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Abstract: We study the pure and thermal states of quantized scalar and tensor perturbations in
various epochs of Universe evolution. We calculate the density matrix of non-relativistic particles
in an environment of these perturbations. We show that particle’s motion can be described by a
stochastic equation with a noise coming from the cosmological environment. We investigate the
squeezing of Gaussian wave packets in different epochs and its impact on the noise of quantized
cosmological perturbations.

Keywords: geodesic equation; quantum gravity; gravitational environment; squeezed quantum
states; stochastic equations

1. Introduction

The study of a system of particles with gravitational interaction is a standard task in
an investigation of inhomogeneities and structure formation [1,2]. In such studies, usually
only classical gravity is considered. However, the structure formation begins already in
the inflationary era [3–6]. The recent discovery of gravitational waves raises hopes for
a detection of various phenomena resulting from quantization of gravity [7,8]. In the
standard model of the Universe evolution, it is assumed that it begins from a quantum
state. The particles created at the end of the inflationary era will evolve in an environment
of quantized cosmological perturbations. Hence, formation of inhomogeneities in the
form of matter will take place in the environment of quantized perturbations. We can
observe the cosmological gravitational perturbations in CMB temperature fluctuations and
(possibly) in primordial gravitational waves. The quantum fluctuations are described in
a gauge invariant way by (gauge invariant) Bardeen scalar and tensor variables [9–12].
The scalar variable in the inflation era is dominated by the inflaton field. At the end of
inflation, the inflaton decays into relativistic particles. The radiation era begins. We assume
that in the radiation era the quantum state of the Universe still depends on the scalar
and tensor modes of the gravitational field. Moreover, owing to the squeezing during
inflation [13–16], it can be described by a Gaussian wave function. Gaussian states are
classical in the sense that their Wigner function is positive definite. We assume that the
wave function of tensor perturbations in spite of the complex processes taking place in
various epochs evolves in a continuous way depending only on the evolution of the scale
factor. The wave function of the scalar perturbations is not expected to be continuous in
different epochs, but we still work with a Gaussian approximation as it is a consequence
of the quadratic approximation to Einstein gravity. The decay of the inflaton creates
particles which are moving in the environment of the cosmological perturbations. Such an
environment is changing evolution of these particles. In a non-relativistic approximation,
we derive the time evolution of the density matrix. We show that this time evolution is
determined by a stochastic equation which is a generalization of the equation derived
in [17–21] for tensor perturbations (gravitational waves) in the Minkowski metric. There
was earlier work on the particle motion in an environment of a quantized metric [22–27]
based on the geodesic equation. However, the experience with the motion of a particle
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in a gravitational wave [17,21] indicates that the proper approach consists in a study of
microscopic quantum effects of relative particle motions near their geodesics through the
geodesic deviation equation.

The tensor perturbations arrive to us as primordial gravitational waves. The scalar
perturbations are measurable as temperature fluctuations in CMB [2] and as density fluctu-
ations of galaxies [1,28]. We assume that the detector can receive primordial perturbations
from the inflationary stage of the Universe evolution (possibly as gravitational waves
produced as the second order effect from scalar perturbations [29,30]). After the radiation
era and baryonic era, the cosmological perturbations arrive to us at the time interval when
the metric can be approximated by a static (Minkowski) metric. The effect of gravitational
waves can be studied by means of a stochastic geodesic deviation equation in a weak gravi-
tational field on a flat background. In [20], we studied the interaction of non-relativistic
particles with quantum tensor perturbations. We argued after [17] (see also [31]) that
the noise from the gravitons can be observed in the wave detector owing to the strong
squeezing during inflation. In this paper we extend our results of [20] to quantum scalar
and tensor perturbations in an expanding Universe. We suggest that the quantized scalar
and tensor perturbations have an effect upon detectors of cosmological perturbations
as well as upon formation of inhomogeneities during the radiation domination epoch.
These quantum perturbations derived as quantum modifications of the geodesic deviation
equation appear in the form of stochastic geodesic deviation equations.

The paper is organized as follows. In Section 2 we introduce our method of repre-
senting the environment of oscillators in quantum mechanics. In Section 3, we extend it to
quantum field theory. In Section 4, we discuss the scalar perturbations in the inflation era.
In Section 5, we study the scalar perturbations after inflation. In Section 6, we obtain Gaus-
sian wave function for scalar perturbation as a solution of the Schrödinger equation. In
Section 7, the tensor perturbations and their wave function are discussed. In Section 8, we
consider the evolution of the wave function in various cosmological epochs. In Section 9,
a non-relativistic particle interacting with cosmological perturbations is discussed. In
Section 10, we review our version of the influence functional method in order to derive the
density matrix for a particle in an environment of quantum cosmological perturbations.
We solve stochastic equations for cosmological perturbations (needed for the calculation of
the density matrix) in Section 11. We calculate the density matrix in a simplified model
of one-mode approximation in Section 12. The general Gaussian state of the cosmological
environment is discussed in Section 13. The particle motion in thermal environment of
cosmological perturbations is obtained in Section 14. In Section 15, we summarize our
main results and point out some extensions of our work.

Our approach is based on a quantization of the quadratic approximation to Einstein
gravity. Such an approach is justified in a classical theory by a linearized coupling of the
gravitational modes to the detector as confirmed by the recent discovery of gravitational
waves. Until now, there are no indications of the quantum nature of gravitational waves
(gravitons) and the relevance of extended theories of gravity (if dark matter and dark energy
are accepted). However, recent observations (LIGO/Virgo and Planck2015) evoke the hope
to check various methods of quantization as well as some extensions of Einstein gravity.
The first category includes: an exponential parameterization [32–34], loop quantization [35],
effective field theory [36] and asymptotically save gravity [37]. As possible extensions of
Einstein gravity (which eventually could avoid the introduction of dark matter and dark
energy), we mention f(R) gravity [38], Brans–Dicke gravity [33,39], non-canonical P(X, φ)
and Horndeski gravity [40,41]. These extensions are particularly interesting in view of
the possible measurement of the difference of the light velocity and gravitational waves
velocity [42]. We discuss these questions in the last section.
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2. Feynman Integral on an Oscillatory Background

Let us consider first a simple model of the Schrödinger equation of quantum mechanics

in one dimension with the potential mω(t)2x2

2 perturbed by a time-dependent potential Vt

ih̄∂tψt = (− h̄2

2m
∇2

x +
mω(t)2x2

2
+ Vt(x))ψt. (1)

Let ψ
g
t be a solution of the Schrödinger equation with an oscillator potential

ih̄∂tψ
g
t = (− h̄2

2m
∇2

x +
mω(t)2x2

2
)ψ

g
t . (2)

Let us write the solution of Equation (1) in the form

ψt = ψt
gχt. (3)

Inserting χt from Equation (3) into Equations (1) and (2), we find that χt satisfies
the equation

∂tχt =
ih̄
2m∇2

xχt +
ih̄
m (∇x ln ψt

g)∇xχt − i
h̄ Vtχt (4)

with the initial condition
χ0 = ψ0(ψ

0
g)
−1 (5)

expressed by the initial conditions for ψt and ψt
g.

Equation (4) can be considered as the diffusion equation with the imaginary diffusion
constant ih̄

m , a time-dependent drift ih̄
m∇x ln ψt

g and the potential (killing rate) i
h̄ Vt.

The solution of Equation (4) is determined by the solution of the Langevin equation

dqs =
ih̄
m
∇ ln ψt−s

g (qs)ds +

√
ih̄
m

dbs. (6)

Here, the Brownian motion bs is defined as the Gaussian process with the covariance

E[btbs] = min(t, s). (7)

The solution of Equation (1) is expressed [43,44] by the Feynman–Kac formula

χt(x) = E
[

exp
(
− i

h̄

∫ t

0
dsVt−s(qs(x))

)
χ0(qt(x))

]
, (8)

where qt(x) is the solution of Equation (6) with the initial condition q0(x) = x and the
expectation value is over the paths of the Brownian motion.

A derivation of the Feynman integral (8) has been discussed previously [45,46]. An
extension of the real diffusion processes [43] to a complex domain with an application to
the Feynman integral is studied in [47–49].

As the simplest case, we consider the ground state solution of Equation (2) (with a
constant ω)

ψg(x) =
( πh̄

mω

)− 1
4

exp(−mω

2h̄
x2). (9)

The stochastic Equation (6) reads

dq = −iωqdt +

√
ih̄
m

db. (10)

A simple calculation gives∫
dx|ψg(x)|2E[qt(x)qt′(x)] =

h̄
2mω

exp(−iω|t− t′|). (11)
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The rhs of Equation (11) is the expectation value of the time-ordered product of
Heisenberg picture position operators in the ground state of the harmonic oscillator.

