωr0)

1−tanh
(

∆ log10(
1+z
1+zt

)
)

1+tanh(∆log10(1+zt))
. (81)
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Figure 8. Top panel: Best fit curve of PEDE model and its uncertainty at 1σ and 3σ. Bottom panel:
2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) CL
using DA, homogeneous, and non-homogeneous OHD data. Figure adapted from [39].

The GEDE Friedmann Equation is written as

E(z) =

Ωm0(1 + z)3 + Ωr0(1 + z)4 + Ω(0)
DE

1− tanh
(

∆ log10(
1+z
1+zt

)
)

1 + tanh
(
∆ log10(1 + zt)

)
1/2

. (82)

The results obtained from the MCMC analysis using the same data as PEDE model
are shown in Figure 9, presenting the best fit curve for H(z) confronting with the OHD
data and the constraints for Ω(0)

m and ∆, which is the free parameter for GEDE. Table 9
presents the constraints for all the free parameters together with their respective χ2 (see [39]
for details).
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Figure 9. Top panel: Best fit curve of GEDE model and its uncertainty at 1σ and 3σ. Bottom panel:
2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter color bands) CL
using DA, homogeneous and non-homogeneous OHD data. Figure adapted from [39].

Table 9. Mean values of the free parameters for GEDE model using homogeneous, non-homogeneous and DA OHD
and a Gaussian prior on h = 0.7403± 0.0142 [32]. The last column shows the estimated redsfhit zt using the condition
Ωm(zt) = ΩDE(zt) (see [39] for details). The uncertainties reported correspond to 1σ confidence level. In parenthesis are
the best fit values when a flat prior on h is considered in the region [0, 1].

Sample χ2 h Ω
(0)
m ∆ zt

GEDE

homogeneous OHD 23.7 (23.0) 0.735+0.012
−0.012 (0.725+0.023

−0.020) 0.247+0.018
−0.017 (0.256+0.025

−0.022) 0.690+0.624
−0.457 (0.533+0.712

−0.390) 0.403+0.058
−0.057 (0.385+0.058

−0.056)

non-homogeneous OHD 30.2 (28.6) 0.731+0.012
−0.011 (0.718+0.017

−0.015) 0.245+0.014
−0.013 (0.255+0.018

−0.017) 0.539+0.470
−0.352 (0.332+0.472

−0.244) 0.417+0.044
−0.043 (0.403+0.043

−0.043)

DA OHD 14.7 (14.6) 0.739+0.014
−0.014 (0.723+0.048

−0.044) 0.319+0.036
−0.039 (0.329+0.057

−0.046) 3.930+2.304
−2.083 (3.264+3.258

−2.230) 0.183+0.094
−0.057 (0.174+0.083

−0.064)

4.2. Modifications to General Theory of Relativity

In this subsection, we present models that modify the GTR in order to obtain a late
Universe acceleration.
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4.2.1. Constant Brane Tension

Brane world models are inspired by the seminal papers of [137,138] in which they
assume a four-dimensional manifold called the brane immersed in a five dimensional Anti-
d’Sitter space time called the bulk. The mentioned configuration is a way to understand
the hierarchy problem but could alsobe extended to describe the cosmology. The main
parameter of the theory is called the brane tension, which differentiates between the
high- and low-energy physics involved and becomes a free parameter that needs to be
constrained by different cosmological samples. For this model in particular, the brane
tension is constant; hence, we call it a Constant Brane Tension (CBT) model.

First of all, we introduce the Einstein’s field equation projected onto the brane

Gµν + ξµν = κ2
(4)Tµν + κ4

(5)Πµν + κ2
(5)Fµν, (83)

where Tµν is defined in Equation (3) as the matter trapped in the brane, Gµν is the classical
Einstein’s tensor described by (1), and the rest of the terms in the right and left sides of this
equation are explicitly given by:

κ2
(4) = 8πGN =

κ4
(5)

6
λ, (84a)

Πµν = −1
4

TµαTα
ν +

TTµν

12
+

gµν

24
(3TαβTαβ − T2), (84b)

Fµν =
2TABgA

µ gB
ν

3
+

2gµν

3

(
TABnAnB −

(5)T
4

)
, (84c)

ξµν = (5)CE
AFBnEnFgA

µ gB
ν . (84d)

Here GN is the Newton’s gravitational constant, λ is the previously mentioned brane
tension, and κ(4) and κ(5) are the four- and five-dimensional coupling constants of gravity,
respectively. The tensor Πµν represents the quadratic corrections on the brane generated
by the energy-momentum tensor, Fµν gives the contributions of the energy-momentum
tensor in the bulk, which is projected onto the brane through the unit normal vector nA.
The tensor ξµν provides the contribution of the five-dimensional Weyl’s tensor projected
onto the brane manifold [139]. Notice that the latin letters take the values 0, 1, 2, 3, 4. It is
worth noting that non-local corrections are negligible in cosmological cases [40], under the
assumption of a AdS(5) bulk.

