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Abstract: We review the models unifying inflation and Primordial Black Hole (PBH) formation, which
are based on the modified (Starobinsky-type) supergravity. We begin with the basic (Starobinsky)
inflationary model of modified gravity and its alpha-attractor-type generalizations for PBH produc-
tion, and recall how all those single-field models can be embedded into the minimal supergravity.
Then, we focus on the effective two-field models arising from the modified (Starobinsky-type) super-
gravity and compare them to the single-field models under review. Those two-field models describe
double inflation whose first stage is driven by Starobinsky’s scalaron and whose second stage is
driven by another scalar belonging to the supergravity multiplet. The power spectra are numerically
computed, and it is found that the ultra-slow-roll regime gives rise to the enhancement (peak) in the
scalar power spectrum leading to an efficient PBH formation. The resulting PBH masses and their
density fraction (as part of dark matter) are found to be in agreement with cosmological observations.
The PBH-induced gravitational waves, if any, are shown to be detectable by the ground-based and
space-based gravitational interferometers under construction.

Keywords: inflation; primordial black holes; supergravity; dark matter

1. Introduction

The oldest signal from the past to the present day is given by the Cosmic Microwave
Background (CMB) that emerged when electromagnetic radiation decoupled from matter
and began propagating approximately 380,000 years after the Universe was born. That time
can be considered as the observational wall against any electromagnetic probe because
photons did not propagate freely before that time (due to Thompson scattering). Therefore,
extracting observational signals from the earlier Universe may only be possible with
gravitational waves or neutrino sources.

Some detailed information about the CMB spectrum and its anisotropies and fluctua-
tions is available due to several satellite missions in the past (COBE, WMAP, and Planck).
The theoretical explanation of the CMB observations is provided by assuming an era of
cosmological inflation in the very early Universe. The cosmological paradigm of inflation
is an assumption of the accelerating expansion of the Universe (the primordial dark energy
with a Graceful Exit) during a very short time, which produced the Large-Scale Structure
(LSS) we observe today. The energy scale of inflation must be well beyond the electro-weak
scale of the Standard Model (SM) of elementary particles. Therefore, inflation can also be
viewed as the most powerful particle accelerator in nature, giving us the great (but small)
window into high-energy physics well beyond the SM.
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The standard (minimal) theoretical mechanisms of inflation employ a (canonical)
scalar field called inflaton with its scalar potential defining a single-field inflationary model.
The physical nature of inflaton and the origin of its scalar potential are unknown, so
that their choice in the inflationary model building is usually justified by matching the
observational (CMB) constraints that leave many options and allow many different models.

To discriminate between the inflationary models, it makes sense (i) to add more fun-
damental (theoretical) input to the inflationary models and (ii) to target more cosmological
problems simultaneously. In this paper, we employ (a) the modified (Starobinsky) gravity
and its supergravity extension, and combine it with (b) demanding Primordial Black Hole
(PBH) formation after inflation and PBH as part of Dark Matter. The modified (Starobinsky-
type) supergravity was proposed [1] as a locally supersymmetric extension of the (R + R2)
inflationary model of modified gravity [2]. The idea of PBH was proposed a long time
ago [3–6]. More recently, it attracted a renewed attention in the literature in connection to
Dark Matter (DM) and Gravitational Waves (GW) [7–9].

Having confined ourselves to inflation and PBH in the modified supergravity, we still
have two options to consider: to employ either (i) single-field models or (ii) multi-field
models. The single-field models of inflation are usually preferred in the literature because
of their simplicity, expected low non-Gaussianity, and small isocurvature perturbations.
However, there is no good reason for the absence of other fields during inflation. It is our
purpose in this paper to consider both types of the inflationary models and compare them.
In the context of supergravity, option (a) is more restrictive, whereas option (b) is more
natural because supergravity generically leads to more (than one) physical scalar fields.

Our paper is organized as follows. In Section 2, we introduce our motivation and
setup for cosmological inflation, the Starobinsky inflationary model, modified gravity,
Primordial Black Holes (PBH), and supergravity. In Section 3, we review the single-field
inflationary models, their embedding into (minimal) supergravity, and PBH formation
after single-field inflation. The main part of our paper is Section 4, which is devoted to a
study of the effective two-field models of double inflation, PBH production, and PBH as
the DM, from the modified (Starobinsky-type) supergravity. Three specific representatives
of those models are compared in detail. Section 5 is devoted to Gravitational Waves (GW)
induced by the PBH production and possible detection of those GW in the near future.
Our conclusions and discussions are presented in Section 6.

2. Motivation and Setup

In this section, we provide our motivation and setup for (1) cosmological inflation,
(2) Starobinsky inflationary model, (3) Primordial Black Holes (PBH), and (4) supergravity.

2.1. Why Inflation?

A spatially homogeneous and isotropic (1 + 3)-dimensional universe at large scales
(beyond 100 Mpc) is described by the Friedmann–Lemaître–Robertson–Walker (FLRW) metric

ds2
FLRW = dt2 − a2(t)

[
dr2

1− kr2 + r2dΩ2
]

, (1)

where the function a(t) is called the cosmic scale factor in co-moving spacetime coordi-
nates (t, r, θ, φ), k is the FLRW topology index, k = (−1, 0, 1), and dΩ2 = dθ2 + sin2 θdφ2.
The FLRW metric (1) admits the six-dimensional isometry group G that is SO(1, 3), E(3), or
SO(4), respectively, acting on the orbits of the homogeneous space G/SO(3). The spatial
three-dimensional sections are H3, E3, or S3, respectively. The Weyl tensor of a FLRW
metric vanishes for any function a(t). It is safe to take k = 0 for most applications.

Cosmological inflation is referred to the very early universe (after 10−36 s or below
1016 GeV, but well before 10−10 s or well above the electro-weak scale 102 GeV), and it
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is usually defined as the primordial dark energy, i.e., as the accelerating universe with
(we use dots to denote the derivatives with respect to the time t)

••
a (t) > 0 (2)

and a quick (Graceful) exit. Unlike the present dark energy (without an exit), it is more
useful to define inflation by the inequality

d
dt

(
H−1

a

)
< 0 , (3)

in terms of Hubble function H =
•
a /a and Hubble radius H−1/a. Equation (3) means the

decreasing Hubble radius (or the causal distance) that is just needed to explain the origin
of the FLRW universe after inflation due to homogenization of initial fluctuations.

There is a compelling theoretical and (indirect) observational evidence for cosmo-
logical inflation in the early Universe, so that we do not discuss its possible alternatives
here. The idea of inflation originated as a solution to theoretical puzzles of the Stan-
dard Cosmology, because inflation predicts homogeneity of our Universe at large scales,
its spatial flatness, its large size and entropy, and the almost scale-invariant spectrum of
cosmological perturbations [10,11]. In more recent times, the cosmological paradigm of
inflation received remarkable support from the observations and measurements of the
Cosmic Microwave Background (CMB) radiation by the COBE, WMAP, and PLANCK
satellite missions, see, e.g., the recent data from PLANCK [12].

Inflation can also be considered as the great amplifier of microscopic quantum fluc-
tuations in the very early universe, leading to macroscopic seeds of the LSS formation.
The standard (single-field) mechanism of inflation in gravitational theory uses a scalar
field (called inflaton), whose potential energy drives inflation. The single-field (canonical
inflaton ϕ) action (in Einstein frame) reads

Ssingle[gµν, ϕ] =
M2

Pl
2

∫
d4x

√
−gR−

∫
d4x

√
−g
[

1
2

gµν∂µ ϕ∂ν ϕ + V(ϕ)

]
. (4)

The inflaton scalar potential V(ϕ) should be flat enough to meet the slow-roll condi-
tions during the inflationary era. However, the physical nature and fundamental origin of
inflaton and its interactions to other particles are unknown.

The single inflaton action (4) is to be compared to a multi-field action for describing
inflation, having the form (in Einstein frame)

Smulti[gµν, φa] =
M2

Pl
2

∫
d4x

√
−gR−

∫
d4x

√
−g
[

1
2

Gab(φ)gµν∂µφa∂νφb + V(φ)

]
(5)

in terms of several (real) scalar fields φa, a = 1, 2, . . . , n. The scalar kinetic terms in
Equation (5) have the form of the Nonlinear Sigma-Model (NLSM) [13] with a metric
Gab(φ) in the field space.

The simplest models of inflation and PBH formation are based on the single inflaton
action (4), see the next sections. Their motivation is based on simplicity and (expected)
low non-Gaussianity of primordial fluctuations. However, there is no good reason that
forbids interactions of the inflaton scalar to other fields. Moreover, it is highly welcome,
because inflaton is expected to decay into other particles after inflation. Therefore, the
action (5) is apparently more suitable for physical applications. It is always possible to
embed a single-field inflationary model into a multi-field inflationary model after fine-
tuning of the latter. However, the multi-field inflation has its own problems because of (i)
its relative complexity and (ii) the need to fix the potential and the NLSM metric from a
more fundamental theory.
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2.2. Why Starobinsky’s Model for Single-Field Inflation?

There are many viable single-field inflationary models with different motivation and
inflaton potentials V(ϕ). Instead of reviewing all of them, only one basic model will be
described below, and it is known in the literature as the Starobinsky model [2]. Instead of
following the references in chronological order, we define the Starobinsky model from the
modern perspective by the following modified gravity action:

SStar. =
M2

Pl
2

∫
d4x

√
−g
(

R +
1

6m2 R2
)

, (6)

where we have introduced the reduced Planck mass MPl = 1/
√

8πGN ≈ 2.4× 1018 GeV,
and the mass parameter m. We use the spacetime signature (−,+,+,+, ).

At first sight, the action (6) is very different from the action (4), and it looks rather
ad hoc. However, it is not the case, while any viable (single field slow roll) inflationary
model has to be close to the Starobinsky model, as we are going to demonstrate below.

The action (6) reduces to the standard (Einstein–Hilbert) gravitational action in the
low curvature regime. In the high curvature regime relevant to inflation, the action (6)
reduces to the no-scale and no-ghost R2 gravity action with the positive dimensionless
coupling constant M2

Pl/(12 m2). The key result in [2] can be interpreted as the existence
of an inflationary (quasi de Sitter) solution to the R2 gravity in the form of attractor with
a Graceful Exit (for H � m),

H(t) ≈
(m

6
)2
(tend − t) , (7)

also known as chaotic inflation.
The (R + R2) gravity model in Equation (6) is a representative of the modified F(R)

gravity theories, which are known to be classically equivalent to the scalar-tensor theories
of gravity defined by the action (4) after a (Legendre–Weyl) field redefinition, see, e.g.,
in [14,15] for details of the equivalence derivation in our notation. The specific correspon-
dence is given by

V(χ) =

(
M2

Pl
2

)
χF′(χ)− F(χ)

F′(χ)2 , (8)

where the field redefinition χ(ϕ) is defined by (the primes denote differentiation with
respect to χ)

F′(χ) = exp

(√
2
3

ϕ/MPl

)
and ϕ =

√
3
2

MPl ln F′(χ) . (9)

The inverse transformation reads (see, e.g., in [16])

R =

[ √
6

MPl

dV
dϕ

+
4V
M2

Pl

]
exp

(√
2
3

ϕ/MPl

)
, (10)

F =

[ √
6

MPl

dV
dϕ

+
2V
M2

Pl

]
exp

(
2

√
2
3

ϕ/MPl

)
, (11)

defining the function F(R) in the parametric form for a given inflaton scalar potential V(ϕ).
The required flatness of the scalar potential (needed for slow roll of inflaton during

a sufficient duration of inflation) amounts to the smallness of the first term against the
second one in the square brackets of Equations (10) and (11). For instance, simply ignoring
the first term (or assuming a constant V) immediately leads to F ∝ R2.
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The exact inflaton potential of the Starobinsky inflation follows from Equations (6),
(8), and (9), and it is given by

V(ϕ) =
3
4

M2
Plm

2

[
1− exp

(
−
√

2
3

ϕ/MPl

)]2

. (12)

The potential (12) is a sum of the induced cosmological constant and the exponentially
small corrections (for large values of φ). It has a plateau with the positive height that
determines the scale of inflation.