3. Quantum Field Theory

We consider the canonical field theory of a scalar massless field with the Hamiltonian
(we set the velocity of light c = 1)

H =
1
2

∫
dx
(

Π2 + (∇φ)2 + v(t)φ2
)
+
∫

dxVt(φ), (12)

where Π(x) is the canonical momentum (v(t) is a certain function which is specified below),

[φ(x), Π(y)] = ih̄δ(x− y). (13)

We solve the Schrödinger equation

ih̄∂tΨ = HΨ. (14)

Let
Ψt = ψt

gχt, (15)

where ψt
g is the solution of the Schrödinger equation for free field theory

ih̄∂tψ
t
g =

1
2

∫
dx
(

Π2 + (∇φ)2 + v(t)φ2
)

ψt
g. (16)

Then, χ satisfies the equation (an infinite dimensional version of Equation (6))

h̄∂tχ =
∫

dx
(
− i

2
Π2 − i(Π ln ψt

g))Π− iVt(φ)
)

χ, (17)

where
Π(x) = −ih̄

δ

δφ(x)
. (18)

It follows from Equation (8) that the solution of Equation (17) can be expressed as

χt(φ) = E
[

exp
(
− i

h̄

∫ t

0
dsVt−s(φs)

)
χ0

(
φt(φ)

)]
, (19)

where φs(φ) is the solution of the stochastic equation

dφs(x) = ih̄
δ

δφ(x)
ln ψt−s

g ds +
√

ih̄dWs(x) (20)

with the initial condition φ. E[...] denotes an expectation value with respect to the Wiener
process (Brownian motion) defined by the covariance

E
[
Wt(x)Ws(y)

]
= min(t, s)δ(x− y). (21)

Let us consider the simplest example: the free field. Then, the ground state is

ψg =
(

det(
π

ω
)
)− 1

4
exp(− 1

2h̄
φωφ). (22)

where
ω =

√
−4

Equation (20) reads
dφt = −iωφtdt +

√
ih̄dW. (23)
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The solution is

φt(φ) = exp(−iωt)φ +
√

ih̄
∫ t

0
exp(−iω(t− s))dWs. (24)

For Fourier transforms (in other words, in the one mode approximation), Equation
(23) reads

dφt(k) = −i|k|φt(k)dt +
√

ih̄dW(k). (25)

In subsequent sections, we use the same notation for x and k functions. The k-representation
is useful for a smooth transition from one-mode approximations to infinite modes.

4. Scalar Perturbations in the Era of Inflation

A metric perturbation of the flat conformal metric (with the conformal time τ =∫
a−1(t)dt, where t is the cosmic time)

ds2 = a2(dτ2 − dx2)

in a special gauge (conformal Newtonian gauge with no anisotropic stress) takes the form

ds2 = a2((1 + 2ψ)dτ2 − ((1− 2ψ)δjk + hjk)dxjdxk). (26)

We consider a single field inflaton model of inflation (for the formalism with multiple
scalar fields, see [50]). Then, according to the authors of [10,11,14,50,51], the action for
scalar cosmological perturbations in the inflationary era (in conformal time) is

S =
1
2

∫
dx
(
(ϕ′)2 − (∇ϕ)2 + z−1z′′ϕ2

)
, (27)

where
ϕ = aΦ (28)

and Φ is a gauge invariant variable linear in the scalar metric perturbation ψ and in the
inflaton perturbation.

The Lagrangian equations of motion following from the action (27) are

(∂2
τ −∇2 − z−1z′′)ϕ = 0 (29)

where z can be expressed by the scale factor a [51] z = a
√

γ with

γ = 1− a2(∂τa)−2∂τ(a−1∂τa).

During an inflation in a scalar potential U in the slow-roll approximation [50], we have

z−1z′′ = (Hca)2(2 + 5ε− 3η), (30)

where Hc is the Hubble variable in the cosmic time and

ε =
1

16πG
(

U′

U
)2,

η =
1

8πG
U′′

U
.

z−1z′′ in the approximation of an almost exponential expansion (i.e., for small ε and η) is
2τ−2 (as (Hca)2 ' τ−2). Hence, in this approximation, Equation (29) reads

(∂2
τ + k2 − 2τ−2)ϕ = 0. (31)
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The Hamiltonian (12) for the action (27) is

H =
1
2

∫
dx
(

Π2 + (∇ϕ)2 − z−1z′′ϕ2
)

. (32)

The model is quantized in a standard way by a realization of the canonical commuta-
tion relations with Π(x) defined in Equation (18) (now, v = −z−1z′′ in Equation (13)).

5. Scalar Acoustic Environment

During inflation, the inflaton field is dominant in Φ (28), but, when the inflation
stops, the inflaton decays and the reheating begins (radiation era). In such a case, in the
gauge invariant variable Φ, the scalar perturbations of the metric become dominant. We
assume that the scalar perturbations evolve adiabatically (constant entropy) according to
the equation for the gauge invariant scalar metric perturbations (with no anisotropic stress
and with the flat spatial background metric) [10,11]

d2

dτ2 Φ + 3(1 + c2
s )H

d
dτ

Φ + c2
s4Φ + (2

d
dτ
H+ (1 + 3c2

s )H2)Φ = 0, (33)

whereH = a−1 d
dτ a, cs is the acoustic velocity approximately equal

√
w and p = wρ where

p is the pressure and ρ is the density in the energy–momentum tensor on the rhs of Einstein
equations. The effect of the decay of the inflanton at the end of the inflation era could be
described by a modification of Equation (33) by a friction term γ∂τΦ [52]. We assume that
either γ is negligible or Equation (33) describes the evolution of the scalar perturbation
after the decay of the inflaton.

We consider power-law expansion in a conformal time

a = Cτα. (34)

We introduce
Φ = τrφ, (35)

where
r = −3

2
(1 + w)α, (36)

then the Fourier transform of Equation (33) can be expressed as

d2

dτ2 φ + c2
s k2φ− κτ−2φ = 0, (37)

where κτ−2 = z−1z′′ of Equation (29) with

κ =
9
4
(1 + w)2α2 +

1
2

α− 3
2

wα− (1 + 3w)α2. (38)

Equation (37) is an analog of Equation (29) with4 → c2
s4. The solution of Equation (37)

can be expressed by the cylinder functions Zν

φ =
√

kτZp− 1
2
(cskτ) (39)

where
κ = p(p− 1) (40)

The Hamiltonian corresponding to Equation (37) is

H =
1
2

∫
dx
(

Π2 + c2
s (∇φ)2 − κτ−2φ2

)
, (41)

i.e., z−1z′′ → κτ−2 in Equation (32).
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6. Gaussian Solution of the Schr ödinger Equation for Scalar Perturbations

We look for a solution of the Schrödinger Equation (14) (with the Hamiltonian (32) or
(41)) in the form

ψ
g
t = N exp

( i
2h̄

φΓφ(τ)φ +
i
h̄

Jτφ
)

, (42)

where Γφ (we denote Γ in the scalar case with an index φ in order to distinguish it from
the one for the tensor perturbations in the next sections; we skip φ if there is no danger
of confusion) is an operator defined by a bilinear form Γφ(x− y). Inserting ψ

g
t into the

Schrödinger Equation (14) with the Hamiltonian (32), we obtain equations for N, Γ, J (in
Fourier space)

ih̄∂τ ln N = 1
2

∫
dkJ(k)J(−k)− ih̄

2 δ(0)
∫

dkΓ(k), (43)

where Γ(k) is the Fourier transform of Γ(x),

∂τ J = −ΓJ, (44)

∂τΓ = −Γ2 − c2
s k2 + z−1z′′. (45)

The term δ(0) in the normalization factor (43) results from an infinite sum of oscillator
energies. It could be made finite by a regularization of the Hamiltonian (32), but this
is irrelevant for calculations of the expectation values (because the normalization factor
cancels). If we define

u(τ) = exp(
∫ τ

dsΓs), (46)

then Γ(k) = u−1∂τu where u satisfies the equation

(∂2
τ + c2

s k2 − z−1z′′)u(k) = 0. (47)

With the result (30) in the inflation era (cs = 1), this equation reads

(∂2
τ + k2 − (2 + 5ε− 3η)τ−2)u(k) = 0. (48)

The solution is

u = C1
√

kτZp1− 1
2
(kτ) + C2

√
kτZp2− 1

2
(kτ), (49)

where p1 and p2 are the solutions of the quadratic equation

p(p− 1) = 2 + 5ε− 3η

and Zν are the cylinder functions. The solutions (49) enter the formula for the free field
quantization in the Heisenberg picture with the Bunch–Davis vacuum and in the formula
for the spectrum of scalar perturbations [53,54].