To derive the Friedmann equations under the modified field equations, we consider an
homogeneous and isotropic Universe in which a line element is given by Equation (2). We
consider radiation and dark matter components as perfect fluids in the brane. We assume
that the bulk has no matter component. Using Equation (83), we obtain the modified
Friedmann Equation:

H2 =
8πG

3 ∑
i

ρi

(
1 +

ρi
2λ

)
. (85)

Note that ρi is the energy density for the radiation, dark matter, and DE. It is worth
noting that the low energy regime, i.e., the canonical Friedmann equation, is recovered
when ρi/2λ → 0. Crossed terms were not used in the Friedmann equation; i.e., there is
no interaction between different species. In addition, if we consider, for instance, that the
bulk black hole mass vanishes, the bulk geometry reduces to AdS5 and ρε = 0 [40]. Thus,
the Friedmann equation can be written as:

H2 =
8πG

3

[
ρ0m

a3

(
1 +

ρ0m

2λa3

)
+

ρ0r

a4

(
1 +

ρ0r

2λa4

)
+

ρ0de

a3(1+ωde)

(
1 +

ρ0de

2λa3(1+ωde)

)]
. (86)
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The above equation can be expressed in terms of the density parameters through the
dimensionless Friedmann equation

E(z)2 = Ω0m(1 + z)3 + Ω0r(1 + z)4 + Ω0de(1 + z)3(1+ωde)

+M
[
Ω2

0m(1 + z)6 + Ω2
0r(1 + z)8 + Ω2

0de(1 + z)6(1+ωde)
]
, (87)

where

M≡
H2

0
2κ2λ

, (88)

where ρcrit is the Universe critical density. Notice that when M → 0, the canonical
Friedmann equation with wde is recovered. If wde = ωΛ = −1, i.e., the DE is the CC, we
obtain the traditional ΛCDM dynamics.

At early times, the brane dynamics dominate over other terms in the Universe, but is
negligible at late times. Indeed, given a value for the brane tension, we can infer the
limits of high and low energies in terms of the redshift: z + 1 � ∑i(λ/ρ0i)

1/3(1+ωi) and
z + 1 � ∑i(λ/ρ0i)

1/3(1+ωi), respectively. For example, in the matter domination epoch,
the previous expressions can be rewritten as: z� (λ/ρ0m)

1/3 − 1 and z� (λ/ρ0m)
1/3 − 1,

for high and low energy limits, respectively.
Table 10 shows the bestfit for the different free parameters together with the estimated

χ2. Figure 10 shows the severe tension between the different cosmological samples (OHD,
SNIa, SLS, HIIG, BAO), hence concluding that the model is not viable to replace the ΛCDM
model unless an additional DE component is included, which defeats the purpose of
choosing this model.

Table 10. Best fitting values of the free parameters for the constant brane tension model with the
different samples used in this paper.

Sample χ2 h Ωm0 wde log10M

OHD 18.19 0.72+0.01
−0.01 0.21+0.02

−0.03 −1.00+0.11
−0.12 <−0.88

BAO 5.46 0.73+0.01
−0.01 0.20+0.04

−0.07 −0.53+0.13
−0.19 <−9.52

SNIa 574.73 0.72+0.01
−0.01 0.13+0.06

−0.07 −0.81+0.07
−0.10 <−0.31

CMB 10.87 0.73+0.01
−0.01 0.29+0.01

−0.01 −1.12+0.06
−0.06 <−15.0

Joint 636.70 0.71+0.01
−0.01 0.30+0.01

−0.01 −1.12+0.03
−0.03 <−16.2

4.2.2. Variable Brane Tension

A natural extension to the previous model is the one called variable brane tension
(BVT). The framework is the same as the one in Section 4.2.1, but now an extra degree of
freedom is assumed, and a brane tension emerges as a function of the redshift. Naturally,
the model resolves the problems associated with the presence of the brane tension at early
epochs but also generates a CC with five-dimensional origins. We briefly discuss the
theoretical framework of a BVT model, which was previously studied in [42]. We start
from the BVT field equation as

Gµν − 8πGTµν =
1
λ

[
48πGΠµν +

3
4πG

ξµν

]
, (89)

where

ξµν = U
(

uµuν +
1
3

εµν

)
+ Pµν, (90)

Πµν = −1
4

TµαTα
ν +

1
12

Tα
α Tµν +

1
24

gµν[3TαβTαβ − (Tα
α )

2]. (91)
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where Gµν is described in (1), and ξµν as a non-local Weyl tensor decomposed in its
irreducibility form, which also contains U is the non-local energy density, Pµν as the non-
local anisotropic stress tensor, uα as the four-velocity, and εµν ≡ gµν + uµuν. In addition
Tµν is the standard energy-momentum tensor and Πµν contains a quadratic form of the
energy–momentum tensor. Notice that the corrective terms that comes from brane world
is contingent to the brane tension defined by λ, which in this model is not a constant.
Therefore, the low energy limit is considered when λ → ∞ recovers the traditional field
equation of GR, while in the other limit λ → 0, extra terms play a preponderant role.
Finally, note that in this case we do not consider extra fields onto the bulk, neglecting the
terms that come from Fµν and only considering those fields in the brane.
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Figure 10. Top panel: Best fit curve of constant brane tension model and its uncertainty at 1σ.
Bottom panel: 2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter
color bands) CL using OHD, SNIa (Pantheon), SLS, HIIG, BAO, and Joint data.