The duration of slow roll inflation is usually measured by e-folds

Ne ≈
1

M2
Pl

∫ ϕ∗

ϕend

V
V′

dϕ , (13)

where ϕ∗ is the inflaton value at the horizon crossing, and ϕend is the inflaton value at the
end of inflation when one of the slow roll parameters,

εV(ϕ) =
M2

Pl
2

(
V′

V

)2

and ηV(ϕ) = M2
Pl

∣∣∣∣V′′V

∣∣∣∣ , (14)

becomes no longer small or close to one.
The only parameter m of the Starobinsky model is fixed by the observed CMB ampli-

tude (known as the COBE normalization) as follows:

m ≈ 3× 1013 GeV or
m

MPl
≈ 1.3× 10−5 . (15)

The amplitude of scalar perturbations at the horizon crossing reads [17]

A =
V3
∗

12π2M6
Pl(V∗

′)2
=

3m2

8π2M2
Pl

sinh4
(

ϕ∗√
6MPl

)
. (16)

The Starobinsky model (6) is known (since 1980) to be the excellent model of inflation
and is in very good agreement with current measurements. As regards the main cosmo-
logical observables, the index of scalar perturbations is given by ns ≈ 1 + 2ηV − 6εV ≈
0.9649± 0.0042 (with 68% CL), while the index of tensor perturbations or the tensor-to-
scalar ratio is given by r ≈ 16εV < 0.064 (with 95% CL), according to the PLANCK data
[12]. The Starobinsky inflation gives r ≈ 12/N2

e ≈ 0.004 and ns ≈ 1− 2/Ne, where Ne is
supposed to be between 50 and 60 [18,19].

Besides the main properties mentioned above (universality for slow roll and agreement
with observations), the Starobinsky inflationary model has the following attractive features:

• the model is geometrical, being based on gravitational interactions;
• its inflaton (called scalaron) is a physical excitation of higher-derivative gravity, so it is

not a new fundamental scalar (minimal tool);
• the model has no free parameters after fixing its only parameter M by observations;
• the Starobinsky inflation obeys the Einstein criterium: “simple but not too simple”;
• scalaron can be identified with the Nambu–Goldstone boson related to spontaneous

breaking of the scale invariance [20] and the approximate flatness of the potential (12)
during slow roll;

• the UV-cutoff of quantized (R + R2) gravity is given by MPl � Hinf., as is clear from
expanding the non-renormalizable scalar potential (12) in powers of ϕ; this feature
ensures reasonable protection of the Starobinsky inflation on the scale Hinf. ∼ 1013 GeV
against quantum gravity corrections expected near the Planck scale MPl; and
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• rewriting the scalar potential (12) to the form of a mass term by the field redefinition√
3
2

MPl

[
1− exp

(
−
√

2
3

ϕ/MPl

)]
= φ (17)

leads to a non-canonical kinetic term of the field φ, with the pre-factor having a singu-
larity at φcr. =

√
3/2MPl and specified by the critical exponent

αStar. =

√
2
3

(18)

defining the universality class of the Starobinsky inflation.

Regarding the shortcomings of the Starobinsky model, note that

• its fundamental origin in quantum gravity or in string theory is unknown;
• it cannot be applied for large negative values of the scalar curvature, when F′(R) < 0;

and
• a numerical analysis of (13) with the potential (12) yields (assuming the best fit

Ne ≈ 55) the trans-Planckian values of the inflaton field [17],√
2
3

ϕ∗/MPl ≈ ln
(

4
3

Ne

)
≈ 5.5 and

√
2
3

ϕend/MPl ≈ ln
[

2
11

(4 + 3
√

3)
]
≈ 0.5 . (19)

The CMB data merely provide a small window into high-energy physics of inflation,
while there are no observational constraints for the scales well beyond or much smaller the
inflationary scale of about 1013 GeV (in the case of the Starobinsky inflation).

2.3. Why Primordial Black Holes?

Primordial density fluctuations in the early Universe (during or after inflation) may
also be responsible for seeding PBH when their amplitude is larger by the factor of 107

compared to the CMB amplitude. The very idea of PBH was proposed the long time
ago by Zeldovich and Novikov [3] and also by Hawking [4]. After entering the horizon,
growing up and then contracting within the gravitational radius, those large primordial
fluctuations can form PBH that may survive in the current Universe and provide candidates
for (non-particle) Dark Matter (DM) [6,21,22].

More recently, the renewed interest in PBH is mainly related to the possibility that
part or the whole of DM may be composed of PBH, which gives a viable alternative
to the particle physics explanations of DM as being composed of Weakly Interacting
Massive Particles (WIMP), such as neutralino, or Gravitationally Interacting Massive
Particles (GIMP), such as axion [23] or gravitino [24]. Given DM in the form of PBH, DM
phenomenology should search for DM signals in cosmological data rather than in direct
detection on colliders or indirect detection in astroparticle physics. Another reason for
the considerable attention on PBH in the recent literature is the observational progress
in lensing, cosmic rays, gravitational waves, and CMB radiation, see, e.g., in [7,8] for a
review of observational constraints on PBH. In addition, PBH may offer a solution for many
astrophysical puzzles, such as, e.g., the existence of SuperMassive Black Holes (SMBH).
The SMBH already existed during the first Giga-year of our Universe [25], which gives the
powerful argument for their primordial origin [26].

There are several mechanisms that may catalyze the formation of PBH in the early Uni-
verse: (i) gravitational instabilities induced by scalar fields [27] in single-field or multi-field
inflation, (ii) bubble collisions from first order phase transitions [28–30], and (iii) forma-
tion of critical topological defects such as cosmic strings [31] and domain walls [32,33].
This paper is devoted to the case (i) only.

On the theoretical side, PBH are considered as a probe of very high energy physics and
quantum gravity, “even if they never formed” [34]. Numerous phenomenological scenarios
were proposed for PBH formation and, especially, for PBH generation after inflation in the
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early Universe, under the assumption that PBHs do contribute to DM, see, e.g., in [35–41]
and the references therein. At present, the whole PBH DM appears to allow only two limited
windows for the PBH masses, namely, either around 10−15 or around 10−12 of the solar
mass. Those masses are far less than the masses of black holes whose mergers resulted
in the gravitational waves observed by the LIGO detector [42]. Thus, it seems that DM
is more likely to be composed of both DM particles and PBH. It is therefore important to
study various mechanisms of PBH formation and estimate the PBH fraction of DM both in
the single-field and multi-field inflationary models.

Due to the absence of observed non-Gaussianities and iso-curvature perturbations in
the current CMB data [12], the single-field models were distinguished and discriminated
in the literature both in relation to inflation and PBH formation. Though, as was argued
above, the Starobinsky inflationary model is to be favored among all of them at present, its
sharp prediction for the tensor-to scalar ratio (r) may be ruled out by future observations.
Moreover, the Starobinsky inflation does not allow PBH production after inflation. It is
therefore of importance to generalize the Starobinsky model in order to allow arbitrary
values of the tensor-to-scalar ratio r and PBH production in the models with single inflaton
field. This first problem (any value of r) can be solved by employing the so-called alpha-
attractor models reviewed in Section 3. The second problem (enhancement of the power
spectrum of perturbations by the factor of 107 compared to the CMB amplitude, which is
needed for PBH formation) can be achieved by modifying the inflaton scalar potential with
a nearly inflection point [43–45]. However, details of the PBH production after single-field
inflation are very much dependent upon a choice of the inflaton potential with an inflection
point that requires significant fine-tuning of the model parameters.

As a matter of fact, there are no fundamental reasons for the absence of non-
Gaussianities and iso-curvature perturbations, while they just have to be below the ob-
servational limits. Relaxing fine-tuning and making PBH production more natural are
the basic reasons for considering multi-field models of inflation and PBH. For instance,
PBH production may be a generic feature of two-field inflation with a sharp turn of infla-
tionary trajectory [46]. The required growth of primordial fluctuations can be achieved
by tachyonic instabilities, like in the waterfall phase of hybrid inflation [47,48]. In addi-
tion, inflaton interactions with other particles are of crucial importance for reheating and
pre-heating which are beyond the scope of this paper.

2.4. Why Supergravity?

Despite clear merits of multi-field models of inflation and PBH formation, there is an
obvious problem because multi-field models increase a number of the physical degrees of
freedom and possible interactions, which reduce the predictive power of those models. It is,
therefore, important to restrict them and propose some general principles. Supersymmetry
(SUSY) is a very good choice of the fundamental principle that organizes particles into
irreducible supermultiplets and restricts a number of independent coupling constants.
In the context of gravity, one needs local supersymmetry, i.e., supergravity that is expected
to be important in multi-field inflation by limiting the number of fields involved and
severely restricting their interactions.

Supergravity is also a good framework to study the possible theoretical origin of
PBH at a more fundamental level than General Relativity (GR). Supergravity is also the
first step towards superstring theory and is considered as a viable candidate for a theory
of quantum gravity. Because of the constraints imposed by local supersymmetry on
possible couplings, a viable description of inflation and PBH in supergravity should lead
to significant discrimination of phenomenological models.

In this paper, we adopt the most economical approach by minimizing the relevant
number of the physical degrees of freedom needed for inflation and PBH production,
by using the Starobinsky model as a guide, in the framework of modified supergravity that
can be viewed as a locally supersymmetric extension of the (R + R2) gravity. In practical
terms, it implies the supergravitational origin of both inflation and PBH, by using only
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the (off-shell) N = 1 supergravity multiplet and its locally supersymmetric interactions
in four spacetime dimensions, without adding other matter, i.e., with the truly minimal
number of the physical degrees of freedom in SUSY. Our modified supergravity models
can be reformulated in terms of the standard (Einstein) supergravity coupled to chiral and
vector superfields, similarly to the well-known relation between modified F(R) gravity
and scalar-tensor gravity (see Section 2.2). Our supergravity approach is thus quite similar
in its spirit to the Starobinsky inflation based on gravitational interactions [20,49,50] but
allows us to relate inflation with PBH and the DM genesis, in addition.

To the end of this section, brief comments on the general merits and demerits of
SUSY and supergravity are in order, in light of no evidence for SUSY particles at the Large
Hadron Collider (LHC) so far.

Despite the current absence of experimental confirmation, SUSY remains one of the
leading candidates for new physics beyond the Standard Model (SM) of elementary parti-
cles. SUSY has to be (spontaneously or softly) broken at energies available for observation.
However, the scale of SUSY breaking is unknown and can be much higher than the TeV
scale accessible by the LHC.

Supergravity is the field theory with local SUSY that automatically implies the general
coordinate invariance. The minimal N = 1 supergravity in four spacetime dimensions
is chiral, that is, necessary for particle phenomenology and CP violation. SUSY and
supergravity also have other attractive theoretical features, namely,

• SUSY unifies bosons and fermions;
• supergravity includes GR;
• SUSY Grand Unified Theories (super-GUT) lead to the perfect unification of electro-

weak and strong interactions;
• the spectrum of matter-coupled supergravities with spontaneously broken SUSY has

the natural DM candidate given by the Lightest SUSY Particle (LSP) provided that
R-parity is conserved;

• low-energy SUSY helps to stabilize the fundamental scales (the hierarchy problem),
such as the electro-weak scale and the GUT scale;

• SUSY leads to cancellation of quadratic UV-divergences in quantum field theory;
• supergravity is the only way to consistently describe spin-3/2 particles with gravity;

and
• supergravity arises as the low-energy effective action of superstrings.