For the acoustic perturbations (33), we have the Hamiltonian (41). The Gaussian wave
function (42) is the solution of the Schrödinger Equation (14) if Γ = u−1∂su where

d2

dτ2 u + c2
s k2u− κτ−2u = 0. (50)

In the era of radiation domination (α = 1), we insert w = 1
3 for relativistic particles,

then Equation (50) reads
d2

dτ2 φ +
1
3

k2φ− 2τ−2φ = 0. (51)

The Hamiltonian is

H =
1
2

∫
dx
(

Π2 +
1
3
(∇φ)2 − 2τ−2φ2

)
. (52)
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The equation for u determining Γ reads

(∂2
τ +

1
3

k2 − 2τ−2)u(k) = 0. (53)

7. Schrödinger Wave Function for Tensor Perturbations

The quadratic action for tensor (transverse, traceless) perturbations is [10] (where τ is
the conformal time)

S =
1
2

∫
dτdxa2(∂τhij∂τhij −∇hij∇hij). (54)

Let us decompose hij in polarization tensors eν
ij

hij = a−1eν
ijhν, (55)

then
S =

∫
dτdx

(
∂τhν∂τhν + hν(4+ a′′a−1)hν

)
. (56)

The Hamiltonian is

H =
1
2

∫
dx
(
(Πν)2 − hν(4+ a′′a−1)hν

)
, (57)

where Πν is the canonical momentum. After quantization,

H =
1
2

∫
dx
(
− h̄2 δ2

δhν(x)2 + hν(−4− a′′a−1)hν
)

. (58)

The Schrödinger equation
ih̄∂τΨ = HΨ

has a Gaussian solution (where Γh is an integral operator with the kernel Γh(x− y))

ψ
g
τ = N(τ) exp(

i
2h̄

hνΓh(τ)hν) (59)

if (we skip the index h)
∂τΓ + Γ2 + (k2 − a′′a−1)Γ = 0 (60)

and
∂τ ln N = −1

2
δ(0)

∫
dkΓ(k). (61)

Note that, if Γ is a continuous function of τ, then N(τ) (hence also ψ
g
τ) is a continuous

function of τ. As shown in the next section, Γ can be continuous between different epochs
of the expansion, but the derivative of Γ has a discontinuity between the inflationary,
radiation and baryonic epochs. Let as in the scalar case

Γ = u−1∂τu (62)

Then,
∂2

τu + (k2 − a′′a−1.)u = 0 (63)

On the boundaries of various epochs, the Schrödinger equation needs some correction
terms (barriers) because of the discontinuity of a′′. In the de Sitter space (inflation era), a =
exp(Hct) (in the cosmic time t), τ = −H−1

c exp(−Hct) and a = −(Hcτ)−1 (in conformal
time, where Hc is the Hubble constant in the cosmic time) then

∂2
τu + (k2 − 2τ−2)u = 0. (64)
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From Friedmann equations, if p = wρ (where ρ is the density and p the pressure),

then a ' t
2

3(1+w) . In the radiation era, w = 1
3 , then a ' τ, hence in Equation (63)

∂2
τu + k2u = 0 (65)

with the general solution

ur(τ) = kσr cos(kτ) + kδr sin(kτ). (66)

We consider further on mostly σ 6= 0 and δ 6= 0. We may let δ = 0, but then, to obtain
a normalizable Gaussian wave packet, we must shift the argument of cosine by a complex
number α− iγ. Then, as in [4] (u = k cos(kτ + α− iγ)),

Γ = −k tan(kτ + α− iγ) = k
(

i sinh(2γ)− sin(kτ + α) cos(kτ + α)
)

×
(

cosh(2γ) + 1
2 cos(2kτ + 2α)

)−1
.

(67)

Note that =(Γ) ' 2kγ for a small γ (squeezing). This form of Γ is useful if we wish to
represent the squeezing as explicitly proportional to γ (for a small γ).

In the baryonic era when w = 0 (“dust”) then a ' τ2, hence again a′′a−1 = 2τ−2.
Thus, we have the same Equation (64) as for the exponential (inflationary) expansion (when
we use the approximation ε = η = 0).

The solution of Equation (64) (inflationary era) is (p1 = 2, p2 = −1 in Equation (49))

u = τ−1
(

σ(kτ cos(kτ)− sin(kτ)) + δ(kτ sin(kτ) + cos(kτ))
)

(68)

It can be seen that for the solution (66) as well as (68) Γ depends only on R = δσ−1.
We can obtain normalizable solutions of the Schrödinger equation in the inflationary era
with δ = 0 shifting the arguments of sin and cos by a complex factor. Thus, instead of (68),
we can write a solution of Equation (64) in the form

u = k cos(kτ + α− iγ)− τ−1 sin(kτ + α− iγ). (69)

The solution of the acoustic Equations (33), (37) and (50) is obtained from
Equations (68)–(69) with kτ → cskτ. Thus, Equation (53) (describing scalar perturbations
in the radiation era) for an acoustic wave of a relativistic fluid has a solution analogous to
Equation (68):

u = τ−1
(

σ(kτ cos( 1√
3

kτ)− sin( 1√
3

kτ)) + δ(kτ sin( 1√
3

kτ) + cos( 1√
3

kτ))
)

. (70)

An analog of Equation (69) is

u = k cos(
1√
3

kτ + α− iγ)− τ−1 sin(
1√
3

kτ + α− iγ). (71)

These solutions can be used in Section 13 for a calculation of the density matrix in the
environment of scalar perturbations in the radiation era.

We view the time evolution of the Gaussian wave function of tensor perturbations as
a continuous process through various epochs of Universe evolution. We wish to follow the
Gaussian wave function starting from the inflationary era. For this purpose, we need to
choose the expansion scale a(τ) in a continuous way. We use [13]

a(τ) = τ−1Kτ−1
1
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in the inflationary era when −∞ < τ < τ1 < 0

a(τ) = −τ−2
1 (τ − 2τ1)Kτ−1

1

in the radiation era when τ1 < τ < τ2 and

a(τ) = −1
4
(τ + τ2 − 4τ1)

2τ−2
1 (τ2 − 2τ1)

−1Kτ−1
1 (72)

for τ > τ2 (baryonic era).
a(τ) is continuous together with its first derivative. Hence, Γ(τ) can be glued together

in a continuous way (so that the wave function is continuous). d2a
dτ2 is discontinuous (does

not exist at the transition points between different eras). In such a case, Equation (63)
(equivalent to the Schrödinger Equation (14)) requires an interpretation. Equation (63)
is similar to the Schrödinger equation in one dimension with a discontinuous potential
a−1a′′. When a−1a′′ is discontinuous between different epochs, we must impose continuity
conditions upon us as in the Schrödinger equation on the line with discontinuous barriers.

8. Evolution of the Quantum Gaussian State in Various Cosmological Epochs

In this section, we investigate whether squeezing of the wave function for scalar
and tensor perturbations [13–15] =iΓ ' −τ2 (at small τ) achieved in the inflation era
continues to the subsequent epochs of the Universe evolution assuming that the Gaus-
sian wave function is continuous between different epochs (it satisfies the Schrödinger
equation with the quadratic Hamiltonians in the corresponding epochs). The squeezing
is relevant for the noise intensity in the equations of motion of quantum particles [17],
as shown in Section 13. We suggest that the expansion of the Universe itself (not the
physical processes in various epochs) has the major impact on the wave function evolution
at least for the tensor perturbations. This can be justified by the fact that in the first-order
approximation the gravitational waves created during inflation interact neither with the
scalar perturbations nor with the matter created after inflation. For the scalar perturbations,
this assumption may be questionable because the inflanton decays between inflation and
radiation era so that in the radiation era its contribution to Φ of Equation (33) is dimin-
ishing. Finally, only the scalar metric perturbation remains in Φ. However, in the second-
order perturbative calculations, the scalar perturbations can produce the gravitational
waves [29,30]. Such non-linear effects cannot be described by a Gaussian approximation.
The quantum state varies with Γ(τ) where Γ(τ) is determined by u. We begin the evolution
of the state ψτ(h) in the inflationary era. Then, Equations (59) and (62)–(64) apply. We
assume that when the inflation stops at τ1 then the radiation era begins. Then, the evolu-
tion of ψτ(h) is determined by Equation (66). After the recombination at τ2, the photons
decouple. We assume that in this era w = 0. Then, again, Equation (64) is satisfied (but
now a ' τ2).

For a continuous evolution of the wave function ψτ(h) we need the continuity condi-
tions for Γ(τ) at the start τ1 of the radiation era and at the beginning τ2 of the baryonic era.
Let us denote R = σ−1δ (the functions Γ are defined by R. During the inflation we have
(from Equation (68))

Γi(τ) =
(
− k2 sin(kτ)− kτ−1 cos(kτ) + τ−2 sin(kτ)

+Rik2 cos(kτ)− Rikτ−1 sin(kτ)− Riτ
−2 cos(kτ)

)
×(

k cos(kτ)− τ−1 sin(kτ) + Rik sin(kτ) + Riτ
−1 cos(kτ)

)−1
(73)

For small kτ (large cosmic time t), we obtain

Γi(τ) = τ−1
(
− 1 + (kτ)2 − 1

Ri
(kτ)3

)
(74)
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From Equation (74), the real part of iΓi is small (squeezing [14]), whereas the imaginary
part of iΓi is large (classical WKB behaviour [14]). The assumption that at τ → −∞ the state
ψ

g
τ tends to the vacuum requires Ri = i. For Ri = i, we have from Equation (73) exactly

Γi = ik
(

1 + i(kτ)−3
)(

1 + (kτ)−2
)−1

(75)

which agrees with the approximate Formula (74).
In the beginning of the radiation era at time τ1 (from Equation (66)),

Γr(τ1) =
(
− k2 sin(kτ1) + k2Rr cos(kτ1)

)(
k cos(kτ1) + kRr sin(kτ1)

)−1
(76)

If the wave function ψ
g
τ(h) is to be continuous between the inflation era and the

radiation era, then, from Γi(τ1) = Γr(τ1), we get

Rr = −
(

k sin(kτ1) + Γi cos(kτ1)
)(

Γi sin(kτ1)− k cos(kτ1)
)−1

(77)

and, subsequently, we can express Rr by Ri

Rr =
(

kτ1 − sin(kτ1) cos(kτ1)− Ri(k2τ2
1 − cos2(kτ1)

)
×
(
− k2τ2

1 + sin2(kτ1)− kτ1Ri − sin(kτ1) cos(kτ1)Ri

)−1 (78)

At small kτ1, this gives

Rr ' −
1

2kτ1
+

i
4
(kτ1)

2 (79)

If kτ1 is large, then from Equation (78)

Rr ' Ri (80)

κτ1 is large in the baryonic era. As shown in Section 13 (see also [20]), large R ensures
big noise. To have a large noise in the radiation era (and subsequently in the baryonic era),
we need big Ri in the inflation era.