Therefore, if we introduce the previously line element in Equation (89) together with
the perfect fluid energy-momentum tensor (Equation (3)), we have the following Friedmann
Equation [42]:

E(z)2 = Ω0m(z + 1)3 + Ω0r(z + 1)4 +
M

λ̂(z)
[Ω2

0m(z + 1)6 + Ω2
0r(z + 1)8], (92)
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where we have already considered matter and radiation components, where their evolution
comes from the conservation of the energy-momentum tensor (∇µTµν = 0) and their
separability from the quadratic part of the field equation. The brane tension evolves
homogeneously and isotropically because it is only on the temporal function and can be
chosen using other physical assumptions. In addition, the brane tension is not directly
coupled with the continuity equation of the fluids, and it is defined as λ̂(z) ≡ λ0λ(z),
where λ̂(z) is a dimensionless function that can be selected appropriately. Moreover,
M≡ 3H2

0 /16πGλ0 and, under the flatness condition, we have the constriction

M =
1−Ω0m −Ω0r

Ω2
0m + Ω2

0r
λ̂(z = 0). (93)

Regarding the choice of the λ̂(z) function, we pick a polynomial form as
λ̂(z) = (z + 1)n, where n is a free parameter and n ∈ R. Garcia-Aspeitia et al. [42]
discuss the inspiration for this function, arguing that it could be a generalization of the
Eötvös law, similar functions can be found in tracker behavior for scalar fields.

Using a joint analysis that contains OHD, CMB, BAO and SNIa observations (see
Figure 11 and Table 11), the authors of [42] found out n = 6.19± 0.12. Notice that the result
is consistent with predictions because if we use Equation (92), neglecting (z + 1)8, the term
M will behave as a CC at late times but with extra dimensions origin.

Table 11. Best fitting values of the free parameters for the Variable Brane Tension model with the
different samples used in this paper.

Sample χ2
min h Ωm0 n λ0(10−12 eV4)

OHD 14.46 0.730+0.017
−0.017 0.318+0.039

−0.042 7.400+1.100
−0.926 3.20+1.05

−0.95

BAO 9.49 0.718+0.016
−0.016 0.297+0.031

−0.028 6.730+0.287
−0.289 2.62+0.77

−0.57

SNIa 691.10 0.731+0.017
−0.017 0.231+0.114

−0.120 5.580+0.815
−0.568 1.48+2.40

−1.16

CMB 3.64 0.732+0.017
−0.017 0.288+0.014

−0.013 6.420+0.185
−0.185 2.52+0.19

−0.17

Joint 716.43 0.706+0.009
−0.009 0.31+0.008

−0.008 6.190+0.121
−0.120 2.81+0.12

−0.11

4.2.3. Unimodular Gravity

Unimodular Gravity (UG) is a remarkable proposition to tackle the problem of the CC
by limiting the metric in the following way

√−g = ξ, where ξ is a constant, restricting the
field equations at only nine linear independent equations and the field equation is trace-
free [43]. The possibility to integrate the line element of FLRW gives us the opportunity to
obtain clues about the nature of CC, tracing its presence at epochs of reionization [45].

UG can be described by the following field equation:

Rµν −
1
4

gµνR = 8πG
(

Tµν −
1
4

gµνT
)

, (94)

where all the tensors are the standards of GR and G is the Newton’s gravitational constant.
In order to study the background cosmology, we consider an isotropic, homoge-

neous FLRW metric (2), the perfect fluid energy momentum tensor is written as shown
Equation (3). Hence, we have [43,44]

Ḣ =
ä
a
− H2 = −4πG ∑

i
(ρi + pi), (95)

where the dots stands for time derivative. In addition, a general conservation for UG theory
is now written in the form

∇µ[32πGTµν − (R + 8πGT)gµν] = 0. (96)
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Figure 11. Top panel: Best fit curve for the variable brane tension model and its uncertainty at 1σ.
Bottom panel: 2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter
color bands) CL using OHD, SNIa, BAO, CMB, and Joint data.