In summary, SUSY and supergravity are alive and healthy, while they are not ruled
out by observations despite the current absence of any signs of their presence at the LHC
and in the sky.

3. Single-Field Models

In this section, we briefly review the single-field models of inflation and PBH for-
mation. First, we introduce the alpha attractors as the generalizations of the Starobinsky
inflation. Next, we give their minimal realizations in supergravity.

3.1. Power Spectrum and Generalized Alpha Attractors

To set up calculation tools, here we recall the textbook formulae describing the spec-
trum of perturbations in terms of the inflaton scalar potential in the single-field models of
inflation (see also the original paper [51]).

The spectrum of scalar (density) perturbations is given by

Pζ(k) =
H4

k

4π
•
ϕ

2 =
GN H4

k

π

∣∣∣∣ •Hk

∣∣∣∣ =
128πG3

NV3
k

3V′2k
, (20)
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for the scales k = a(tk)H(tk), where GN is Newton’s constant, and the subscript k of the
potential V and its derivatives (denoted by primes) refers to their corresponding values.
In these terms, e-folds are given by Ne(k) = ln(kend/k).

The scalar spectral index (tilt or slope) is given by

ns(k)− 1 =
d ln Pζ(k)

d ln k
=

1
k2

[
2

V′′k
Vk
− 3
(

V′k
Vk

)2
]

. (21)

Similarly, the spectrum of tensor perturbations (gravitational waves) is given by

Pg(k) =
16GN H2

k
π

, (22)

while its spectral index is

ng(k) =
d ln Pg(k)

d ln k
= − 1

k2

(
V′k
Vk

)2

. (23)

Accordingly, the tensor-to-scalar ratio reads

r(k) =
Pg

Pζ
=

16
∣∣∣∣ •Hk

∣∣∣∣
H2

k
= 8

∣∣ng(k)
∣∣ . (24)

As was already mentioned in Section 2.2, the Starobinsky model defines the universal-
ity class of single-field inflationary models with the critical parameter αStar. =

√
2/3 that

corresponds to the (R + R2) gravity. Replacing it with arbitrary α defines the different class
of inflationary models known in the literature as the (E-model) alpha attractors [52] with
the potential

Vα(ϕ) = V0[1− exp(−αϕ/MPl)]
2 . (25)

In modified gravity, this potential corresponds to a more complicated function F(R)
that is different from the quadratic one, see Equations (10) and (11). The key feature of
alpha attractors is the (leading) value of the tensor-to-scalar ratio (on CMB scale)

rα ≈
8

α2N2
e

. (26)

The alpha attractors thus allow arbitrary suppression of r, whereas they have the same
(leading) value of ns ≈ 1− 2/Ne (on CMB scale) as in the Starobinsky model.

The alpha attractors can be generalized even further [52] by considering the inflaton
potentials of the form

Vα̃, f (ϕ) = f 2
(

tanh
κϕ√

6α̃

)
(27)

with a monotonically increasing (during slow roll) function f , the parameter α̃ =

√
3
2

α,

and =̨M−1
Pl . In those models, slow-roll inflation occurs for large positive values of the

canonical inflation field ϕ with the approximate scalar potential (=̨1)

V(ϕ) = f 2
∞ − 4 f∞ f ′∞ e

−

√
2

3α
ϕ
+O

e
−2

√
2

3α
ϕ

 , (28)
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where we have introduced the parameters f∞ = f |ϕ→∞ and f ′∞ = ∂ϕ f
∣∣

ϕ→∞. The constant
in front of the second term in Equation (28) can be adjusted at will by a constant shift of the
inflaton field, so that the potential (28) can be simplified to

V(ϕ) = V0

1− e
−

√
2

3α
ϕ

+O

e
−2

√
2

3α
ϕ

 , (29)

thus establishing the asymptotic equivalence to the alpha attractors on CMB scales.
Having obtained significant freedom given by arbitrary function f in the potential (27),

one can exploit it for generating new physics after inflation. For instance, engineering a
nearly inflection point in the potential can be used for a significant enhancement of the
power spectrum of perturbations at smaller (than Hubble) scales towards formation of
primordial black holes and related dark matter. As was demonstrated in [53], it can be
achieved via Taylor expansion of the function f , while keeping only the first three terms in
it as follows:

V1(φ) = V0

[
1 + c1 tanh

κφ√
6α̃

+ c2 tanh2 κφ√
6α̃

+ c3 tanh3 κφ√
6α̃

]2
, (30)

after fine-tuning of the parameters V0 and ci for i = 1, 2, 3. Among plenty of other possi-
bilities, the same purpose (formation of primordial black holes) can be achieved by using
modulated potentials as, e.g., the one also studied in [53] with the potential

V2(φ) = V0

[
tanh

κφ√
6
+ A sin

(
1
f

tanh
κφ√

6

)]2
(31)

with the tuned parameters V0, A, and f .
The common properties of those models are (i) the generated PBH masses in the low

mass window of 1017 ÷ 1020 g and (ii) slightly smaller values of ns (still compatible with
Planck data within 3σ), see in [53] for details. It is, therefore, of interest to investigate
whether those features are still present in multi-field models (Section 4).

3.2. Single-Field Models of Inflation and PBH in Supergravity

SUSY requires superpartners for each particle and equal numbers of bosonic and
fermionic degrees of freedom, as well as supersymmeteric actions. To match observations
and connect to the SM, SUSY has to be (spontaneously) broken. The formal technology
of local supersymmetry is based on either (i) the superconformal tensor calculus [54] or
(ii) the curved superspace [55]. Both approaches are equivalent but technically involved.
The N = 1 superspace technology is geometrical and offers manifest SUSY of supersym-
metric actions. Being applied to inflation, it means that the bosonic actions (4)–(6) have
to be supersymmetrized. Note that the action (6) includes higher derivatives so that its
supersymmetrization goes beyond the textbooks [54,55], and it is known as the modified
(Starobinsky) supergravity. In addition, inflation has a positive energy (or a positive height
of the potential) and thus breaks SUSY. Therefore, there must be a Goldstone spin-1/2
fermion (called goldstino) associated with spontaneous SUSY breaking during inflation.

Both inflaton and goldstino have to belong to (irreducible) supermultiplets or super-
fields. Usually, both superfields are chosen to be chiral with the maximal spin 1/2 [56,57],
which requires complexification of the inflaton and the need of two chiral superfields
having four real scalars and, thus, multi-field inflation in general. It is also possible to
identify the inflaton chiral superfield with the goldstino chiral superfield, which leads to
two-(scalar)-field inflation [58,59].)
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Slow-roll inflation is usually realized by engineering the scalar potential V in terms of
a Kähler potential K and a superpotential W of the chiral superfields as (MPl = 1)

VF = eK
(
|DW|2 − 3|W|2

)
with DW = W ′ + K′W , (32)

where the primes stand for the derivatives with respect to chiral superfields (we use the
same notation for superfields and their leading field components, and suppress indices).
Single-field inflation is possible by identifying inflaton with one of the scalars, while sup-
pressing the other scalars during inflation. There is no need to learn supergravity theory
for that.

There are, however, several problems with the standard approach in supergravity.
First, it is the so-called η-problem related to the eK factor in the scalar potential that may
be too steep and thus does not have the required flatness during inflation or, equivalently,
may lead to a large slow-roll parameter η. Second, there is no fundamental justification
for a choice of the inflationary trajectory in the (scalar) multi-field space. Third, potential
instabilities of the inflationary trajectory (because of inflaton mixing with other scalars)
may easily spoil single-field inflation and fail to achieve the desired number of e-foldings.
Though all those problems are solvable, they require careful engineering of the potentials
K and W, which implies low predictive power of the standard approach to inflation
in supergravity.

There exist, however, a different and truly minimal supergravity framework that is
more suitable for embedding single-field inflationary models to supergravity [60–63], with
the only restriction imposed by SUSY on the inflationary potential to be a real function
squared. For instance, Ref. [64] has an example of the inflaton potential in the minimal
supergravity framework with an inflection point needed for PBH formation. The problem
of inflaton complexification in a chiral supermultiplet can be removed by assigning inflaton
to a massive vector supermultiplet V that has single physical scalar. The scalar potential
of a vector multiplet is given by the D-term instead of the F-term, while any desired
values of the CMB observables (ns and r) are possible because the inflaton potential is
given by the squared derivative of arbitrary real potential J(V), see below. The manifestly
supersymmetric Lagrangian in curved superspace of supergravity is given by

L =
∫

d2θ2E

3
8
(D̄D̄ − 8R)e

−
2
3

J
+

1
4

WαWα

+ c.c. , (33)

where the Wα denotes the abelian superfield strength of the vector superfield V, and the ab-
breviation c.c. stands for the complex conjugated term. The bosonic part of the Lagrangian
in Einstein frame (after Weyl rescalings and elimination of the auxiliary fields) reads [60,61]

e−1L =
1
2

R− 1
4

FmnFmn − 1
2

J′′∂mC∂mC− 1
2 J′′BmBm − g2

2
J′2 , (34)

where C = V| is the real (scalar) inflaton given by the leading field component of the
superfield V, Fmn = ∂mBn − ∂nBm, J is a function of C, and g is the coupling constant.
The input for model building is given by a real function J (instead of K and W). Ghost
freedom requires J′′(C) > 0.

For instance, the scalar potential of the Starobinsky inflationary model is obtained by
choosing the J potential as

J(C) =
3
2
(C− ln C) and C = exp

(√
2/3ϕ

)
, (35)
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in terms of the canonical inflaton ϕ. In the case of the generalized alpha attractors, one gets
the nonlinear differential equations

g√
2

dJ
dC

= f
(

tanh
ϕ√
6α̃

)
and

dϕ

dC
=

√
d2 J
dC2 . (36)

Differentiating the first equation with respect to C, substituting the second equation,
and taking square yields

d2 J
dC2 =

( f ′)2

3g2α̃2

[
1− tanh2 ϕ√

6α̃

]2
(37)

for a given function f (tanh).
It completes our description of the minimal embedding of any single-field model of

inflation and PBH formation into supergravity, as long as its inflaton potential is a real
function squared. We conclude this subsection with a comment about the relation between
the minimal supergravity above and the standard (non-minimal) procedure in terms of
chiral superfields [15].

The master function J(V) can be replaced by the function J̃(He2V H̄), where we have
introduced the (charged) Higgs chiral superfield H and have chosen g = 1 for simplicity.
The argument of the function J̃ and, thus, the function J̃ itself are both invariant under the
gauge transformations

H → e−iZ H , H̄ → eiZ̄ H̄ , V → V + i
2 (Z− Z̄) , (38)

whose gauge parameter Z is also a chiral superfield. The original theory of the massive
vector multiplet governed by the master function J is recovered in the supersymmetric
gauge H = 1.

We can, however, choose another (Wess–Zumino-type) supersymmetric gauge V = V1,
where V1 describes the irreducible massless vector gauge multiplet minimally coupled to
the dynamical Higgs-type chiral multiplet H. The standard Higgs mechanism appears
with the canonical function J = 1

2 He2V H̄ that corresponds to a linear function J̃ [62,63].
This phenomenon is known in the SUSY literature as the super-Higgs effect [55]. In the case
under consideration, the supersymmetric U(1) gauge theory in terms of the superfields H
and V1 coupled to supergavity defines the analogue of Higgs inflation that is equivalent to
the Starobinsky inflation by our construction, because both models arise in two different
gauges of the same theory. The chiral (Higgs) superfield H is charged with respect to U(1),
is coupled to the U(1) supersymmetric gauge theory, and is, in fact, the gauge (unphysical)
degree of freedom that can be eaten up by the vector gauge multiplet to become massive.