As in the inflation era and in the baryonic era the same Equation (64) applies, we
have the same continuity conditions in the passage between different eras (Equation (72)).
Equation (77) remains true in the baryonic era (for τ > τ2) when we replace Ri by Rb (the
squeeze parameter in the baryonic era) but now τ is large. It follows from Equation (80)
that Rb ' Rr.

9. Particle Interacting with Scalar and Tensor Perturbations in the Post-Inflationary Era

We are interested in the motion of a particle in the gravitational field of cosmological
perturbations. The particles (“baryons” or dark matter particles) appear at the end of the
inflation era. The environment of the cosmological perturbations may have an impact
on the clustering (formation of inhomogeneities) of such particles. The environment of
tensor perturbations (quantized gravitational waves) may be detected in LIGO/Virgo
detector, as suggested in [17]. This is a system of mirrors such that the interference takes
place depending on the distance of the mirrors. Let us consider a system of two particles
(mirrors) with masses m′ >> m in a free falling frame (e.g., in satellites as in prospective
LISA gravitational wave detector). The distance between the particles depends on the
metric ds2 = gµνdXµdXν. The action for the light (m) particle is

S = −m
∫ √

gµνdXµdXν

where the metric is defined in Equation (26). If we are to compute averages over the metric,
we need to expand the action in a perturbation series in weak gravitational perturbations.
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To do it in a covariant way, we choose the Fermi coordinates between the space-like
separated geodesics of the particles m′ and m. Now, Xµ = (τ, X), where X are the Fermi
coordinates between the neighboring geodesics of the two particles. Calculating the square
root in S in the lowest order with the metric (26), we obtain [17,21]

S =
m
2

∫
dτa(

dX
dτ

)2 − m
2

∫
dτaR0l0rXrXl ,

where Rµναβ is the Riemannian tensor. Inserting the expression for the Riemannian tensor
with a linear approximation (27) for the metric, we obtain the action

SI =
m
2

∫
dτa dXk

dτ
dXk

dτ − λm
∫

dτψ(τ, X(τ)) d2

dτ2 aX2

+ 1
2 mλ

∫
dτhjk(τ, X(t)) d2

dτ2 (aXkX j),
(81)

where λ2 = 8πG (we rescale ψ→ λψ, h→ λh so that the quadratic Einstein gravitational
action for the perturbations is the same as the one for the free massless scalar field of
Section 3).

In a general metric perturbation, the action should depend on gauge invariant vari-
ables. Hence, ψ→ Φ in Equation (81). According to Equation (35), φ = τ

3
2 (1+w)αΦ so the

action (81) takes the form

SI =
m
2

∫
dτa dXk

dτ
dXk

dτ − λm
∫

dττ−
3
2 (1+w)αφ(τ, X(τ)) d2

dτ2 aX2

+ 1
2 mλ

∫
dthjk(τ, X(τ)) d2

dτ2 (aXkX j),
(82)

where φ satisfies Equation (37) and its quantum evolution is determined by the Hamiltonian
(41) (in the radiation era, w = 1

3 , α = 1 and φ = τ2Φ). The tensor field hij is expressed by
hν (55) with the Hamiltonian (57)

The interaction of a particle with the gravitational waves in Equation (82) is the same
(for a = 1) as the one in [17,21] (the scalar terms have been considered in [55]). Equation (82)
defines a linear coupling model with the coupling

V =
∫

dx(φ f + hrl f rl), (83)

where

f (x) = −mλ
∫

dττ−
3
2 (1+w)αδ(x− X(τ))

d2

dτ2 aX2 (84)

and

f rl(x) =
1
2

mλ
∫

dτφδ(x− X(τ))
d2

dτ2

(
aXr(τ)Xl(τ)

)
. (85)

We apply the formula for the linear coupling in order to calculate the density matrix
of quantum particles.

From the action (82), neglecting the dependence of fields on X (as we do in subsequent
sections for the quantized fields), we obtain an equation of motion for a particle in a
classical solution ψcl and hcl

jk of the Einstein equations for the gravitational perturbations

d
dτ

a
dXk
dτ

+ λ
d2hcl

jk

dτ2 aX j + 2λ
d2ψcl

dτ2 aXk = 0. (86)

10. Linear Coupling to an Oscillatory Environment

We are interested in quantum mechanics of particles interacting with quantized cosmo-
logical perturbations. The quantized tensor perturbations are expected to be detectable [17]
as gravitons. The quantum scalar perturbations are analogs of phonons in solid state
physics or plasmons in the physics of plasma. We expect that they have an impact on
detectors of cosmological perturbations (e.g., that they can be measurable as the noise as
suggested in [17] for tensor perturbations). We approximate the non-linear Einstein action
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by its quadratic term in scalar and tensor perturbations. For both the scalar perturbations
(84) and the tensor perturbations (85), the interaction with a particle takes place through a
linear coupling of an oscillatory system with the coordinates of the particle. In one-mode
approximation and with a linearized interaction, there are no substantial differences be-
tween the scalar and the tensor terms. We consider a model of a system with a Lagrangian
LX described by a coordinate X interacting linearly with an oscillator q (q can be either the
scalar or the tensor mode). We denote the particle part of the interaction by fs(X). We have
the Lagrangian

L = LX +
1
2
((

dq
ds

)2 −ω2q2) + qs fs(X). (87)

We could quantize the interaction (87) in the Heisenberg picture solving Lagrange
equations with quantized oscillators q. Such an approach for an analogous electromag-
netic interaction is developed in [56,57]. One obtains a quantum system LX with a noise
expressed by the oscillator creation and annihilation operators. Similar treatment of the
particle–gravity interaction is discussed in [21]. Then, the noise does not depend on the
quantum state of the oscillators but the correlation functions of the noise must be calculated
in a particular quantum state of these oscillators.

In the approach of Section 2, the noise depends on the state of the oscillatory back-
ground. When we calculate the expectation values of the observables of the X-system
(which are independent of the q-variables), according to quantum mechanics, the calcula-
tion is reduced to an evaluation of the trace in the mixed state ρt

Trq(t|Φ >< Φ|t) ≡ ρt (88)

where Trq is the trace over the states of the q- subsystem and |Φ > is the pure state of the
system (87). We consider an initial state of the product form Φ(q, X) = ψ

g
0 (q)χ0(q)φ(X).

According to Equation (3), it evolves into ψ
g
t (q)χt(q)φt(q, X) where

χt(q)φt(q, X) = E[χ0(qt(q))φ(qt(q), X)]

where in E[χ0(qt(q))φ(qt, X)] the evolution of the χ0φ state is expressed by the ordinary
Feynman integral over the X paths and the expectation value over oscillator paths of
Section 2 (so qt(q) is the stochastic process (10)). When the initial state of the oscillator is
fixed as ψ

g
0 (q) (as in Sections 12 and 13), the average (88) is reduced to a q-average over

|ψg
t |2. For the thermal state of Section 14, the average (88) is over all states of the oscillator

with a proper Gibbs weight.
In this paper, we consider the system of particles and cosmological fluctuations. We

do no measurements on gravitational fluctuations. Nevertheless, these fluctuations have
some impact on the motion of quantum particles. As shown in the following sections,
the effect of the fluctuations upon the particle’s motion can be described classically as
a friction and noise. The averaging applies also to classical fields (including classical
gravitational fluctuations). It would not make much difference whether we derived the
density matrix considering, e.g., classical background of gravitational waves or coherent
states of quantized gravitational waves. In the Appendix of [20], we showed that the
assumption that gravitational waves have classical thermal distribution leads to the same
friction and noise as the high temperature limit in the average (88) over the quantum Gibbs
distribution. Nevertheless, for lower temperature, the noise and friction are h̄-dependent.
The effect of a classical cosmological background is weak (proportional to the Newton
constant), whereas we can expect a strong detectable noise from quantum squeezed states
as discussed in Section 13.

Our approach can be considered as a tool for a calculation of Feynman–Vernon
influence functional [58]. Using the stochastic representation of Section 2, the density
matrix ρ of the system LX is obtained as an average over the environment of the oscillator
in the state ψ

g
t
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ρt(X, X′) =
∫

dxDXDX′|ψg
t (x)|2 exp(− i

h̄

∫
dsLX + i

h̄

∫
dsLX′)φi(Xt(X))φi(Xt(X′))

E
[

exp
(

i
h̄

∫ t
0 qs ft−s(X′s)

)
χi(qt(x)) exp

(
− i

h̄

∫ t
0 q∗s ft−s(Xs)

)
χi(q∗t (x))

]
.