Without independently assuming the energy momentum conservation (∇µTµν = 0),
Equation (96) introduces new Friedmann, acceleration and fluid equations coupled with
third-order derivatives in the scale factor. Hence, in the case of non traditional conservation
of the energy-momentum tensor, Equation (96) must be solved to obtain the characteristic
fluid equation. Solving for (96) under a FLRW metric and perfect fluid, we have

∑
i

[
d
dt
(ρi + pi) + 3H(ρi + pi)

]
=

H3

4πG
(1− j), (97)

where the sum is over all the species in the Universe and j ≡ ...
a /aH3 is the Jerk Parameter

(JP) [110,140], well known in cosmography and proposed by [45] for the study of UG.
On the other hand, the integral-transcendent-Friedmann equation can be computed

with the help of Equations (5) and (97), obtaining the Friedmann equation as

H2 =
8πG

3 ∑
i

ρi + H2
corr. (98)
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where the non-canonical extra term in Equation (98), i.e., the UG correction to the Fried-
mann and acceleration equations, is defined in the form

H2
corr ≡

8πG
3 ∑

i
pi +

2
3

∫ a(t)

aini

H(a′)2[j(a′)− 1]
da′

a′
, (99)

where the sum runs over the different species in the Universe and aini is some constant
initial value.

According to [45], it is plausible to consider an ansatz for the JP in terms of the redshift
with the following characteristics

j(z) =
9(1 + w)w

2E(z)2 Ω0i(z + 1)3(w+1) + 1, (100)

where w is the EoS for any fluid. If we choose Ω0i → Ω0r as the radiation density param-
eter (matter emerges naturally from Equation (97), so the other expected fluid should be
radiation to avoid introducing an exotic fluid) and w→ wr = 1/3 as the EoS of radiation,
then the functional form reproduces the ΛCDM jerk parameter in all eras [45].

From the previous equation and Equation (98), it is possible to deduce

E(z)2 = Ω0m(z + 1)3 + Ω0r(z + 1)4 + Ω0exs(zini + 1)4, (101)

where Ω0exs ≡ wrΩ0r.
Note that the source of the Universe acceleration is the constant term in the previous

Equation (101), where we can naturally relate Ω0Λ → Ω0exs(zini + 1)4. Since our choice
in Equation (100) depends on the EoS and the energy density parameter of the radiation,
the constant inherits those terms.

Figure 12 shows the constraints for zini and h considering the SNIa, BAO, OHD, CMB
and a joint data, with the best-fit values in Table 12 (see [45,97], for details). The results
suggest a zini = 11.47, which is in the reionization era. The interpretation of the result is
that UG is an emergent DE theory, with DE arising during the reionization period.

10.5 11.5 12.5

zini

0.65 0.70 0.75

h

10.5

11.5

12.5

z i
ni

SnIa
BAO
OHD
CMB
Joint

Figure 12. 1D marginalized posterior distributions and the 2D 68%, 95%, and 99.7% of CL for the h,
and zini parameters of the UG model. The star (square) marker represents the best fit value of Joint
(CMB) data.
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Table 12. Mean values for the UG model parameters (h, zini) and χ2
min, derived from each data set

and the joint analysis (see [97]).

Sample χ2
min h zini

OHD 22.0 0.709+0.016
−0.016 11.788+0.237

−0.250
SnIa 1036.0 0.602+0.270

−0.272 10.623+2.366
−3.021

CMB 0.0001 0.678+0.006
−0.006 11.259+0.091

−0.092
BAO 12.9 0.701+0.031

−0.033 10.847+0.979
−1.383

Joint 1097.6 0.692+0.005
−0.005 11.473+0.074

−0.073

4.2.4. Einstein–Gauss–Bonet

Einstein–Gauss–Bonet (EGB) is a recent proposition that modifies the geometrical
part of the field equations [46], maintaining the continuity equation in its original form.
In [47], they constrained the free parameter through diverse observations finding results
compatible with the cosmological standard model. However, the authors also found that
specific values of the free parameter could generate an eternal acceleration, even in epochs
in which is not expected (reionization, nucleosynthesis, etc). Other mathematical flaws of
the EGB model have recently been found [141–145].

The action of the EGB gravity can be written in the form [46]

SEGB[gµν] =
∫

dd+1x
√
−g
[ 1

16πG
(R− 2Λ) + Lm +

α

d− 3
G
]
, (102)

where Λ is an effective cosmological constant, R is the Ricci scalar, Lm is the matter
Lagrangian, α is an appropriate free parameter, G = 6Rµν

[µν
Rρσ

ρσ]
is the Gauss–Bonnet

contribution to the Einstein–Hilbert action and d + 1 is considered in the limit when
limd→3 d+ 1 as presented in [46]. Minimizing the action, the field equation can be written as

Gµν + Λgµν +
α

(d− 3)
(4RRµν − 8RµαRα

ν − 8RµανβRαβ + 4RµαβσRαβσ
ν

−gµνG) = 8πGTµν. (103)

Note that when α = 0, the standard Einstein field equation with a CC is recovered.
In order to study the background cosmology, we assume a flat FLRW given by