4. Two-Field Models in Modified Supergravity

In this section, we reverse our strategy: instead of embedding the known viable infla-
tionary models into supergravity (as was the case in the preceding sections for single-field
inflation), we use an extension of the Starobinsky (R + R2) gravity model to supergravity
in order to generate new viable models of inflation and PBH formation. When using the
modified supergravity alone (without SUSY matter described by chiral or vector super-
fields), more physical scalars (in addition to inflaton) are inevitable and necessarily lead to
multi-field inflation. Here, we want to treat it as an advantage over single-field inflation in
order to relax fine-tuning and allow more mechanisms for natural PBH generation.

Supergravity is expected to constrain content and interactions of all scalars present
during inflation and PBH formation. In this section, we take the minimalistic approach
by demanding all fields to belong to the single supergravity multiplet. In particular, all
scalar particles (including inflaton) will be superpartners of graviton and gravitino, while
their origin and interactions will be entirely supergravitational, just in the spirit of the
Starobinsky model. In concrete terms, the (modified) Starobinsky-type supergravity is
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going to be used for deriving the NLSM metric Gab(φ) and the scalar potential V(φ) in the
multi-field models (5), where a, b, . . . = 1, 2 . . . , 4.

4.1. Modified (Starobinsky-Type) Supergravity

First, we briefly describe our supergravity setup in curved superspace of the (old-
minimal) N = 1 supergravity. We use the standard notation in [55]. Our starting actions
are complete in the sense that they are manifestly supersymmetric by construction.

The standard superspace Lagrangian of chiral superfields, Φi coupled to supergravity
is given by (MPl = 1)

L =
∫

d2Θ2E
[

3
8
(D̄2 − 8R)e−K(Φi ,Φ̄i)/3 + W(Φi)

]
+ h.c. , (39)

where E is the chiral density superfield,R is the chiral curvature superfield, Dα, D̄α̇ are the
superspace covariant derivatives, D2 ≡ DαDα, and D̄2 ≡ D̄α̇D̄α̇.

A (non-holomorphic) Kähler potential K(Φi, Φ̄i) and a (holomorphic) superpotential
W(Φi) define the model and uniquely determine its scalar sector in the form (5). A chiral
superfield is expanded in terms of its field components as follows:

Φ = Φ +
√

2Θχ + Θ2F . (40)

After eliminating the auxiliary fields (F) and going to Einstein frame, the bosonic part
of the Lagrangian (39) is given by

e−1L = 1
2 R− Ki j̄∂mΦi∂mΦ̄j − eK

(
Ki j̄DiWD j̄W̄ − 3|W|2

)
, (41)

where we have used the same notation for the superfields and their leading field compo-
nents, together with

Ki j̄ ≡
∂2K

∂Φi∂Φ̄j , Ki j̄ ≡ K−1
i j̄ , DiW ≡

∂W
∂Φi + W

∂K
∂Φi . (42)

The Θ-expansion of the chiral superfields E andR of supergravity in terms of their
field components is given by

2E = e
[
1 + iΘσmψ̄m + Θ2(6X̄− ψ̄mσ̄mnψ̄n)

]
, (43)

R = X + Θ
(
−1

6
σmσ̄nψmn − iσmψ̄mX− i

6
ψmbm

)
+

+Θ2
(
− 1

12
R− i

6
ψ̄mσ̄nψmn − 4XX̄− 1

18
bmbm +

i
6
∇mbm+

+
1
2

ψ̄mψ̄mX +
1

12
ψmσmψ̄nbn − 1

48
εabcd(ψ̄aσ̄bψcd + ψaσbψ̄cd)

)
, (44)

where e ≡ det(ea
m), ψmn ≡ D̃mψn− D̃nψm and D̃mψn ≡ (∂m +ωm)ψn. The chiral superfield

E is the SUSY extension of e =
√−g, and R is the SUSY extension of the (Ricci) scalar

curvature R. The real vector bm and complex scalar X are known in the supergravity
literature as the (old-minimal) set of auxiliary fields needed to complete the supergravity
multiplet with a closed algebra of SUSY transformations. In the modified (Starobinsky-
type) supergravity, those “auxiliary” fields become dynamical (or propagating) because of
the presence of higher derivatives in the initial Lagrangian (see below).

The curved superspace techniques allow us to manifestly supersymmetrize the
(R + R2) gravity model as follows [65,66]:

S =
∫

d4xd4θE−1N(R, R̄) +
[∫

d4xd2Θ2EF (R) + h.c
]

, (45)
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or, equivalently, as

L =
∫

d2Θ2E
[
− 1

8 (D̄2 − 8R)N(R, R̄) +F (R)
]
+ h.c. . (46)

This (modified) supergravity action is governed by two potentials (N and F) of the
single chiral superfield R having the scalar curvature R as its field component at Θ2.
Therefore, no higher powers of R (beyond the linear and quadratic terms) can appear.
The first (D-type) term and the second (F-type) term in Equation (45) are similar to the
two terms in Equation (39), but they do not represent matter terms and depend upon the
supergravity multiplet only.

The action (45) can be transformed into the standard (Einstein) matter-coupled su-
pergravity action of the type (39) in terms of two chiral matter superfields, whose Kähler
potential and the superpotential are expressed in terms of the input potentials N and
F [1,49,65,66]. However, after that transformation, the supergravitational origin of the
induced Kähler potential and the superpotential are lost.

In this section, we prefer to deal with the action (45) directly. Our modified super-
gravity setup goes beyond the supergravity textbooks because the standard (Einstein)
supergravity actions are the extensions of Einstein–Hilbert term linear in R, whereas our
Equations (45) and (46) are more general. They reduce to the the standard Einstein super-
gravity action in the special case of N = 0 and F = −3R. In other words, Equations (45)
or (46) is the most general extension of the (R + R2) gravity. Though an F-type term (except
a constant) can be rewritten as the D-type term in Equations (45) and (46), we keep both of
them because they represent different modifications of the standard (pure) supergravity.

4.2. The Effective Two-Field Models

Let us expand the functions N and F in Taylor series and keep a few leading terms as
a probe of our modified supergravity as follows:

N =
12
M2 |R|

2 − 72
M4 ζ|R|4 − 768

M6 γ|R|6 , (47)

F = −3R+
3
√

6
M

δR2 , (48)

where we have introduced three free parameters—ζ, γ, and δ—together with their normal-
ization by the Starobinsky mass parameter M. Let us also ignore the vector field bm and
the angular part of theR| = X field for simplicity by setting

X =
Mσ√

24
, (49)

where σ is the real scalar field.
It is straightforward (but tedious) to obtain the scalar part of the Lagrangian in Einstein

frame. It takes the form of Equation (5) indeed [67],

e−1L =
1
2

R− 1
2
(∂ϕ)2 − 3M2

2
Be
−

√
2
3

ϕ
(∂σ)2 − 1

4B

1− Ae
−

√
2
3

ϕ


2

− e
−2

√
2
3

ϕ
U , (50)
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where the functions A, B, U are given by

A = 1− δσ +
1
6

σ2 − 11
24

ζσ4 − 29
54

γσ6 ,

B =
1

3M2 (1− ζσ2 − γσ4) , (51)

U =
M2

2
σ2
(

1 +
1
2

δσ− 1
6

σ2 +
3
8

ζσ4 +
25
54

γσ6
)

.

The model (50) has two scalars: scalaron ϕ and another scalar σ, while both have the
supergravitational origin: the scalaron φ may be considered as spin-0 part of metric and σ
as its superpartner. Moreover, their kinetic terms and the scalar potential are determined
by Equations (50) and (51). One may worry about σ to become a ghost field due to the
negative signs at some terms in the second Equation (51). However, the infinite wall in
the scalar potential prevents σ from obtaining the values leading to the wrong sign of its
kinetic term.

It is also straightforward to derive the equations of motion in our two-field model in
the FLRW universe, when keeping only time dependence. We find [67]

ϕ̈ + 3H ϕ̇ +
1√
6
(1− ζσ2 − γσ4)e

−

√
2
3

ϕ
σ̇2 + ∂ϕV = 0 , (52)

σ̈ + 3Hσ̇− ζσ + 2γσ3

1− ζσ2 − γσ4 σ̇2 −
√

2
3

ϕ̇σ̇ +
e

√
2
3

ϕ

1− ζσ2 − γσ4 ∂σV = 0 , (53)

1
2

ϕ̇2 +
1
2
(1− ζσ2 − γσ4)e

−

√
2
3

ϕ
σ̇2 + Ḣ = 0 , (54)

V − 3H2 − Ḣ = 0 , (55)

where we have added the Friedmann equation at the end. Our results for double inflation
and PBH formation in the two special cases: the one with δ = 0 (called the γ model) and
the one with γ = 0 (called the δ model) are given below, in accordance with the work
in [67].

Every term in Equations (47) and (48) is well motivated, as follows: (i) the first
term in F comes from the pure (standard) supergravity, (ii) the first term in N describes
the R2 supergravity, (iii) the second ζ-term in N is required for stabilization of the R2

supergravity and of its scalar potential, and (iv) the remaining γ- and δ-terms are introduced
for PBH formation.

4.3. The γ Models

As a representative of the γ models (δ = 0), let us choose the case with the parameters
γ = 1 and ζ = −1.7774, see Figure 1. The scalar potential (for ϕ � 1) has two valleys at
σ 6= 0 and a single Minkowski minimum at σ = ϕ = 0. The first Slow-Roll (SR) inflation is
possible along each of the valleys. The two valleys merge into the Minkowski minimum by
passing through the near-inflection points leading to the intermediate Ultra-Slow-Roll (USR)
stage, where Hubble friction dominates over the potential slope, followed by the second
(SR) stage of inflation. The SR approximation must be violated for PBH production [45].
In the USR regime, the scalar field(s) actually roll down the potential faster than in the SR
regime [68].

(a) (b)

Figure 1. The scalar potential V/M2 with δ = 0, γ = 1, and ζ = −1.7774, from the two perspectives (a) and (b).
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We plot our numerical solutions to the equations of motion in Figure 2. The total
number of e-folds is set to ∆N = 60, and the end of the first stage of inflation is defined
by the time when the SR parameter η first reaches 1 (see Figure 2e). The USR period
εUSR � εSR in Figure 2e leads to the significant enhancement of the scalar power spectrum
(see below). Inflation ends when ε = 1. The first stage lasts ∆N1 ≈ 50 e-folds, whereas the
second stage lasts for ∆N2 ≈ 10. In our figures, the first stage of inflation is represented by
the blue shaded region, whereas the second stage is marked by the green shaded region.
The length of the second stage is controlled by the parameter ζ for a given γ.
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˜
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(a)
(b)
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(d)
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10-4
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(e)

Figure 2. (a) The solution to the field Equations (52) and (53) with the initial conditions ϕ(0) = 6, σ(0) = 0.1; the vanishing
initial velocities; and the parameters δ = 0, γ = 1, and ζ = −1.7774. The blue shaded region represents the first stage of
inflation, and the green shaded region represents the second stage of inflation. (b) The trajectory of the solution. (c) The
corresponding Hubble function. (d) The e-folds. (e) The SR parameters ε (red) and η (blue).

The CMB observables in this model (as the best fit) are given by

ns ≈ 0.9600 and rmax ≈ 0.004 . (56)

The value of the spectral tilt ns is in tension with the Planck observations [12], whereas
the value of the tensor-to-scalar ratio r is essentially the same as that in the Starobinsky
model.