(89)

where DX means the Feynman integral over the particle’s trajectories, DX′ is an integral
over independent Feynman paths X′ and ∗ when acting on functions means the complex
conjugation and when applied to the stochastic process (10) means a complex conjugation
of an independent version of the process (10).

For a Gaussian variable qs, we have (for any number αs)

E[exp(αsqs)] = exp
(

αs < qs > + 1
2 < (αsqs − αs < qs >)2 >

)
.

This equation can easily be generalized to
∫

dsαsqs. If χi = 1, the expectation value in
Equation (89) is

E
[

exp
(

i
h̄

∫ t
0 dsqs ft−s(Xs)

)]
= exp

(
i
h̄

∫ t
0 ds < qs > ft−s(Xs)

)
exp

(
− 1

2h̄2

∫ t
0 dsds′E[(qs− < qs >)(qs′− < qs′ >)] ft−s(Xs) ft−s′(Xs′)

)
.

(90)

11. Solution of the Stochastic Equation for Scalar and Tensor Perturbations

According to the results of Sections 2 and 10, the calculation of the Feynman integral
is reduced to the calculation of expectation values over solutions of stochastic equations.
For the scalar perturbation with ψt

g, Equations (42) and (20) have the solution (with the
initial condition φ at τ = τ0)

φs =
uτ−s

uτ−τ0
φ− uτ0 uτ−s J0

∫ s
τ0

u−2
τ−tdt +

√
ih̄uτ−s

∫ s
τ0

u−1
τ−tdWt, (91)

where us is a solution of Equation (47) (in subsequent sections we denote by the same
symbol solutions of Equation (47) which are different depending on the choice of cs and
z−1z′′ in Equation (47)). We have

E[(φs− < φs >)(φs′− < φs′ >)] = ih̄uτ−suτ−s′
∫ min(s,s′)

τ0
u−2

t−τdτ. (92)

With V linear in φ in Equation (19), we can calculate the expectation value in Equation (90)
explicitly using Equations (91) and (92).

Linearized gravity decomposed in polarization components hν (55) has the Hamil-
tonian (57) which is the same as the one for two independent scalar fields. Hence, the
solution of the Schrödinger equation of the linearized Einstein gravity is the product of
the solutions for the scalar fields hν (a generalization of Equation (59) with a source term J
which can describe coherent states of the gravitational waves; we assume that, owing to
the rotation invariance, Γh does not depend on ν)

ψτ
g(h) = A(τ) exp

( i
2h̄

(hνΓh(τ)hν + 2Jν
τ hν)

)
, (93)

where Γ is an integral operator with the kernel Γ(τ, x− y). As in Section 6, we find that
the Fourier transform of Γ(τ, x − y) can be expressed as Γ(τ, k) = u(k)−1∂τu(k) and
Jτ = J0u0u−1

τ . Then, Equation (20) takes the form

dhν
s = −Γ(τ − s)hν

s ds− Jν
τ−sds +

√
ih̄dWν

s ,

where
E[Wα

t (x)W
β
s (y)] = min(t, s)δαβδ(x− y).
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Expressing Γ and J in terms of u (Equation (62)), we have (we suppress the index ν)

dhs = −∂τ ln uτ−shsds− J0u0u−1
τ−sds +

√
ih̄dWs. (94)

Equation (94) has the solution (with the initial condition h at τ = τ0)

hs(h) =
uτ−s

uτ−τ0
h− uτ0 uτ−s J0

∫ s
τ0

u−2
τ−tdt +

√
ih̄uτ−s

∫ s
τ0

u−1
τ−tdWt. (95)

We have

E[(hα
s− < hα

s >)(hs′β− < hs′β >)] = ih̄δαβuτ−suτ−s′
∫ min(s,s′)

τ0
u−2

t−τdτ, (96)

where for the solution (66) (R = σ−1δ)∫ s

0
u−2

t−τdτ = k−4(1 + R2)−1(Γh(t− s)− Γh(t)) (97)

with
Γh(s) = k

(
− sin(ks) + R cos(ks)

)(
cos(ks) + R sin(ks)

)−1
(98)

whereas for the solution (68)

σk3
∫ t′

t u−2
τ dτ = (kt′ sin(kt′) + cos(kt′))

(
(δkt′ − σ) sin(kt′) + (σkt′ + δ) cos(kt′)

)−1

−(kt sin(kt) + cos(kt))
(
(δkt− σ) sin(kt) + (σkt + δ) cos(kt)

)−1
≡ σk−1(Γ(t)− Γ(t′))

(99)

We use the notation Γ at the rhs of Equation (99) in order to comply with the formulas
for the correlation functions of φs in Equations (92) and (97). For the scalar perturbations
in the radiation era when we have the solution us (of Equation (70)), the result (99) still
applies with k→ csk with cs =

1√
3
.

If δ = 0 and u = k cos(kτ + α− iγ), then∫ t′
t u−2

s ds = k−3
(

tan(kt′ + α− iγ)− tan(kt + α− iγ)
)
= k−4(Γh(t)− Γh(t′)), (100)

where Γ is defined in Equation (67). In the analogous formula in the inflation era,

k3
∫ t′

t u−2
τ dτ

=
(

kt′ sin(kt′ + α− iγ) + cos(kt′ + α− iγ)
)(
− sin(kt′ + α− iγ) + kt′ cos(kt′ + α− iγ)

)−1

−
(

kt sin(kt + α− iγ) + cos(kt + α− iγ)
)(
− sin(kt + α− iγ) + kt cos(kt + α− iγ)

)−1

≡ k(Γi
h(t)− Γi

h(t
′))

(101)

Formulas (97) and (99)–(101) allow calculating the evolution of the density matrix (88)
for the interaction of particles with the cosmological perturbations.

12. One Mode Approximation

In our linearized model (87), q is either φ or hjk and f is defined in Equations (84) and (85).
In coordinate space (with an infinite number of modes), if ψg is the ground state (22), then
we have ∫

dφ|ψg(φ)|2 exp(iFφ) = exp(− h̄
4

Fω−1F)

for any function F and

ω−1(x, y) = D(x, y) = (2π)−3
∫

dkk−1 exp(ik(x− y)) (102)
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For the scalar perturbation, we set qs as

φs(k) = exp(−iks)φ(k) +
√

ih̄
∫ s

0
exp(−ik(s− τ))dWτ(k) (103)

To exhibit the method without an involvement with cumbersome formulas we perform
the functional integration for one mode first (repeating for the convenience of the reader
some of the calculations in [20]). We begin with the simplest case of the background of one
single oscillator in the ground state (9). The average of one mode φ(k) in Equation (89) is
calculated as∫

dφ(k) exp
(
− 1

h̄ φ(k)∗kφ(k)
)

exp(iφ(k)∗F(k) + iF(k)φ∗(k)))

= exp(−h̄F(k)∗k−1F(k)).
(104)

We calculate the expectation value (89) for the density matrix of the X-system assuming
that the oscillator is in the ground state and we do not calculate expectation values of any
oscillator observables. According to Equations (90)–(92), we obtain (we use the solution
(103), assume that the initial condition χi = 1 and take only one component of X)

ρτ '
∫

dxDXDX′

exp(− kx2

h̄ )E
[

exp
(

i
h̄

∫ τ
0 (m

2
dX
ds

dX
ds −

m
2

dX′
ds

dX′
ds −

i
h̄

∫ τ
0 (qτ−s fs − q∗τ−s f ′s)ds

)]
=
∫

dxDXDX′ exp
(

i
h̄

∫ τ
0 (m

2
dX
ds

dX
ds −

m
2

dX′
ds

dX′
ds

exp(− kx2

h̄ ) exp
(
− i

h̄

∫ τ
0 (x exp(−ik(τ − s)) fs − x exp(iω(τ − s)) f ′s)ds

)
exp

(
− 1

2h̄2

∫ τ
0 dsds′

(
E[(qτ−s− < qτ−s >)(qτ−s′− < qτ−s′ >)] fs fs′

+E[(q∗τ−s− < q∗τ−s >)(q∗τ−s′− < q∗τ−s′ >)] f ′s f ′s′
))

,

(105)

here f ′s = fs(X′). In Equation (105), we have (this is the special case of Equation (92) with
us = exp(iks))

E[(qτ−s− < qτ−s >)(qτ−s′− < qτ−s′ >)]

= h̄
2k

(
exp(−ik|s− s′|)− exp(−ik(2τ − s− s′))

)
.

(106)

If the oscillator is in a time-dependent state, then we should insert the solution (66)
(or (69)) in the Feynman formula (88). Hence, instead of Equation (105), we have∫

dx| exp(i Γ(τ)x2

2h̄ )|2E
[

exp
(

i
h̄

∫ τ
0 (qs fτ−s − q∗s f ′τ−s)ds

)]
=
∫

dx exp(i Γ(τ)x2

2h̄ ) exp(−i Γ∗(τ)x2

2h̄ ) exp
(
−i
h̄

∫ τ
0 (< qτ−s > fs− < q∗τ−s > f ′s)ds

)
exp

(
− 1

2h̄2

∫ τ
0 dsds′

(
E[(qτ−s− < qτ−s >)(qτ−s′− < qτ−s′ >)] fs fs′

+E[(q∗τ−s− < q∗τ−s >)(q∗τ−s′− < q∗τ−s′ >)] f ′s f ′s′
))

,

(107)

where

E[(qτ−s− < qτ−s >)(qτ−s′− < qτ−s′ >)] = ih̄usus′
∫ min(τ−s,τ−s′)

0 dtu(τ − t)−2

= −ih̄k−2usus′(σ
2 + δ2)−1(Γ(τ)− Γ(max(s, s′))).