Equation (2), the energy–momentum tensor is the usual given by (3). After some ma-
nipulations of the previous expressions, the Friedmann equation for EGB reads

H2 + 3αH4 =
8πG

3 ∑
i

ρi +
Λ
3

. (104)

Moreover, the continuity equation takes its traditional form as (4). In terms of the
dimensionless variables, Equation (104) is rewritten as

E(z)2 + ᾱE(z)4 = Ωm0(z + 1)3 + Ωr0(z + 1)4 + ΩΛ0, (105)

where ᾱ ≡ 3αH2
0 , Ωi0 ≡ κ2ρi/3H2

0 and ΩΛ0 ≡ Λ/3H2
0 , composed of matter (baryons and

dark matter) and relativistic particles (photons and neutrinos). Another important consid-
eration is that ᾱ is a positive value as inflation demands (see Reference [146] for details).

In order to constrain the ᾱ parameter, we divide the problem in two branches through
Equation (105). Therefore, if we only consider the branch where we have a real value of
E(z), then we have [47]

E(z)2 =
1

2ᾱ

[√
1 + 4ᾱΩ(z)std − 1

]
, (106)
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where
Ω(z)std ≡ Ωm0(z + 1)3 + Ωr0(z + 1)4 + ΩΛ0 , (107)

is the standard cosmological model. Equation (106) is constrained to the condition E(0) = 1,
which has the following relation [47]

ΩΛ0 =
(2ᾱ + 1)2 − 1

4ᾱ
−Ωm0 −Ωr0 . (108)

Notice that when ᾱ→ 0, in (106), the standard Friedmann equation is recovered.
Figure 13 shows the MCMC analysis implemented using OHD, SNIa, SLS, HIIG, and

BAO samples. The upper panel shows the reconstruction of H(z) and the bottom panel
presents the CL contours for the free parameter of the theory ᾱ. In addition, best-fits for the
free parameters if the model are presented in Table 13 in conjunction with the χ2 parameter
(see details in [47]).

Table 13. Best fitting values of the free parameters for the EGB model with the different samples used
in this paper (see [47] for details).

Sample χ2 h Ωm0 ᾱ M

OHD 25.8 0.677+0.004
−0.004 0.312+0.005

−0.005 0.011+0.007
−0.005 –

BAO 40.7 0.686+0.004
−0.004 0.315+0.006

−0.006 0.008+0.014
−0.006 –

SNIa 39.8 0.677+0.004
−0.004 0.312+0.005

−0.005 0.028+0.028
−0.018 −19.400+0.016

−0.016

SLS 577.8 0.676+0.004
−0.004 0.311+0.006

−0.006 0.281+0.218
−0.143 –

HIIG 2269.5 0.677+0.004
−0.004 0.331+0.005

−0.005 0.0006+0.0011
−0.0005 –

Joint 6181.9 0.676+0.004
−0.004 0.326+0.005

−0.005 0.001+0.002
−0.001 −19.400+0.012

−0.012

4.2.5. Cardassian Models

Cardassian models (the name Cardassian comes from alien creatures shown in the
television series Star Trek) are a phenomenological form to describe the late time accelera-
tion of the Universe that could be theoretically sustained under the assumption of extra
dimensions. The models assume an extra function in the Friedmann equations whose
form is related to those of the polytropic fluids. Therefore, just the presence of matter and
radiation in this functional form automatically produce a late time Universe acceleration
without the need for a CC. The main disadvantage is the apparition of additional terms
that must be constrained with observations and the difficulties to describe the model from
theoretical arguments. It is important to mention that the Cardassian models are divided
into the Original Cardassian (OC) and the Modified Polytropic Cardassian (MPC).

The theoretical details of OC model, introduced by Reference [48], is given by the
following Friedmann equation:

E(z)2 = Ωm0(1 + z)3 + Ωr0(1 + z)4 + (1−Ωm0 −Ωr0)

×
(

Ωm0(1 + z)3 + Ωr0(1 + z)4

Ωm0 + Ωr0

)n

, (109)

where n is a free parameter. Despite OC model arising from a phenomenological as-
sumption in order to obtain an accelerated Universe, it is important to notice that the
mathematical structure can be strictly obtained from brane world models with n-branes
immersed in a five dimensional bulk.
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Figure 13. Top panel: Best fit curve of Einstein–Gauss–Bonnet model and its uncertainty at 1σ.
Bottom panel: 2D contours of the free model parameters at 1σ, 2σ, and 3σ (from darker to lighter
color bands) CL using OHD, SNIa (Pantheon), SLS, HIIG, BAO and Joint data. Figure adapted
from [47].