The power spectrum of curvature perturbations can be numerically computed at fixed
∆N2 by using the standard transport method [69,70] with the Mathematica package [71].
We compute the spectrum around the pivot scale k∗ that leaves the horizon at the end of
the first stage (we call this scale k∆N2). The inflaton mass is chosen to be 0.5× 10−5MPl
by requiring Pζ ≈ 2× 10−9 for the mode k that exits the horizon 60 e-folds before the
end of inflation (we call it k60). Our results for various values of γ are shown in Figure 3.
The values of the parameters are collected in Table 1, where ζ is tuned to satisfy ∆N2 ≈ 10.
The changes in ns and rmax are negligible for those parameters.



Universe 2021, 7, 115 17 of 28

γ = 0.1

γ = 1

γ = 10

γ = 100

γ = 1000

10-6 10-3 1 103
10-12

10-10

10-8

10-6

10-4

k/k*

P
ζ

Figure 3. The power spectrum Pζ near the pivot scale k∗ = k∆N2 at ∆N2 = 10 for some values of γ.

Table 1. The parameters leading to the power spectrum in Figure 3 with ∆N2 ≈ 10.

γ 0.1 1 10 100 1000
ζ −0.31165 −1.7774 −8.91495 −42.7976 −201.722

The enhancement of primordial curvature perturbations needed for PBH formation
is usually assumed to be about Pζ,max.

Pζ,min.
≡ Penh. ∼ 107, where the subscripts max. and min.

refer to the values at the peak and at the base of the peak, respectively, compared to the
CMB scale. However, given a broad peak, the enhancement in the power spectrum may be
one order of the magnitude less [36]. According to our numerical estimates (see Figure 3),
when choosing ∆N2 = 10, the enhancement of the order Penh. & 106 is achieved for γ & 10,
namely, it ranges from the order of 106 at γ = 10 to the order of 107 at γ = 1000.

The power spectrum also changes with ∆N2. To demonstrate that dependence, we
consider the power spectrum at γ = 0.1 and γ = 1 for various values of duration of the
USR stage, ∆N2 = 10, 20, 23, 26 for each γ. The results are collected in Figure 4. In order to
achieve the enhancement of the order of 106, we must require ∆N2 & 30. However, this
pushes the spectral index outside of the 3σ (lower) limit of ns ≈ 0.946 again.

In Table 2, we collect the values of ns and rmax. at the CMB scales for the values of
∆N2 = 10, 20, 23, 26, universally across the considered values of γ = 0.1, 1, 10, 100, 1000.
The tensor-to-scalar ratio r is well within the observational limits in all those cases, but the
scalar tilt ns is outside the 1σ limit when ∆N2 = 20 and is marginally outside the 3σ limit
when ∆N2 = 23.

Table 2. The approximate values of ns and r for some choices of ∆N2 after tuning the parameter ζ

around its inflection point value.

∆N2 10 20 23 26

ns 0.96 0.95 0.945 0.94
rmax 0.004 0.007 0.008 0.009

The mass of PBH created as a result of the primordial power spectrum enhancement
can be estimated from the peak data as follows [35]:

MPBH '
M2

Pl
H(tpeak)

exp

[
2(Nend − Npeak) +

∫ t60

tpeak

ε(t)H(t)dt

]
, (57)

where tpeak is the time when the wavenumber corresponding to the power spectrum peak
(kpeak) exits the horizon, and t60 is the time when k60 exits the horizon.
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Our values of MPBH for some values of ∆N2 from Equation (57) are shown in Table 3
together with the corresponding values of the spectral index. Our estimates are universal
across the values of γ = 0.1, 1, 10, 100, 1000. On the one hand, the PBH with masses
smaller than ∼ 1016 g would have already evaporated until now via Hawking radiation.
Therefore, we require ∆N2 ≥ 20. On the other hand, the lower 3σ limit on the spectral
index, ns ≈ 0.946, requires ∆N2 < 23. Thus, the PBH masses are restricted by O(1016 g) <
MPBH < O(1019 g) even before considering the observational constraints on them.
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Figure 4. The power spectrum at γ = 0.1 (see the plot (a)) and at γ = 1 (see the plot (b)) for ∆N2 = 10, 20, 23, 26, respectively.

Table 3. The PBH masses estimated by using Equation (57) for the γ model with the values of the
spectral index. In Solar mass units, 1 g ≈ 5.03× 10−34 M�.

∆N2 10 20 23 26

MPBH, g 108 1016 1019 1021

ns 0.96 0.95 0.945 0.94

Regarding the constraints on γ, the power spectrum in Figure 4 tells us for ∆N2 > 20
that it is sufficient to have γ & O(1) in order to produce the required enhancement in the
spectrum. Therefore, the dependence of our results upon the value of γ is weak.

The PBH density fraction in DM can be estimated by using the standard (Press–
Schechter) formalism [72]. The useful formulae include the PBH mass M̃PBH(k), the pro-
duction rate β f (k), and the density contrast σ(k) coarse-grained over k as follows (see, e.g.,
in [73,74] and the references therein):

M̃PBH ' 1020
(

7× 1012

k Mpc

)2

g , β f (k) '
σ(k)√
2πδc

e
−

δ2
c

2σ2(k) , (58)

σ2(k) =
16
81

∫ dq
q
( q

k
)4e−q2/k2

Pζ(q) ,

respectively, where we have chosen the Gaussian window function for the density contrast
and have introduced δc as a constant representing the density threshold for PBH formation.
It is usually assumed that δc ≈ 1/3 [5], though it may be different. Then, the PBH-to-DM
density fraction is estimated as [73,74]

ΩPBH(k)
ΩDM

≡ f (k) '
1.4× 1024β f (k)√

M̃PBH(k)g−1
. (59)
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In order to numerically evaluate the functions (58) and (59), we have to normalize the
values of k in terms of the observable scales today. We choose the scale k60 to represent the
largest currently observable scale around 10−4 Mpc−1. Then, our numerical evaluation
shows that we need the δc parameter smaller than 1/3, say, close to δc = 0.275.

4.4. The δ Models

Having found the γ models to be in tension with the observed value of the spectral tilt
ns (unless the total number of e-folds is significantly reduced to less than 60), we study the
δ models in this subsection, when γ = 0 and δ 6= 0 in Equations (47) and (48). It breaks the
R-symmetry and the reflection symmetry σ→ −σ of the potential, see Figure 5. For any
non-zero δ, there is a value of ζ leading to an inflection point.

(a) (b)

Figure 5. The scalar potential for γ = 0, δ = 0.1, and ζ = 0.033407, from the two perspectives (a) and (b).

In contrast to the γ models, here we have a single valley for large positive ϕ and σ = 0,
where the δ models reduce to the single-field Starobinsky model. When approaching ϕ = 0,
the inflationary trajectory passes the (near-)inflection point before falling to the Minkowski
minimum at ϕ = σ = 0.

Let us consider, for example, the parameter values δ = 0.1 and ζ = 0.033407, where ζ
is chosen to get ∆N2 = 10. After numerically solving the field equations, we find the time
dependence of ϕ, σ, H̃, N, ε, and η in Figure 6. The near-inflection point divides inflation
into two stages with ∆N1 = 50 (SR) and ∆N2 = 10 (USR). We set the initial velocities to
zero, with ϕ(0) = 6 and σ(0) = 0.05. Similarly to the γ models, the inflationary trajectory
is (locally) stable against variations of the initial conditions.

Having fixed ∆N2 = 10, we find that the spectrum has a non-trivial dependence
on δ, see Figure 7. In the left plot, δ is changed from 0.1 to 0.2, and we observe the
spectrum enhancement to become smaller as δ grows. In the right plot, once δ reaches 0.2,
the enhancement starts growing with δ and develops a sharper peak.

The dependence upon ∆N2 for the highest power spectrum peaks with δ = 0.1 and
δ = 0.6 is displayed in Figure 8. As expected, the enhancement becomes larger with
increasing ∆N2.

Regarding PBH masses and their density fraction, let us consider two different ex-
amples: a smooth peak for δ ∼ 0.1 and a sharp peak for δ ∼ 0.6 in the power spectrum.
Requiring the PBH density fraction (59) to be close to one and the corresponding density
threshold to not deviate far away from the region 1/3 ≤ δc ≤ 2/3, we find that the values
δ = 0.094 and δ = 0.58 are suitable for efficient generation of PBH with their masses around
1019 g, while avoiding their overproduction ( f . 1).

We estimate the generated PBH masses by using Equation (57) and summarize our
results in Table 4. To get MPBH ∼ 1019 g, we can either set δ = 0.094 and ∆N2 = 20
(in this case, Penh ≈ 4.5× 107), or δ = 0.58 and ∆N2 = 23 (in this case, Penh ≈ 2.7× 108).
In the former case, ns is within 2σ (CL), whereas in the latter case, ns is within 3σ but
outside 2σ (CL).
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Figure 6. (a) The solution to the field Equations (52) and (53) with the initial conditions ϕ(0) = 6 and σ(0) = 0.05;
the vanishing initial velocities; and the parameter choice γ = 0, δ = 0.1, and ζ = 0.033407. (b) The trajectory of the solution
(ϕ—blue; σ—red). (c) The Hubble function. (d) The e-folds. (e) The slow-roll parameters ε (red) and η (blue).
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Figure 7. The power spectrum for some values of δ between 0.1 to 0.2 on the plot (a), and for other values of δ between 0.2
to 0.6 on the plot (b). The pivot scale is k∗ = k∆N2 with ∆N2 = 10.
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Figure 8. The power spectrum at δ = 0.1 on the plot (a) and at δ = 0.6 on the plot (b) near the pivot scale k∗ = k∆N2 , when
changing ∆N2, respectively.

Table 4. The PBH masses estimated by Equation (57) for δ = 0.094 and δ = 0.58, with the correspond-
ing values of ns and rmax.

δ = 0.094 δ = 0.58

∆N2 10 20 23 26 10 20 23 26

MPBH, g 1011 1019 1022 1024 108 1016 1019 1021

ns 0.9616 0.9524 0.9486 0.9442 0.9630 0.9539 0.9504 0.9460
rmax 0.004 0.006 0.007 0.008 0.004 0.005 0.006 0.007

4.5. Comparison of the γ and δ Models with the Observational Constraints on PBH and DM

Let us now compare the specific models studied in the preceding subsections in order
to tune their parameters to the best fit with the CMB observations, and then compare those
models with the available observational constrains on PBH and DM [67,75]. We also want
to estimate the PBH-to-DM density fractions in the γ-models and in the δ-models.

For those purposes, we pick up one γ-model (Case I) and two δ-models (Cases II
and III, respectively) with different shapes of the power spectrum. The need of two δ-
models is motivated by the existence of two suitable parameter regions, where δ ' 0.1 and
δ ' 0.6 yield truly different shapes of the power spectrum (broad and narrow, respectively).
The parameter sets of those three models are given in Table 5, and the corresponding
(numerically computed) power spectra Pζ and PBH density fractions f (M) are shown
in Figure 9. We use the normalization of the wavenumber kexit = 0.05 Mpc−1, where
kexit is the scale that leaves the horizon around 54 e-folds before the end of inflation. The
parameter ζ is fixed by choosing the value of ∆N2 at given γ and δ. In the cases I–III, we
find ζ as −2.374, 0.032, and 0.102, respectively.

Table 5. The parameters corresponding to the PBH density fraction in Figure 9. The ns and r are
computed with the total ∆N = 54 e-folds before the end of inflation.