(108)

In our model, qs is φs for the scalar perturbation and

fs(k) = −mλs−
3
4 (1+w)α exp(ikXs)

d2

ds2 aX2 (109)

In the tensorial case, qs is hrl
s and

f rl
s (k) =

m
2

λ exp(ikXs)
d2

ds2 aXrXl (110)
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The calculation of the x integral in Equations (105) and (107) leads to a quadratic
functional of fs and f ′s′ in the exponential. In the case (105) of the ground state of the
one-dimensional oscillator, the scalar fluctuations give (now, a = 1 and α = 0)

ρτ ' exp
(

i
h̄

∫ τ
0

(
m
2

dX
ds

dX
ds −

m
2

dX′
ds

dX′
ds

)
exp

(
− 1

4h̄k

∫ t
0 dsds′

(
fs fs′ exp(−ik|s− s′|) + f ′s f ′s′ exp(ik|s− s′|)− 2 fs′ f ′s exp(ik(s− s′))

))
.

(111)

We write
Q =

1
2
(X + X′) (112)

y = X− X′.

We expand the exponential in Equation (111) in y. We obtain

ρt =
∫
DQDy exp

(
i
h̄

∫ τ
0 ym d2Q

ds2

)
exp

(
− 1

h̄k

∫ τ
0 ds′

∫ s′
0 ds

(
− i sin(k(s− s′))( d2

ds2 yQ d2

ds′2 Q2

− d2

ds2 yQ d2

ds′2 yQ cos(k(s− s′))
)

ρ0(Qτ , yτ)

(113)

The term linear in y modifies the equation of motion of the Q coordinate. The term
quadratic in y is a noise acting upon the particle [25].

In the expression (107) of the time-dependent reference state, we obtain

ρτ ' exp
(
− i

2h̄ (Γ(τ)− Γ∗(τ))−1
( ∫ τ

0 (u−1
τ us fs − u∗−1

τ u∗s f ′s)ds
)2

− i
2h̄k2

∫ τ
0 ds

∫ s′
0 ds′

(
usus′(σ

2 + δ2)−1(Γ(τ)− Γ(max(s, s′))) fs fs′

−u∗s u∗s′(σ
∗2 + δ∗2)−1(Γ∗(τ)− Γ∗(max(s, s′))) f ′s f ′s′

)
dsds′

)
.

(114)

We expand (114) in y. After the expansion in y until the second-order terms in
Equation (105), we obtain∫

DQDy exp
(

i
h̄

∫ τ
0 y(m d2Q

ds2 + L(Q) + i
2h̄ My)

)
ρ0(Q, y)

=
∫
DQDy exp

(
i
h̄

∫ τ
0 (yL̃ + i

2h̄ yMy)
)

ρ0(Q, y)

=
∫
DQDy exp

(
− 1

2h̄2 (y− ih̄M−1 L̃)M(y− ih̄M−1 L̃)− 1
2 L̃M−1 L̃

)
ρ0(Q, y),

where by L we denote a functional of Q, M is an operator and by yL̃ we denote the term
proportional to y. We introduce Q̃ = M−

1
2 L̃; then, Q̃ is a Gaussian variable which has the

white noise distribution that can be represented as ∂sbs. It can be seen that the equation
Q̃ = M−

1
2 L̃ can be expressed as the stochastic equation

m
d2Q
ds2 + L(Q) = M

1
2 ∂sbs. (115)

The calculation of ρτ involves an average over solutions of the stochastic Equation (115).
In general, there is still the Gaussian integral over y so that the expression for the den-
sity matrix can be obtained in the form of an integral over the solutions of the stochastic
Equation (115) and over the y terms resulting from an expansion in y of ρ0(Q, y) (this is an
expansion in h̄).

13. General Gaussian Environment of Cosmological Perturbations

In this section, we consider a general Gaussian time-dependent state of scalar and
tensor perturbations. These perturbations are generated by independent scalar fields φ, hν.
The difference between scalar and tensor perturbations is in the way they couple to particle
velocities (Equations (109)–(110)). The action (82) (together with the gravitational action) in
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Fourier space takes the form of a sum over k modes (in the interaction of a particle with
cosmological perturbations, we neglect the dependence of h(s, x) on spatial coordinates)

S =
∫

ds
(

1
2

∫
dkh∗ν(s, k)(−∂2

s − k2 − a−1a′′)hν(s, k)

+
∫

dkφ(s, k)(−∂2
s − c2

s k2 − κs−2)φ(s, k)

+ 1
2 ma dXr

ds
dXr
ds + (2π)−

3
2
∫

dkhν(s, k) f ν
s (k) + (2π)−

3
2
∫

dkφs(k) fs(k)
))

,

(116)

where hν = a−1eν
rlh

rl , f ν(k) = eν
rl f rl(k) and f rl(k), f (k) are defined in Equations (109)–(110).

We consider a solution of the Schrödinger equation in an expanding universe which
has the Gaussian form

ψ
g
τ(h, φ) = exp

( i
2h̄

∫
dkhαΓh(τ)hα +

i
2h̄

∫
dkφΓφ(τ)φ

)
. (117)

As discussed in Section 8, in an expanding universe, Γ(τ) in ψ
g
τ can dramatically

change in time so that =iΓ ' −τ2 (squeezing) [13–15]. We show in this section that
calculating expectation values in terms of the density matrix (obtained by averaging
over |ψg

τ |2) according to Equations (88) and (89) leads to a large noise on the basis of
Equation (115).

The calculation of the functional integral with the action (116) in an environment of
cosmological perturbations (117) is reduced (according to Section 10) to a calculation of
expectation values with respect to the stochastic processes φs and hν

s . These stochastic
processes and their correlation functions are defined by the solutions us of Equation (47)
with various cs (for the scalar perturbations) and z−1z′′. The general result for a calculation
of the expectation values is contained in Equation (90) but the complexity of the detailed
formulas depends on the complexity of the solution us. In the remaining part of this
section, we write down explicitly the expressions for the environment of the φ field which
is in the ground state in Equation (117) or in the time dependent (squeezed) state with
z−1z′′ = 0 (Minkowski space-time). We outline the calculations for the scalar perturbations
in the radiation era when z−1z′′ = 2τ−2. For the tensor perturbations, we have explicit
elementary solutions for us and hν

s and their correlations (Equation (99)) so that we can
calculate the density matrix in the environment of the tensor perturbations exactly in all
epochs of the universe evolution.

The scalar part of the contribution to the density matrix in the non-expanding metric
a = 1 (described by the solution (66)) or in the radiation era (described by the solution (70)) is

ρτ ' exp
(
− 1

2h̄

∫
dk(Γ(τ)− Γ(τ)∗)−1

( ∫ τ
0 (u−1

τ us fs − u∗−1
τ u∗s f ′s)ds

)2

− i
2h̄

∫
dkk−4

∫ τ
0

(
usus′(σ

2 + δ2)−1(Γ(τ)− Γ(µ))) fs fs′

−u∗s u∗s′(σ
∗2 + δ∗2)−1(Γ∗(τ)− Γ∗(µ)) f ′s f ′s′

)
dsds′

)
.

(118)

where µ = max(s, s′) and in the radiation era (σ2 + δ2)−1Γ should be replaced by Γ from
Equation (99), fs is defined in Equation (109) where we neglect exp(ikX).

The tensor part in the expectation values (105) and (107) with an infinite number of
modes has been calculated in [20] (for a = 1). We have sums of the form

f ν
s f ν

s′ = Λmn;rl f mn
s f rl

s′ , (119)

where Λrl;mn = eν
rle

ν
mn. The result of an averaging over angles leads to an insertion f → qrl

in Equation (118) where

qrl =
m
2

a−1 d2

ds2 (XrXl − 2
3

δrlX2
)

a. (120)
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Hence, the tensor contribution to the expectation value (118) is

ρτ ' exp
(
− i

2h̄

∫
dk(Γ(τ)− Γ(τ)∗)−1

( ∫ τ
τ0
(u−1

τ us f α
s − u∗−1

τ u∗s f ′αs )ds
)2

− iλ2

2h̄
4π
5

∫
dkk−2

∫ τ
τ0

(
usus′(σ

2 + δ2)−1

(Γ(τ)− Γ(µ))qrl
s qrl

s′ − u∗s u∗s′(σ
∗2 + δ∗2)−1(Γ∗(τ)− Γ∗(µ))q′rl

s q′rl
s′

)
dsds′

)
.