In addition, the MPC model [49] takes the form

E(z)2 = Ωr0(1 + z)4 + Ωm0(1 + z)3β(z)1/l , (110)

where

β(z) ≡ 1 +

[(
1−Ωr0

Ωm0

)l
− 1

]
(1 + z)3/(n−1), (111)

here l and n are free parameters.
Table 14 gives the minimum chi-square and mean values for the OC and MPC param-

eters using the samples OHD (DA), SNIa (compressed JLA), and the joint analysis of these
data sets. Figure 14 shows the best fit of H(z) for the original (left panel) and modified
polytropic Cardassian models (right), respectively. The figures also show the confidence
contours (bottom panels) for both Cardassian models using SNIa (cJLA, compressed JLA),
OHD uniformed with the sound horizon estimation from Planck data, and the Joint analysis
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of both data (denoted J3). It is worth noting that both models can reproduce the dynamics
of the Hubble measurements.

Table 14. Mean values for the OC and MPC parameters using the samples OHD (DA), SNIa (com-
pressed JLA), and the joint analysis of these data sets. (see [66], for details).

Orignal Cardassian

Data χ2
min Ωm n l h

OHD (DA) 15.22 0.30+0.06
−0.06 −0.19+0.51

−0.50 −− 0.69+0.06
−0.05

SNIa 32.95 0.22+0.11
−0.12 0.16+0.17

−0.26 −− 0.72+0.19
−0.19

Joint 54.28 0.25+0.02
−0.02 0.11+0.07

−0.07 −− 0.69+0.01
−0.01

Modified polytropic Cardassian

OHD (DA) 17.95 0.32+0.06
−0.07 0.10+0.38

−0.60 2.13+2.34
−1.33 0.68+0.07

−0.05
SNIa 33.76 0.22+0.12

−0.13 0.36+0.07
−0.33 2.61+2.27

−1.83 0.72+0.18
−0.19

Joint 54.23 0.25+0.03
−0.03 0.06+0.29

−0.58 0.89+1.29
−0.47 0.68+0.01

−0.01
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Figure 14. Top panel: Best fit curve of H(z) for the original and modified polytropic Cardassian
models and uncertainties at 1σ and 1σ. Bottom panel: 2D contours of the free model parameters at
1σ, 2σ, and 3σ (from darker to lighter color bands) CL using SNIa (cJLA, compressed JLA), OHD,
and the Joint analysis of both data (denoted J3).

5. Discussion and Conclusions

In this review, we presented a brief and non-exhaustive review on DE models that,
however, summarizes some important scientific results, settling the ground for the ideas
exposed in this work.

Our motivation to explore alternatives to ΛCDM lies in the problems that afflict the
cosmological constant and the recently observed tension in the σ8 and H0 parameters
estimated from different samples. Notice how the CC is directly related to the problem
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of the Universe acceleration, and therefore, a competitive model should be implemented.
However, regarding the H0 tension, it is not clear whether it is related to dark energy or
not (see, for example, [147]), although some authors assume that this is the case [33].

For each type of dark energy presented in this review, we have summarized its
main characteristics, its theoretical structure and in its capabilities to fit the data provided
by modern observations. Parameterizations are always the standard form to tackle the
problem of Universe acceleration, but there is not a unique way of choosing the form of the
function. Furthermore, in many cases, there are not solid arguments to justify the chosen
form, and it is anfractuous to associate the parameterization with some quantum field
or with a model that modifies the GR. Models like Chaplygin and Viscous encompass
the dark energy and dark matter contribution in just one theoretical framework through
a diffusion function in the continuity equations. The theoretical background is robust,
with its equations deduced from a quantum field theory in which a scalar field is involved.
In addition, the diverse data samples tend to prefer the mentioned models over others with
extra complexities.

We also described models with a late apparition of the dark energy (CC always exist in
the Universe evolution). The PEDE, GEDE, and UG models allow us to estimate the birth of
DE at the reionization epoch. These kind of models are valuable because their mathematical
expression is able to resolve the tension between Planck and SNIa data. Observational
constraints also favor them over other models. Furthermore, extra-dimensional models
contain a theoretical complexity that undermines their recognition; for instance, the RS
model has severe faults when it is contrasted with observations. However, the addition
of extra degrees of freedom to obtain a variable brane tension reduces the disagreement
with observations and shed light on the nature of CC; i.e., it comes from the existence of
extra dimensions. The disadvantage is that the CC problem is now dragged into the extra
dimensions scenario, introducing difficulties to calculate the expected value in our four-
dimensional Universe. EGB model surge as a curiosity in recent literature, but after a more
rigorous mathematical exam, there are several notorious flaws in its theoretical arguments.
In addition, from a cosmological point of view, it is based on an spurious early acceleration
that could cause severe problems with the well-known characteristics of the Universe in
epochs such as the nucleosynthesis. Constraints on EGB obtained with the SLS data sample
and applied to dynamical systems point out that the early acceleration never ends. Finally,
Cardassian models are phenomenological models that could be justified by the assumption
of extra dimensions. Although this complicate the equations, they have the advantage of
avoiding tensions when contrasted with observations. Note that, as expected, Cardassian
models tend to reproduce the CC, not showing a dynamical DE.