γ δ ∆N2 δc ns r

Case I 1.5 0 20 0.4 0.942 0.009
Case II 0 0.09 19 0.47 0.946 0.008
Case III 0 0.61 20 0.4 0.946 0.007
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Figure 9. The power spectra in the examples of Table 5 with PBH as the DM, on the left plot (a). The k∗ represents the end
of SR and the beginning of USR. The corresponding PBH density fractions are given on the right plot (b). The background
observational constraints on PBH are taken from Refs. [9,76]. In both plots, the case I is denoted by the solid line, the case II
by the dashed line, and the case III by the dotted line.

According to Table 5, the spectral tilt ns in case I is in tension by 3σ against the CMB
data [12], whereas in cases II and III, the value of ns is within the current 3σ constraints.
The PBH fraction in case II of Figure 9 implies that those δ-models are more flexible to
accommodate slightly larger values of ns. It happens because the PBH fraction in case
II peaks at the center of the allowed window, while it is still possible to move the peak
further to the left, thus lowering further the PBH masses. In turn, it will decrease ∆N2 and,
consequently, increase ns.

5. Gravitational Waves Induced by PBH Formation

One of the most visible opportunities to check the proposed models of inflation and
PBH production by observations is via detection of the stochastic Gravitational Waves
(GW) induced by the PBH formation. We follow the work in [75] here.

The present-day GW density function ΩGW is given by [77,78]

ΩGW(k)
Ωr

=
cg

72

∫ 1√
3

−
1√
3

dd
∫ ∞

1√
3

ds

 (s2 − 1
3 )(d2 − 1

3
)

s2 + d2


2

Pζ(kx)Pζ(ky)
(

I2
c + I2

s

)
, (60)

where the constant cg ≈ 0.4 in the case of the Standard Model (SM), and cg ≈ 0.3 in the
case of the Minimal Supersymmetric Standard Model (MSSM).

The present-day value of the radiation density Ωr is equal to h2Ωr ≈ 2.47× 10−5,
according to measurements of CMB temperature [79]. Here, h is the reduced (present-day)
Hubble parameter that we take as h = 0.67 (ignoring the Hubble tension). The variables
x, y are related to the integration variables s, d as

x =

√
3

2
(s + d) , y =

√
3

2
(s− d) , (61)

while the functions Ic and Is of x(s, d) and y(s, d) are given by [77,78]

Ic = −4
∫ ∞

0
dη sin η

{
2T(xη)T(xη) +

[
T(xη) + xηT′(xη)

][
T(yη) + yηT′(yη)

]}
(62)



Universe 2021, 7, 115 23 of 28

and

Is = 4
∫ ∞

0
dη cos η

{
2T(xη)T(xη) +

[
T(xη) + xηT′(xη)

][
T(yη) + yηT′(yη)

]}
, (63)

where the T-function is defined by

T(kη) =
9

(kη)2

[√
3

kη
sin
(

kη√
3

)
− cos

(
kη√

3

)]
, (64)

in terms of the conformal time η.
The integrations in Ic and Is can be performed analytically, and the results are [77]

Ic = −36π
(s2 + d2 − 2)2

(s2 − d2)3 θ(s− 1) , (65)

Is = −36
s2 + d2 − 2
(s2 − d2)2

[
s2 + d2 − 2

s2 − d2 log
∣∣∣∣d2 − 1

s2 − 1

∣∣∣∣+ 2
]

, (66)

where θ is the Heaviside step function.
Using the definitions above, the GW density can be numerically computed from a

given power spectrum. It suffices to consider the power spectra in the cases of Table 5
where PBH are part of DM because the cases with ftot = 1 have the quite similar power
spectra, though with slightly larger peaks. By using the power spectra of Figure 9 (on the
left side) we plot the density ΩGW(k) in terms of frequency k = 2π f in Figure 10 together
with the expected sensitivity curves for several space-based GW experiments planned in
the near future. We have used the power-law integrated curves [80] and have applied
them to the LISA noise model [81,82]. As the alternative, the peak-integrated curves can
be used [83]). To draw the sensitivity curves, we have used the parameters and the noise
models for TianQin [84], Taiji [85], and DECIGO [86].

It follows from Figure 10 that the upcoming space-based GW experiments are expected
to be sensitive enough to detect the stochastic GW background predicted by a large class
of our two-field inflationary models where PBH may account for a significant fraction
(or all) of DM. Figure 10 shows that our supergravity models produce GW peaking in
the frequency range 10−3 ÷ 10−1 Hz expected to be accessible by LISA, TianQin, Taiji,
and DECIGO gravitational interferometers.

LISA

TianQin

Taiji

DECIGO

10-4 0.001 0.010 0.100 1 10 100

10-14

10-11

10-8

f, Hz

h
2
Ω
G
W

Figure 10. The density of stochastic GW induced by the power spectrum enhancement in our
supergravity models: case I (solid black curve), case II (dashed black curve), and case III (dotted
black curve). The expected sensitivity curves for the space-based GW experiments are represented by
the different colors.
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6. Conclusions and Discussion

The proposed extensions of the Starobinsky inflationary model in the modified super-
gravity can produce PBH that could account for part (or whole) of Cold Dark Matter. The
PBH generation can be efficiently catalyzed by primordial perturbations sourced by the
Starobinsky scalaron coupled to another scalar of the (super)gravitational origin.

Our conclusions are mainly based on the theoretical considerations (by putting for-
ward the two fundamental principles, namely, modified gravity and supergravity) before
comparing them to cosmological observations, in the top-down approach. We started from
the Starobinsky inflationary model serving as the theoretical tool, and argued about its
universality (as the most basic model) for slow roll inflation. Then, the alpha-attractor
models were reviewed as the natural extensions of the Starobinsky inflation in the different
universality classes with different (arbitrary) tensor-to-scalar ratios.

All those single-field models of inflation and PBH were minimally embedded into the
particular version of supergravity with inflaton in a massive vector multiplet after some
fine-tuning of the parameters needed for efficient PBH formation. The formal theoretical
advantages of supergravity are obvious: (a) it may be further embedded into a fundamental
theory of quantum gravity such as superstrings; (b) the modified supergravity offers the
supergravitational origin of inflaton and its potential, being (classically) equivalent to the
standard (Einstein) matter-coupled supergravity; and (c) extra fields and extra couplings
are severely restricted by SUSY, while the relation between them is not broken by renor-
malization due to SUSY preservation against quantum (gravity) corrections. Therefore,
supergravity has higher predictive power for phenomenology of the early universe cos-
mology. In the reverse way, inflation and PBH DM can also be considered as the probes of
supergravity for its role as a more fundamental approach to cosmology.

All that becomes even more important for multi-field models of inflation, PBH, and
DM, where SUSY and supergravity can serve as the guiding fundamental principle for
discrimination of phenomenological models. We find that it is the case for the effective
two-field models derived from the modified (Starobinsky) supergravity by starting from
the manifestly supersymmetric Lagrangian (46). After (Taylor) expanding its potentials N
and F in powers of the scalar curvature superfieldR, and keeping only the few leading
terms, we arrived at our models defined by Equations (47) and (48), whose scalar part is
described by Equations (50) and (51). Unlike the other two-field models in the literature,
where Starobinsky’s scalaron is paired either with dilaton [87,88] or a Higgs field [89–91],
the modified supergravity predicts another scalar having the supergravitational origin and
belonging to the single supergravity multipet together with graviton and gravitino.

The power spectra were numerically computed, and the PBH masses and their density
fractions in DM were estimated in three special cases of those two-field models. We
found that each model can simultaneously describe both the viable (Starobinsky-type)
inflation and the efficient PBH production after inflation, with remarkably less fine-tuning
of the parameters. Apparently, the δ models are preferable against the γ models from the
viewpoint of the precision measurements on the CMB spectral index ns.

We also found that a significant part of DM is realizable in the form of PBH in our
two-field models, with the PBH masses being in the range between 1016 g and 1020 g. The
whole DM as the PBH is also possible, though after some more fine-tuning of the model
parameters. Note that the PBH masses found are beyond the lower bound provided by
Hawking radiation, but are much lower than the Solar mass and the black hole masses
discovered by the LIGO experiment [92].

Unlike single-field inflationary models demanding an inflection point of the potential
for enhancement of curvature perturbations, multi-field inflationary models offer other
natural mechanisms of the power spectrum enhancement, which may be different from the
double inflationary scenario adopted in this paper. For instance, it could be via processes
of isocurvature mode amplification via sharp turns of the inflationary trajectory [38,88] or
via first order phase transitions and related bubble collisions [28]. All that implies PBH
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production may be a generic feature of multi-field inflation, though more studies are needed
to check it in the context of supergravity.

As is well known, PBH formation necessarily leads to GW because large scalar over-
densities act as a source of stochastic GW background. Frequencies of those GW can be
related to the expected PBH masses and the duration of the second stage of inflation [78].
These GW may be detected in the future ground-based experiments, such as the Ein-
stein telescope [93] and the global network of GW interferometers, including advanced
LIGO, Virgo, and KAGRA [92], as well as by the space-based GW interferometers such as
LISA [81], TAIJI (old ALIA) [85], TianQin [84], and DECIGO [86].

Our results support the proposal that PBH may account for a large part or the whole
DM, while those PBH and DM may have their origin in supergravity. Our supergravity
models also predict the GW stochastic background radiation that is sensitive to the in-
flationary parameters and the PBH mass spectrum. Fine-tuning in our models amounts
to fixing the parameter M ∼ 10−5MPl as the (Starobinsky) scalaron mass and the dimen-
sionless parameter ζ for the desired duration of the USR. The obtained PBH mass spectra
are compatible with all astrophysical and cosmological constrains, while induced GW
signals can be detected by the next space-based or land-based gravitational interferometers.
The NANOGrav Collaboration data [94] hint to the PBH as DM [95–97], in agreement with
our results in Figure 9.

Supergravity is often regarded as an extension of gravity at super-high energy scales.
We find that the new scalars of modified supergravity can play the active role during
inflation, catalyze PBH formation, and produce GW radiation. The interactions of those
scalars are dictated by local SUSY and are not assumed ad hoc, so that our models have the
predictive power to be falsified in future experiments. It gives us the reason to believe that
indirect footprints of SUSY may be detected from GW physics rather than from high-energy
particle colliders.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: S.V.K. was supported by Tokyo Metropolitan University; the World Premier
International Research Center Initiative (WPI); MEXT, Japan; and Tomsk Polytechnic University
within the assignment of the Ministry of Science and Higher Education of the Russian Federation.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Ketov, S.V.; Starobinsky, A.A. Embedding (R + R2)-Inflation into Supergravity. Phys. Rev. D 2011, 83, 063512. [CrossRef]
2. Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [CrossRef]
3. Novikov, I.; Zeldovic, Y. Cosmology. Ann. Rev. Astron. Astrophys. 1967, 5, 627–649. [CrossRef]
4. Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. Roy. Astron. Soc. 1971, 152, 75. [CrossRef]
5. Carr, B.J. The Primordial black hole mass spectrum. Astrophys. J. 1975, 201, 1–19. [CrossRef]
6. Barrow, J.D.; Copeland, E.J.; Liddle, A.R. The Cosmology of black hole relics. Phys. Rev. D 1992, 46, 645–657. [CrossRef] [PubMed]
7. Sasaki, M.; Suyama, T.; Tanaka, T.; Yokoyama, S. Primordial black holes—Perspectives in gravitational wave astronomy.

Class. Quant. Grav. 2018, 35, 063001. [CrossRef]
8. Ketov, S.V.; Khlopov, M.Y. Cosmological Probes of Supersymmetric Field Theory Models at Superhigh Energy Scales. Symmetry

2019, 11, 511. [CrossRef]
9. Carr, B.; Kohri, K.; Sendouda, Y.; Yokoyama, J. Constraints on Primordial Black Holes. arXiv 2020, arXiv:2002.12778.
10. Guth, A.H. The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 1981, 23, 347–356.