(121)

where us in general would be the solution of Equation (63) but in the static metric and in
the radiation era a−1a′′ = 0, hence we have the solution (66). We could use Formula (121)
for tensor perturbations in the inflationary and baryonic era when a−1a′′ = 2τ−2. Then, the
function Γ is defined in Equation (99) or (101). The factor 4π

5 in Equation (121) comes from
the average over angles in the dk integration. The behavior of ρτ depends on the complex
function R(k) = σ(k)δ(k)−1 in Equation (121). We can see that the final noise term can be
large because of the squeezing factor (Γ− Γ∗)−1 in Equation (121). Explicitly, the term with
(Γ− Γ∗)−1 coming from the scalar perturbation is

exp
(
− iλ2

2h̄ 4π
∫

dkk2(Γ(τ)− Γ(τ)∗)−1
∫ τ

τ0
dsds′

(
u−2

τ usus′ fs fs′

+u∗−2
τ u∗s u∗s′ fs f ′s′ − u−1

τ u∗−1
τ u∗s us′ f ′s fs′ − u−1

τ u∗−1
τ usu∗s′ fs f ′s′

))
.

(122)

For a comparison, let us first calculate the expression (122) for the ground state (22) of
the scalar field. Then, δ

σ = i, Γ = ik, us = exp(iks) and in the integral (122) we obtain (this
is an infinite mode version of Equation (111))

ρτ ' exp
(
− 1

2h̄

∫
dkk−1

∫ τ
τ0

dsds′

×
(

exp(−ik|s− s′|) f(s) fs′) + exp(ik|s− s′|) f ′(s) f ′(s′)

− exp(−ik(s− s′))( fs f ′s′ + f ′s fs′)
)

.

(123)

After the expansion (112), Equation (123) gives a term linear in y:

−4i λ2

2h̄

∫
dkk−1

∫ τ
τ0

ds′ d2

ds′2 Qryr ∫ s′
0 ds d2

ds2 Q2 sin(k(s′ − s)). (124)

Representing sin(ks) in Equation (124) as −k−1∂s cos(ks), we integrate over k obtain-
ing ∂sδ(s− s′). This is a local radiation damping term which coincides with the one which
is obtained in Section 14 (Equation (144)) for thermal gravitational perturbations. The noise
resulting from Equation (123) can be read from the quadratic part in Equation (123)

ρτ ' exp
(
− λ2m2

8h̄

∫
dkk−1

∫ τ
τ0

ds′
∫ s′

τ−0 ds
(
− 4 d2

ds′2 Qryr d2

ds2 ylQl cos(k(s− s′))
)

ρ0(Qt, yt) (125)

For a time dependent ψ
g
t , we work out Equation (121) in more explicit form (in the

Minkowski space-time a = 1) calculating

Γ(τ)− Γ(τ)∗ = k3(R− R∗)(uτu∗τ)
−1, (126)

Γ(τ)− Γ(s) = k3u−1
τ u−1

s sin(k(s− τ))(1 + R2). (127)

Using Equations (126) and (127), we obtain from Equation (122)

ρτ ' exp
(
− i

2h̄

∫
dsds′

∫
dkk−3

×
(
(R− R∗)−1(usus′u−1

τ u∗τ fs fs′ + u∗s u∗s′u
∗−1
τ uτ f ′s f ′s′ − 2usu∗s′ fs f ′s′)

−usus′u−1
τ u−1

µ sin(k(µ− τ)) fs fs′ + u∗s u∗s′u
∗−1
τ u∗−1

µ sin(k(µ− τ)) f ′s f ′s′
))

,

(128)

where µ = max(s, s′).
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In an expansion in y (112) of the scalar contribution, the term that modifies equations
of motion (a phase factor) is

exp
(
− i

2h̄

∫
dsds′

∫
dkk−3

×
(
(R− R∗)−1(u∗τus + uτu∗s )(u−1

τ us′ − u∗−1
τ u∗s′)

− sin(µ− τ))(usus′u−1
τ u−1

µ + u∗s u∗s′u
∗−1
τ u∗−1

µ )
)

d2

ds′2 Qnyn d2

ds2 Q2
))

.

(129)

The scalar contribution to the noise in the time dependent environment ψ
g
τ (a = 1) can

be written as (the term in Equation (128) quadratic in y)

exp
(
− i

2h̄

∫
dkk−3

∫
dsds′

×
(
(R− R∗)−1(u∗τus + uτu∗s )(u−1

τ us′ + u∗−1
τ u∗s′)

− sin(k(µ− τ))(usus′u−1
τ u−1

µ − u∗s u∗s′u
∗−1
τ u∗−1

µ )
)(

d2

ds′2 Qlyl d2

ds2 Qnyn
))

≡ exp(− 1
2h̄2 yMy).

(130)

Equation (121) simplifies if Γ(τ) ' const. Set in Equation (66) Sδ = iσ (S may depend
on k). Then, Γ(0) = ikS−1. We have a real Gaussian function in Equation (93) as an initial
state. If S is large and (kτ)−1 >> S >> kτ with kτ << 1, then to Equation (118) only the
term (122) contributes, where us ' cos(ks). The density matrix is a product of scalar and
tensor terms (we assume that Γφ = Γh)

ρτ ' exp
(
− 1

4h̄

∫
dk S

k

( ∫ τ
τ0
(cos(kτ))−1 cos(ks)( fs − f ′s)ds

)2)
× exp

(
− 1

4h̄

∫
dk S

k

( ∫ τ
τ0
(cos(kτ))−1 cos(ks)( f α

s − f ′αs )ds
)2)

.
(131)

The integration over the angles k−1k of εα
rlε

α
mn is expressed by < Λrl;mn > where

Λrl;mn is defined in Equation (119) and

< Λij;mn >= 4π
(1

5
(δimδjn + δinδjm)−

2
15

δijδnm

)
.

Hence, finally, when we put together the scalar and tensor terms, we obtain in
Equation (131)

ρτ ' exp
(
− λ2m2

16h̄ 4π
∫

dkkS(k)
( ∫ τ

τ0
dsds′(cos(kτ))−2 cos(ks) cos(ks′)

×
(

1
4π < Λrl;mn > d2

ds2 (Qryl + Qlyr) d2

ds′2 (Q
myn + Qnym) + 8δrlδmn)

d2

ds′2 Qlyl d2

ds2 Qnyn
))

.
(132)

Equation (132) gives the spectrum of the noise as 8πGSk.
It is useful to express the results (128)–(132) on the evolution of the density matrix (in

Minkowski background space-time) with the representation (67) of Γ (with us = k cos(ks +
α− iγ)). Now

Γ(τ)− Γ∗(τ) = ik sinh(2γ)
(

cosh2 γ− sin2(kτ)
)−1

(133)

and

Γ(τ)− Γ(τ′) = k sin(k(τ′ − τ))
(

cos(kτ + α− iγ) cos(kτ′ + α− iγ)
)−1

(134)
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Equation (118) for the scalar perturbation reads

ρτ ' exp
(

1
2h̄

∫
dkk−1

(
sinh(2γ)(cosh2 γ− sin2(kτ + α)

)−1

×
( ∫ τ

τ0
(u−1

τ us fs − u∗−1
τ u∗s f ′s)ds

)2

− i
2h̄ 4π

∫
dkk−3

∫ τ
τ0

dsds′
(

usus′ sin(kµ− kτ)×(
cos(kτ + α− iγ) cos(kµ + α− iγ)

)−1
fs fs′

−u∗s u∗s′ sin(kµ− kτ)
(

cos(kτ + α + iγ) cos(kµ + α + iγ)
)−1

f ′s f ′s′
))

,

(135)

where µ = max(s, s′). We have

u−1
τ us fs − u∗−1

τ u∗s f ′s = λm
(

cosh2 γ− sin2(kτ + α)
)−1
×(

i sin(k(s− τ)) sinh(2γ) d2

ds2 (Q2 + 1
4 y2)

+(cos(k(s− τ)) cosh(2γ) + cos(k(s + τ))) d2

ds2 Qy
) (136)

Hence, for small γ, the term (122) is dominating. Its contribution to the noise is

ρτ ' exp
(
− λ2m2

2h̄

∫ dk
k

∫
dsds′

(
sinh(2γ)

)−1
(cosh2 γ− sin2(kτ + α)

)−1

×
(
(cos(k(s− τ)) cosh(2γ) + cos(k(s + τ))) d2

ds2 Qy

×(cos(k(s′ − τ)) cosh(2γ) + cos(k(s′ + τ)))) d2

ds′2 Qy
))

.