As a final remark, we would like to reflect on the H0 tension considering the different
models discussed in this review. In Table 15, we present the compilation of the dimen-
sionless Hubble parameter (h) for all the models with their respective selected samples
and priors. We have used a Gaussian prior in most of the cases using Riess or Planck
data [15,31], while only in four models do we consider a flat prior. For the purpose of
the following discussion, we compare only those models with flat priors, which are CPL,
UG, and both Cardassian models. Only those models using joint samples that include
CMB are able to constrain H0, and thus, the best-fit value is in agreement with Planck’s
result. However this is not the final word about the H0 tension; Reference [147] has re-
cently suggested that this might be related to a misunderstanding of the distance ladder
measurements (i.e., a need for a better agreement between the SNIa absolute magnitude
and the Cepheid-based distance ladder) instead of an “exotic late-time physics”.

Finally, we summarize our results in the following way. The Brane model with
constant tension deduced from the RS paradigm and the EGB have several failures, which
may call into question the viability of both models. Variable brane tension, Cardassian,
and viscous models can be considered as promising, having problems with the complexity
of their theoretical background. Parameterizations, Chaplygin, UG, PEDE, and GEDE are
excellent competitors against the standard paradigm, with a strong possibility of resolving
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the H0 tension and contributing to elucidating the nature of the dark energy component,
the Universe acceleration, and its possible consequences in the fate of our Universe.

Table 15. Best fitting values of the h parameter for all the models presented.

Model h Sample Prior

wCDM 0.68+0.01
−0.01 OHD, SNIa, CMB Gaussian (0.6766+0.0042

−0.0042)

CPL 0.73+0.10
−0.08 OHD Flat [0.2,1.0]

JBP 0.71+0.014
−0.014 OHD, CMB, BAO Gaussian (0.73+0.0175

−0.0175)

BA 0.71+0.015
−0.015 OHD, CMB, BAO Gaussian (0.73+0.0175

−0.0175)

FSLLI 0.71+0.015
−0.015 OHD, CMB, BAO Gaussian (0.73+0.0175

−0.0175)

FSLLII 0.70+0.014
−0.014 OHD, CMB, BAO Gaussian (0.73+0.0175

−0.0175)

SL 0.70+0.015
−0.015 OHD, CMB, BAO Gaussian (0.73+0.0175

−0.0175)

Chaplygin-Like Fluid 0.71+0.014
−0.014 OHD, SNIa Gaussian (0.723+0.017

−0.017)

Viscous (Polynomial) 0.70+0.009
−0.009 OHD, SNIa Gaussian (0.7324+0.0174

−0.0174)

Viscous (Hyperbolic tanh) 0.69+0.009
−0.009 OHD, SNIa Gaussian (0.7324+0.0174

−0.0174)

Viscous (Hyperbolic cosh) 0.70+0.009
−0.010 OHD, SNIa Gaussian (0.7324+0.0174

−0.0174)

Viscous (ξ0 = Constant) 0.68+0.004
−0.004 OHD, SNIa, SLS Gaussian (0.6766+0.0042

−0.0042)

Viscous (ξ0 = Polynomial) 0.67+0.004
−0.004 OHD, SNIa, SLS Gaussian (0.6766+0.0042

−0.0042)

Interacting Viscous 0.70+0.012
−0.013 OHD Gaussian (0.7324+0.0174

−0.0174)

PEDE 0.74+0.011
−0.011 Homogeneous OHD Gaussian (0.7403+0.0142

−0.0142)

GEDE 0.73+0.012
−0.012 Homogeneous OHD Gaussian (0.7403+0.0142

−0.0142)

CBT 0.71+0.01
−0.01 BAO, SNIa, OHD, CMB Gaussian (0.7324+0.0174

−0.0174)

VBT 0.70+0.009
−0.009 OHD, SNIa, BAO, BAO Gaussian (0.7324+0.0174

−0.0174)

UG 0.69+0.005
−0.005 OHD, SNIa, CMB, BAO Flat [0.2,1.0]

EGB 0.67+0.004
−0.004 SNIa, BAO, OHD, SLS, HIIG Gaussian (0.6766+0.0042

−0.0042)

Original Cardassian 0.69+0.01
−0.01 SNIa, OHD Flat [0,1]

Modified Polytropic Cardassian 0.68+0.01
−0.01 SNIa, OHD Flat [0,1]
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Evidence of the accelerated expansion of the Universe from weak lensing tomography with COSMOS. Astron. Astrophys. 2010,
516, A63. [CrossRef]

13. Huterer, D.; Shafer, D.L. Dark energy two decades after: Observables, probes, consistency tests. Rep. Prog. Phys. 2018, 81, 016901.
[CrossRef]

14. Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al.
Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser. 2013,
208, 20. [CrossRef]

15. Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.;
Barreiro, R.B.; Bartolo, N.; et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [CrossRef]

16. Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Ann. Rev. Astron. Astrophys. 2010, 48, 495–545.
[CrossRef]

17. Bertone, G.; Hooper, D. History of dark matter. Rev. Mod. Phys. 2018, 90, 045002. [CrossRef]
18. De Martino, I.; Chakrabarty, S.S.; Cesare, V.; Gallo, A.; Ostorero, L.; Diaferio, A. Dark Matters on the Scale of Galaxies. Universe

2020, 6, 107. [CrossRef]
19. Martin, S.P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 1998, 18, 1–98._0001. [CrossRef]
20. Abazov, V.M. Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 f b−1 of pp̄ collision data

at
√

s = 1.96-TeV. Phys. Lett. B 2008, 660, 449–457. [CrossRef]
21. Wilczek, F. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett. 1978, 40, 279–282. [CrossRef]
22. Lee, J.W.; Koh, I.G. Galactic halos as boson stars. Phys. Rev. D 1996, 53, 2236–2239. [CrossRef] [PubMed]
23. Ureña López, L.A.; Matos, T. New cosmological tracker solution for quintessence. Phys. Rev. D 2000, 62, 081302. [CrossRef]
24. Zeldovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi 1968, 11, 381. [CrossRef]
25. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1. [CrossRef]
26. Carroll, S.M. The Cosmological constant. Living Rev. Rel. 2001, 4, 1. [CrossRef]
27. Millon, M.; Galan, A.; Courbin, F.; Treu, T.; Suyu, S.H.; Ding, X.; Birrer, S.; Chen, G.C.F.; Shajib, A.J.; Sluse, D.; et al. TDCOSMO.

I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. Astron. Astrophys. 2020,
639, A101. [CrossRef]

28. Birrer, S.; Shajib, A.J.; Galan, A.; Millon, M.; Treu, T.; Agnello, A.; Auger, M.; Chen, G.C.F.; Christensen, L.; Collett, T.; et al.
TDCOSMO. IV. Hierarchical time-delay cosmography – joint inference of the Hubble constant and galaxy density profiles. Astron.
Astrophys. 2020, 643, A165. [CrossRef]

29. Joudaki, S.; Blake, C.; Heymans, C.; Choi, A.; Harnois-Deraps, J.; Hildebrandt, H.; van Waerbeke, L. CFHTLenS revisited:
Assessing concordance with Planck including astrophysical systematics. Mon. Not. R. Astron. Soc. 2017, 465, 2033–2052.
[CrossRef]

30. Hildebrandt, H.; Viola, M.; Heymans, C.; Joudaki, S.; Kuijken, K.; Blake, C.; Van Waerbeke, L. KiDS-450: Cosmological parameter
constraints from tomographic weak gravitational lensing. Mon. Not. R. Astron. Soc. 2017, 465, 1454. [CrossRef]

http://doi.org/10.1073/pnas.15.3.168
http://www.ncbi.nlm.nih.gov/pubmed/16577160
http://dx.doi.org/10.1086/148307
http://dx.doi.org/10.1086/148306
http://dx.doi.org/10.1086/300499
http://dx.doi.org/10.1086/307221
http://dx.doi.org/10.1038/35010035
http://dx.doi.org/10.1086/377226
http://dx.doi.org/10.1016/j.newar.2005.08.005
http://dx.doi.org/10.1111/j.1365-2966.2007.12268.x
http://dx.doi.org/10.1088/0004-637X/711/1/201
http://dx.doi.org/10.1051/0004-6361/200913577
http://dx.doi.org/10.1088/1361-6633/aa997e
http://dx.doi.org/10.1088/0067-0049/208/2/20
http://dx.doi.org/10.1051/0004-6361/201833910
http://dx.doi.org/10.1146/annurev-astro-082708-101659
http://dx.doi.org/10.1103/RevModPhys.90.045002
http://dx.doi.org/10.3390/universe6080107
http://dx.doi.org/10.1142/9789812839657_0001
http://dx.doi.org/10.1016/j.physletb.2008.01.042
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1103/PhysRevD.53.2236
http://www.ncbi.nlm.nih.gov/pubmed/10020213
http://dx.doi.org/10.1103/PhysRevD.62.081302
http://dx.doi.org/10.1070/PU1968v011n03ABEH003927
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.12942/lrr-2001-1
http://dx.doi.org/10.1051/0004-6361/201937351
http://dx.doi.org/10.1051/0004-6361/202038861
http://dx.doi.org/10.1093/mnras/stw2665
http://dx.doi.org/10.1093/mnras/stw2805


Universe 2021, 7, 163 38 of 41

31. Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.;
Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning theHubble Space Telescope: Implications for the
Hubble Constant. Astrophys. J. 2018, 855, 136. [CrossRef]

32. Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation
for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astrophys. J. 2019, 876, 85.
[CrossRef]

33. Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the Realm of the
Hubble tension—A Review of Solutions. arXiv 2021, arXiv:2103.01183.
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