[CrossRef]
11. Linde, A.D. A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and

Primordial Monopole Problems. Phys. Lett. B 1982, 108, 389–393. [CrossRef]
12. Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.;

et al. Planck 2018 results. X. Constraints on inflation. arXiv 2020, arXiv:1807.06211.
13. Ketov, S.V. Quantum Nonlinear Sigma Models: From Quantum Field Theory to Supersymmetry, Conformal Field Theory, Black Holes and

Strings; Springer: Berlin, Germany, 2000.

http://dx.doi.org/10.1103/PhysRevD.83.063512
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.1146/annurev.aa.05.090167.003211
http://dx.doi.org/10.1093/mnras/152.1.75
http://dx.doi.org/10.1086/153853
http://dx.doi.org/10.1103/PhysRevD.46.645
http://www.ncbi.nlm.nih.gov/pubmed/10014977
http://dx.doi.org/10.1088/1361-6382/aaa7b4
http://dx.doi.org/10.3390/sym11040511
http://dx.doi.org/10.1103/PhysRevD.23.347
http://dx.doi.org/10.1016/0370-2693(82)91219-9


Universe 2021, 7, 115 26 of 28

14. Aldabergenov, Y.; Ishikawa, R.; Ketov, S.V.; Kruglov, S.I. Beyond Starobinsky inflation. Phys. Rev. D 2018, 98, 083511. [CrossRef]
15. Ketov, S.V. On the equivalence of Starobinsky and Higgs inflationary models in gravity and supergravity. J. Phys. A 2020,

53, 084001. [CrossRef]
16. Ketov, S.V.; Watanabe, N. On the Higgs-like Quintessence for Dark Energy. Mod. Phys. Lett. A 2014, 29, 1450117. [CrossRef]
17. Ellis, J.; Garcia, M.A.G.; Nanopoulos, D.V.; Olive, K.A. Calculations of Inflaton Decays and Reheating: With Applications to

No-Scale Inflation Models. JCAP 2015, 07, 050. [CrossRef]
18. Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett. 1981, 33, 532–535.
19. Kaneda, S.; Ketov, S.V.; Watanabe, N. Fourth-order gravity as the inflationary model revisited. Mod. Phys. Lett. A 2010,

25, 2753–2762. [CrossRef]
20. Ketov, S.V.; Starobinsky, A.A. Inflation and non-minimal scalar-curvature coupling in gravity and supergravity. JCAP 2012,

08, 022. [CrossRef]
21. Dolgov, A.; Silk, J. Baryon isocurvature fluctuations at small scales and baryonic dark matter. Phys. Rev. D 1993, 47, 4244–4255.

[CrossRef]
22. Ivanov, P.; Naselsky, P.; Novikov, I. Inflation and primordial black holes as dark matter. Phys. Rev. D 1994, 50, 7173–7178.

[CrossRef]
23. Dine, M.; Fischler, W. The Not So Harmless Axion. Phys. Lett. B 1983, 120, 137–141. [CrossRef]
24. Addazi, A.; Ketov, S.V.; Khlopov, M.Y. Gravitino and Polonyi production in supergravity. Eur. Phys. J. C 2018, 78, 642. [CrossRef]
25. Bañados, E.; Venemans, B.P.; Mazzucchelli, C.; Farina, E.P.; Walter, F.; Wang, F.; Decarli, R.; Stern, D.; Fan, X.; Davies, F.B.; et al. An

800-million-solar-mass black hole in a significantly neutral Universe at redshift 7.5. Nature 2018, 553, 7689. [CrossRef]
26. Duechting, N. Supermassive black holes from primordial black hole seeds. Phys. Rev. D 2004, 70, 064015. [CrossRef]
27. Khlopov, M.; Malomed, B.; Zeldovich, I. Gravitational instability of scalar fields and formation of primordial black holes. Mon.

Not. R. Astron. Soc. 1985, 215, 575–589. [CrossRef]
28. Konoplich, R.; Rubin, S.; Sakharov, A.; Khlopov, M. Formation of black holes in first-order phase transitions as a cosmological test

of symmetry-breaking mechanisms. Phys. Atom. Nucl. 1999, 62, 1593–1600.
29. Khlopov, M.; Konoplich, R.; Rubin, S.; Sakharov, A. First-order phase transitions as a source of black holes in the early universe.

Grav. Cosmol. 2000, 6, 153–156.
30. Addazi, A.; Marcianò, A.; Pasechnik, R. Probing Trans-electroweak First Order Phase Transitions from Gravitational Waves.

Physics 2019, 1, 92–102. [CrossRef]
31. Vilenkin, A.; Levin, Y.; Gruzinov, A. Cosmic strings and primordial black holes. JCAP 2018, 11, 008. [CrossRef]
32. Belotsky, K.M.; Dokuchaev, V.I.; Eroshenko, Y.N.; Esipova, E.A.; Khlopov, M.Y.; Khromykh, L.A.; Kirillov, A.A.; Nikulin, V.V.;

Rubin, S.G.; Svadkovsky, I.V. Clusters of primordial black holes. Eur. Phys. J. C 2019, 79, 246. [CrossRef]
33. Liu, J.; Guo, Z.-K.; Cai, R.-G. Primordial Black Holes from Cosmic Domain Walls. Phys. Rev. D 2020, 101, 023513. [CrossRef]
34. Carr, B.J. Primordial black holes as a probe of cosmology and high energy physics. Lect. Notes Phys. 2003, 631, 301–321.
35. Pi, S.; Zhang, Y.-l.; Huang, Q.-G.; Sasaki, M. Scalaron from R2-gravity as a heavy field. JCAP 2018, 05, 042. [CrossRef]
36. Germani, C.; Musco, I. Abundance of Primordial Black Holes Depends on the Shape of the Inflationary Power Spectrum. Phys. Rev.

Lett. 2019, 122, 141302. [CrossRef]
37. Fumagalli, J.; Renaux-Petel, S.; Ronayne, J.W.; Witkowski, L.T. Turning in the landscape: A new mechanism for generating

Primordial Black Holes. arXiv 2020, arXiv:2004.08369
38. Palma, G.A.; Sypsas, S.; Zenteno, C. Seeding primordial black holes in multifield inflation. Phys. Rev. Lett. 2020, 125, 121301.

[CrossRef]
39. Cai, R.-G.; Guo, Z.-K.; Liu, J.; Liu, L.; Yang, X.-Y. Primordial black holes and gravitational waves from parametric amplification of

curvature perturbations. JCAP 2020, 06, 013. [CrossRef]
40. Cai, R.-G.; Pi, S.; Sasaki, M. Gravitational Waves Induced by non-Gaussian Scalar Perturbations. Phys. Rev. Lett. 2019, 122, 201101.

[CrossRef]
41. Deng, C.-M.; Cai, Y.; Wu, X.-F.; Liang, E.-W. Fast Radio Bursts From Primordial Black Hole Binaries Coalescence. Phys. Rev. D

2018, 98, 123016. [CrossRef]
42. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.;

et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the
First and Second Observing Runs. Phys. Rev. X 2019, 9, 031040. [CrossRef]

43. Passaglia, S.; Hu, W.; Motohashi, H. Primordial black holes and local non-Gaussianity in canonical inflation. Phys. Rev. D 2019,
99, 043536. [CrossRef]

44. Garcia-Bellido, J.; Morales, E.R. Primordial black holes from single field models of inflation. Phys. Dark Univ. 2017, 18, 47–54.
[CrossRef]

45. Motohashi, H.; Hu, W. Primordial Black Holes and Slow-Roll Violation. Phys. Rev. D 2017, 96, 063503. [CrossRef]
46. Braglia, M.; Hazra, D.K.; Finelli, F.; Smoot, G.F.; Starobinsky, A.A. Generating PBHs and small-scale GWs in two-field models of

inflation. arXiv 2020, arXiv:2005.02895.
47. Garcia-Bellido, J.; Linde, A.D.; Wands, D. Density perturbations and black hole formation in hybrid inflation. Phys. Rev. D 1996,

54, 6040–6058. [CrossRef]

http://dx.doi.org/10.1103/PhysRevD.98.083511
http://dx.doi.org/10.1088/1751-8121/ab6a33
http://dx.doi.org/10.1142/S021773231450117X
http://dx.doi.org/10.1088/1475-7516/2015/07/050
http://dx.doi.org/10.1142/S0217732310033918
http://dx.doi.org/10.1088/1475-7516/2012/08/022
http://dx.doi.org/10.1103/PhysRevD.47.4244
http://dx.doi.org/10.1103/PhysRevD.50.7173
http://dx.doi.org/10.1016/0370-2693(83)90639-1
http://dx.doi.org/10.1140/epjc/s10052-018-6111-7
http://dx.doi.org/10.1038/nature25180
http://dx.doi.org/10.1103/PhysRevD.70.064015
http://dx.doi.org/10.1093/mnras/215.4.575
http://dx.doi.org/10.3390/physics1010010
http://dx.doi.org/10.1088/1475-7516/2018/11/008
http://dx.doi.org/10.1140/epjc/s10052-019-6741-4
http://dx.doi.org/10.1103/PhysRevD.101.023513
http://dx.doi.org/10.1088/1475-7516/2018/05/042
http://dx.doi.org/10.1103/PhysRevLett.122.141302
http://dx.doi.org/10.1103/PhysRevLett.125.121301
http://dx.doi.org/10.1088/1475-7516/2020/06/013
http://dx.doi.org/10.1103/PhysRevLett.122.201101
http://dx.doi.org/10.1103/PhysRevD.98.123016
http://dx.doi.org/10.1103/PhysRevX.9.031040
http://dx.doi.org/10.1103/PhysRevD.99.043536
http://dx.doi.org/10.1016/j.dark.2017.09.007
http://dx.doi.org/10.1103/PhysRevD.96.063503
http://dx.doi.org/10.1103/PhysRevD.54.6040


Universe 2021, 7, 115 27 of 28

48. Kawasaki, M.; Tada, Y. Can massive primordial black holes be produced in mild waterfall hybrid inflation? JCAP 2016, 08, 041.
[CrossRef]

49. Ketov, S.V.; Terada, T. Old-minimal supergravity models of inflation. JHEP 2013, 12, 040. [CrossRef]
50. Addazi, A.; Ketov, S.V. Energy conditions in Starobinsky supergravity. JCAP 2017, 03, 061. [CrossRef]
51. Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 1979, 30, 682–685.
52. Kallosh, R.; Linde, A.; Roest, D. Superconformal Inflationary α-Attractors. JHEP 2013, 11, 198. [CrossRef]
53. Dalianis, I.; Kehagias, A.; Tringas, G. Primordial black holes from α-attractors. JCAP 2019, 01, 037. [CrossRef]
54. Freedman, D.Z.; Proeyen, A.V. Supergravity; Cambridge University Press: Cambridge, UK, 2012.
55. Wess, J.; Bagger, J. Supersymmetry and Supergravity; Princeton University Press: Princeton, NJ, USA, 1992.
56. Yamaguchi, M. Supergravity based inflation models: A review. Class. Quant. Grav. 2011, 28, 103001. [CrossRef]
57. Ketov, S.V. Supergravity and Early Universe: The Meeting Point of Cosmology and High-Energy Physics. Int. J. Mod. Phys. A

2013, 28, 1330021. [CrossRef]
58. Ketov, S.V.; Terada, T. Inflation in supergravity with a single chiral superfield. Phys. Lett. B 2014, 736, 272–277. [CrossRef]
59. Ketov, S.V.; Terada, T. Generic Scalar Potentials for Inflation in Supergravity with a Single Chiral Superfield. JHEP 2014, 12, 062.