(137)

It follows from Equation (137) that the noise can be large if γ is small.
We can calculate the density matrix in the radiation era when a(s) = s with the

contribution of the scalar and tensor perturbations. We use the results (70) and (99). We
do not write down these complicated expressions. Let us mention only the contribution
of tensor perturbations to the noise. Thus, the contribution of the tensor perturbations to
the quadratic part of the density matrix in the radiation era (a(τ) = τ) is expressed as the
following modification of Equation (132):

ρτ ' exp
(
− λ2m2

16h̄

∫
dkkS(k)

( ∫ τ
τ0

dsds′(cos(kτ))−2 cos(ks) cos(ks′)((a(s)a(s′))−1

× < Λrl;mn > d2

ds2 a(Qryl + Qlyr) d2

ds′2 a(Qmyn + Qnym)
)

.
(138)

14. Thermal Perturbations

In this section, we first consider the constant metric a = 1 (Minkowski space-time) for
scalar and tensor perturbations. In such a case the Hamiltonian (32) for the scalar field as
well as the Hamiltonian (58) for radiation coincide with the Hamiltonians of free massless
relativistic scalar fields. During the radiation era the Hamiltonian in Equation (58) for the
tensor field in the conformal time also consists of a sum of two scalar free massless fields
(12) with v = V = 0 (as a′′ = 0). For the scalar perturbations, this does not happen unless
a = 1. We consider first the thermal scalar perturbation on a Minkowski space-time. The
geodesic deviation in thermal gravitational waves hrl has been studied in [20]. At the end
of this section we derive a modification of the geodesic deviation equation in a thermal
state in the radiation era. The Lagrangian (27) and (83) with an infinite number of modes
in the coordinate space is

L = 1
2

∫
dxφ(s, x)(−∂2

s +4)φ(s, x) +
∫

dxφ f . (139)

The evolution of the density is obtained from Equation (88) where the partial trace over
the oscillator states involves all eigenstates of energy εn with the weight factor exp(−βεn)
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with β = 1
kBT where kB is the Boltzmann constant and T is the temperature. This partial

trace has been calculated in [20,59,60] with the result

ρτ(X, X′) =
∫
DXDX′ exp( im

2h̄

∫ τ
0 ds( dXr

ds
dXr
ds −

dX′r
ds

dX′r
ds )

exp
(

1
h̄2

∫ τ
0 ds

∫ s
0 ds′

(
( f − f ′)C( f + f ′)− ( f − f ′)A( f − f ′)

)
ρ0(Xτ , X′τ).

(140)

In (140), we have a decomposition of the finite temperature propagator D into the real
and imaginary parts D = A + iC

A(x− x′, s− s′) = 2h̄(2π)−3
∫ dk

2k cos(k(x− x′)) cos(k(s− s′)) coth( h̄βk
2 ), (141)

C(x− x′, s− s′) = 2h̄(2π)−3
∫ dk

2k cos(k(x− x′)) sin(k(s− s′)). (142)

In Equations (141) and (142), we neglect the x dependence of the propagators and
average over the angles. Then, the k-integral dk ' 4πdkk2 in the high temperature
limit βh̄ → 0 of A in Equation (141) gives δ(s − s′). In C (142) we write (as in [25])
sin(k(s− s′)) = −k−1∂s cos(k(s− s′)). Then, integrating over k, we obtain ∂sδ(s− s′). In
such a case, the formula for the density matrix in the limit βh̄→ 0 is

ρτ(X, X′) '
∫
DXDX′ exp

(
i

2h̄

∫ τ
τ0

ds( dXr
ds

dXr
ds −

dX′r
ds

dX′r
ds )

exp
(
− i

2πh̄

∫ τ
τ0

ds
(
( f − f ′)∂s( f + f ′)− 1

2πh̄2β
( f − f ′)( f − f ′)

))
.

(143)

We expand Equation (143) around Q. In the exponential (143), the term linear in
y becomes

yn

(
−m d

ds
dQn
ds + 2λ2m2

π Qn
d5

ds5 Q2
)

. (144)

The contribution of the tensor perturbations to the density matrix has been calculated
in [20]. It follows from Equation (140) with fs → f rl

s . After an expansion in y, the term
linear in y reads (we omit the contribution of classical solutions appearing in Equation (86))

yn

(
−m d

ds
dQn
ds + 16Gm2Qn

d5

ds5 Q2 + 4Gm2

5 Ql
d5

ds5 (
1
3 QrQrδnl −QnQl)

)
(145)

The term quadratic in y is the noise term. For low temperature, we obtain in general
the non-local and non-Markovian stochastic Equation (115). In the high temperature limit
βh̄→ 0, the calculation of the density matrix is reduced to an expectation value over the
solutions of the stochastic differential equation

− d2Qn
ds2 + 16GmQn

d5

ds5 Q2 + 8πGm
10π Ql d5

ds5 (
1
3 QrQrδnl −QnQl)

= m−1
√

2Gβ−
1
2 (M

1
2 )nr∂sbr

s,
(146)

(the tensor term on the lhs of Equation (146) coincides with the one derived in [61]). As
explained in the derivation of Equation (115), the term quadratic in y defines the operator
M. From Equation (143) (after an insertion of tensor perturbations), we obtain that M is an
operator defined by the bilinear form

2Gβ−1yr Mrlyl = m2λ2

4π β−1
∫

ds
(

d2

ds2 (Qjyl) d2

ds2 (Qjyl)

+ d2

ds2 (Qjyl) d2

ds2 (Qlyj)− 2
3

d2

ds2 (Qjyj) d2

ds2 (Qlyl)
)

+8Gm2β−1
∫

ds d2

ds2 ynQn d2

ds2 ylQl = m2λ2

4π β−1yrQkMrk;lnylQn

(147)

where
Mrk;ln(s, s′) = (<

1
4π

Λrk;ln > +8δrkδln)∂
2
s ∂2

s′δ(s− s′) (148)

As in [20], we could derive Equation (146) together with the noise (148) from the
classical Gibbs distribution of gravitational waves. The crucial check of the quantum nature
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of gravity would involve a comparison of the experimental measurement of noise with the
truly quantum spectrum k coth( h̄βk

2 ) following from Equation (141).
In the radiation era (a(τ) = τ) , there are minor changes in our formula when applied

to tensor perturbations. As follows from Equation (116) the kinetic term changes into
1
2 mλa( dX

ds )
2 and f rl into a−1 d2

ds2 aQrQl so that the tensor noise term in Equation (147) is
replaced by

m2λ2

4π β−1
∫

dsa−2
(

d2

ds2 (aQjyl) d2

ds2 (aQjyl)

+ d2

ds2 (aQjyl) d2

ds2 (aQlyj)− 2
3

d2

ds2 (aQjyj) d2

ds2 (aQlyl)
) (149)

The lhs of Equation (146) resulting from tensor perturbations is changed as

− d
ds a dQn

ds + 8πGm
10π Ql d3

ds3 a−1 d2

ds2 a( 1
3 QrQrδnl −QnQl) (150)

It follows that we can associate a definite temperature to the tensor perturbations
in the radiation era. We obtain the radiation damping (150) and the noise (149) which
is proportional to the temperature β−1. We cannot do this for scalar perturbations. The
contribution of the scalar perturbations to the density matrix in the radiation era can
be treated by means of the methods of Section 13 with (from Equation (109)) fs(k) =

−mλs−2 d2

ds2 sX2. There is no thermal state for scalar perturbations in the radiation era.
It is remarkable that the Hamiltonian (52) for the scalar perturbations in the radiation
era is equal to the one for the tensor perturbations (gravitons) (57) in the baryonic era
(a ' τ2 when the velocity of light is replaced by the acoustic velocity cs =

1√
3
. For large

conformal time, the term a−1a′′ ' 2τ−2 is negligible. This suggests that, at the beginning
of the baryonic era ( recombination time), we could have the thermal state for tensor
perturbations with the temperature T and the thermal state for scalar perturbations with
the temperature T

√
3.

The spectrum of the noise following from Equation (141) is 8πGkh̄ coth( h̄βk
2 ), which

at low temperature is 8πGk and at high temperature 8πGβ−1.

15. Discussion

Our study is based on the quadratic approximations to the Hamiltonian of tensor
and scalar perturbations of Einstein gravity. We explore the Schrödinger wave function
as a solution of the Schrödinger equation in various epochs of universe evolution. We are
interested in the squeezing of the wave function in various epochs. The squeezing of the
wave function is relevant for the motion of particles in the environment of cosmological
perturbations because it determines the intensity of the quantum noise. We calculate the
density matrix resulting from an average over quantized cosmological perturbations in a
thermal state and in a general Gaussian state. We show that the evolution of the density
matrix can be described by a stochastic equation of radiation damping. The quantum
modification of the equation of motion can influence the formation of inhomogeneities
in the early stages of universe evolution. It can be seen that the squeezing has little
effect on the strength of the friction term in radiation damping but can substantially
enforce the noise term. As earlier pointed out by Parikh, Wilczek and Zahariade, the
quantized tensor perturbations could be detected in gravitational wave detectors as a
specific noise. We show in this paper that this noise is modified by scalar perturbations.
The determination of the exact form of the quantum noise in detectors may be important
for distinguishing it from other sources of noise. Besides the gravitational wave detectors
the scalar cosmological perturbations should have an impact on primordial black holes
formation, CMB temperature fluctuations and on galaxies distribution.

In view of the prospective development of the detection of cosmological perturbations,
it is interesting to extend our method to modified theories of gravity and non-perturbative
quantizations. The question arises whether the quadratic approximation to the Hamiltonian
and Gaussian approximation to the wave function of the gravitational perturbations applies
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in these theories. If so, then the treatment in Section 10 of the interaction of gravitational
perturbations with a non-relativistic particle (detector) can be used to obtain a stochastic
equation for the radiation damping. Some of the modified theories of gravity (Horndeski
and P(X, φ)) predict the speed of propagation of gravitational waves different from the
speed of light. This (hypothetical) difference is carefully studied in present day observations.
The results on the particle interaction with cosmological perturbations in such theories
could further be used for a selection of a proper model on the basis of detection experiments.
We did not insert numerical values in our mathematical results. Numerical estimates for
solutions of the evolution equations are needed for a comparison with observations. Such
detailed numerical studies are postponed to a prospective research.
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