[CrossRef]
60. Farakos, F.; Kehagias, A.; Riotto, A. On the Starobinsky Model of Inflation from Supergravity. Nucl. Phys. B 2013, 876, 187–200.

[CrossRef]
61. Ferrara, S.; Kallosh, R.; Linde, A.; Porrati, M. Minimal Supergravity Models of Inflation. Phys. Rev. D 2013, 88, 085038. [CrossRef]
62. Aldabergenov, Y.; Ketov, S.V. SUSY breaking after inflation in supergravity with inflaton in a massive vector supermultiplet.

Phys. Lett. B 2016, 761, 115–118. [CrossRef]
63. Aldabergenov, Y.; Ketov, S.V. Higgs mechanism and cosmological constant in N = 1 supergravity with inflaton in a vector

multiplet. Eur. Phys. J. C 2017, 77, 233. [CrossRef]
64. Addazi, A.; Marciano, A.; Ketov, S.V.; Khlopov, M.Y. Physics of superheavy dark matter in supergravity. Int. J. Mod. Phys. D 2018,

27, 1841011. [CrossRef]
65. Cecotti, S. Higher derivative supergravity is equivalent to standard supergravity coupled to matter. 1. Phys. Lett. 1987, B190,

86–92. [CrossRef]
66. Gates, J.; James, S.; Ketov, S.V. Superstring-inspired supergravity as the universal source of inflation and quintessence. Phys. Lett.

B 2009, 674, 59–63. [CrossRef]
67. Aldabergenov, Y.; Addazi, A.; Ketov, S.V. Primordial black holes from modified supergravity. Eur. Phys. J. C 2020, 80, 917.

[CrossRef]
68. Motohashi, H.; Starobinsky, A.A.; Yokoyama, J. Inflation with a constant rate of roll. JCAP 2015, 09, 018. [CrossRef]
69. Mulryne, D.J.; Seery, D.; Wesley, D. Moment transport equations for non-Gaussianity. JCAP 2010, 01, 024. [CrossRef]
70. Mulryne, D.J.; Seery, D.; Wesley, D. Moment transport equations for the primordial curvature perturbation. JCAP 2011, 04, 030.

[CrossRef]
71. Dias, M.; Frazer, J.; Seery, D. Computing observables in curved multifield models of inflation—A guide (with code) to the

transport method. JCAP 2015, 12, 030. [CrossRef]
72. Press, W.H.; Schechter, P. Formation of galaxies and clusters of galaxies by selfsimilar gravitational condensation. Astrophys. J.

1974, 187, 425–438. [CrossRef]
73. Inomata, K.; Kawasaki, M.; Mukaida, K.; Tada, Y.; Yanagida, T.T. Inflationary Primordial Black Holes as All Dark Matter. Phys. Rev.

D 2017, 96, 043504. [CrossRef]
74. Inomata, K.; Kawasaki, M.; Mukaida, K.; Yanagida, T.T. Double inflation as a single origin of primordial black holes for all dark

matter and LIGO observations. Phys. Rev. D 2018, 97, 043514. [CrossRef]
75. Aldabergenov, Y.; Addazi, A.; Ketov, S.V. Testing Primordial Black Holes as Dark Matter in Supergravity from Gravitational

Waves. Phys. Lett. B 2021, 814, 136069. [CrossRef]
76. Carr, B.; Kuhnel, F. Primordial Black Holes as Dark Matter: Recent Developments. arXiv 2020, arXiv:2006.02838.
77. Espinosa, J.R.; Racco, D.; Riotto, A. A Cosmological Signature of the SM Higgs Instability: Gravitational Waves. JCAP 2018,

09, 012. [CrossRef]
78. Bartolo, N.; Luca, V.D.; Franciolini, G.; Lewis, A.; Peloso, M.; Riotto, A. Primordial Black Hole Dark Matter: LISA Serendipity.

Phys. Rev. Lett. 2019, 122, 211301. [CrossRef]
79. Mather, J.C.; Fixsen, D.; Shafer, R.; Mosier, C.; Wilkinson, D. Calibrator design for the COBE far infrared absolute spectrophotome-

ter (FIRAS). Astrophys. J. 1999, 512, 511–520. [CrossRef]
80. Thrane, E.; Romano, J.D. Sensitivity curves for searches for gravitational-wave backgrounds. Phys. Rev. D 2013, 88, 124032.

[CrossRef]
81. Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, J.; Barausse, E.; Bender, P.; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al.

Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786.
82. Smith, T.L.; Caldwell, R. LISA for Cosmologists: Calculating the Signal-to-Noise Ratio for Stochastic and Deterministic Sources.

Phys. Rev. D 2019, 100, 104055. [CrossRef]
83. Schmitz, K. New Sensitivity Curves for Gravitational-Wave Signals from Cosmological Phase Transitions. JHEP 2021, 01, 097.

[CrossRef]

http://dx.doi.org/10.1088/1475-7516/2016/08/041
http://dx.doi.org/10.1007/JHEP12(2013)040
http://dx.doi.org/10.1088/1475-7516/2017/03/061
http://dx.doi.org/10.1007/JHEP11(2013)198
http://dx.doi.org/10.1088/1475-7516/2019/01/037
http://dx.doi.org/10.1088/0264-9381/28/10/103001
http://dx.doi.org/10.1142/S0217751X13300214
http://dx.doi.org/10.1016/j.physletb.2014.07.036
http://dx.doi.org/10.1007/JHEP12(2014)062
http://dx.doi.org/10.1016/j.nuclphysb.2013.08.005
http://dx.doi.org/10.1103/PhysRevD.88.085038
http://dx.doi.org/10.1016/j.physletb.2016.08.016
http://dx.doi.org/10.1140/epjc/s10052-017-4807-8
http://dx.doi.org/10.1142/S0218271818410110
http://dx.doi.org/10.1016/0370-2693(87)90844-6
http://dx.doi.org/10.1016/j.physletb.2009.03.005
http://dx.doi.org/10.1140/epjc/s10052-020-08506-6
http://dx.doi.org/10.1088/1475-7516/2015/09/018
http://dx.doi.org/10.1088/1475-7516/2010/01/024
http://dx.doi.org/10.1088/1475-7516/2011/04/030
http://dx.doi.org/10.1088/1475-7516/2015/12/030
http://dx.doi.org/10.1086/152650
http://dx.doi.org/10.1103/PhysRevD.96.043504
http://dx.doi.org/10.1103/PhysRevD.97.043514
http://dx.doi.org/10.1016/j.physletb.2021.136069
http://dx.doi.org/10.1088/1475-7516/2018/09/012
http://dx.doi.org/10.1103/PhysRevLett.122.211301
http://dx.doi.org/10.1086/306805
http://dx.doi.org/10.1103/PhysRevD.88.124032
http://dx.doi.org/10.1103/PhysRevD.100.104055
http://dx.doi.org/10.1007/JHEP01(2021)097


Universe 2021, 7, 115 28 of 28

84. Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne
gravitational wave detector. Class. Quant. Grav. 2016, 33, 035010. [CrossRef]

85. Gong, X.; Lau, Y.K.; Xu, S.; Amaro-Seoane, P.; Bai, S.; Bian, X.; Cao, Z.; Chen, G.; Chen, X.; Ding, Y.; et al. Descope of the ALIA
mission. J. Phys. Conf. Ser. 2015, 610, 012011. [CrossRef]

86. Kudoh, H.; Taruya, A.; Hiramatsu, T.; Himemoto, Y. Detecting a gravitational-wave background with next-generation space
interferometers. Phys. Rev. D 2006, 73, 064006. [CrossRef]

87. Kaneda, S.; Ketov, S.V. Starobinsky-like two-field inflation. Eur. Phys. J. C 2016, 76, 26. [CrossRef]
88. Gundhi, A.; Ketov, S.V.; Steinwachs, C.F. Primordial black hole dark matter in dilaton-extended two-field Starobinsky inflation.

arXiv 2020, arXiv:2011.05999.
89. Ema, Y. Higgs Scalaron Mixed Inflation. Phys. Lett. B 2017, 770, 403–411. [CrossRef]
90. He, M.; Starobinsky, A.A.; Yokoyama, J. Inflation in the mixed Higgs-R2 model. JCAP 2018, 05, 064. [CrossRef]
91. Gundhi, A.; Steinwachs, C.F. Scalaron-Higgs inflation. Nucl. Phys. 2020, B954, 114989. [CrossRef]
92. KAGRA Collaboration; LIGO Scientific Collaboration; Virgo Collaboration. Prospects for Observing and Localizing Gravitational-

Wave Transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Rel. 2018, 21, 3. [CrossRef] [PubMed]
93. Punturo, M.; Abernathy, M.; Acernese, F.; Allen, B.; Andersson, N.; Arun, K.; Barone, F.; Barr, B.; Barsuglia, M.; Beker, M.; et al.

The Einstein Telescope: A third-generation gravitational wave observatory. Class. Quant. Grav. 2010, 27, 194002. [CrossRef]
94. Arzoumanian, Z.; Baker, P.T.; Blumer, H.; Bécsy, B.; Brazier, A.; Brook, P.R.; Burke-Spolaor, S.; Chatterjee, S.; Chen, S.; Cordes, J.M.;

et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett. 2020,
905, L34.

95. De Luca, V.; Franciolini, G.; Riotto, A. NANOGrav Data Hints at Primordial Black Holes as Dark Matter. Phys. Rev. Lett. 2021,
126, 041303. [CrossRef] [PubMed]

96. Vaskonen, V.; Veermäe, H. Did NANOGrav see a signal from primordial black hole formation? Phys. Rev. Lett. 2021, 126, 051303.
[CrossRef] [PubMed]

97. Kohri, K.; Terada, T. Solar-Mass Primordial Black Holes Explain NANOGrav Hint of Gravitational Waves. Phys. Lett. B 2021,
81, 136040. [CrossRef]

http://dx.doi.org/10.1088/0264-9381/33/3/035010
http://dx.doi.org/10.1088/1742-6596/610/1/012011
http://dx.doi.org/10.1103/PhysRevD.73.064006
http://dx.doi.org/10.1140/epjc/s10052-016-3888-0
http://dx.doi.org/10.1016/j.physletb.2017.04.060
http://dx.doi.org/10.1088/1475-7516/2018/05/064
http://dx.doi.org/10.1016/j.nuclphysb.2020.114989
http://dx.doi.org/10.1007/s41114-018-0012-9
http://www.ncbi.nlm.nih.gov/pubmed/29725242
http://dx.doi.org/10.1088/0264-9381/27/19/194002
http://dx.doi.org/10.1103/PhysRevLett.126.041303
http://www.ncbi.nlm.nih.gov/pubmed/33576658
http://dx.doi.org/10.1103/PhysRevLett.126.051303
http://www.ncbi.nlm.nih.gov/pubmed/33605761
http://dx.doi.org/10.1016/j.physletb.2020.136040

	Introduction
	Motivation and Setup
	Why Inflation?
	Why Starobinsky's Model for Single-Field Inflation?
	Why Primordial Black Holes?
	Why Supergravity?

	Single-Field Models
	Power Spectrum and Generalized Alpha Attractors
	Single-Field Models of Inflation and PBH in Supergravity

	Two-Field Models in Modified Supergravity
	Modified (Starobinsky-Type) Supergravity
	The Effective Two-Field Models
	The  Models
	The  Models
	Comparison of the  and  Models with the Observational Constraints on PBH and DM

	Gravitational Waves Induced by PBH Formation
	Conclusions and Discussion
	References

