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Abstract: We study the variational principle and derivation of the field equations for different classes
of teleparallel gravity theories, using both their metric-affine and covariant tetrad formulations.
These theories have in common that, in addition to the tetrad or metric, they employ a flat connection
as additional field variable, but dthey iffer by the presence of absence of torsion and nonmetricity
for this independent connection. Besides the different underlying geometric formulation using a
tetrad or metric as fundamental field variable, one has different choices to introduce the conditions of
vanishing curvature, torsion, and nonmetricity, either by imposing them a priori and correspondingly
restricting the variation of the action when the field equations are derived, or by using Lagrange
multipliers. Special care must be taken, since these conditions form non-holonomic constraints. Here,
we explicitly show that all of the aforementioned approaches are equivalent, and that the same set of
field equations is obtained, independently of the choice of the geometric formulation and variation
procedure. We further discuss the consequences arising from the diffeomorphism invariance of the
gravitational action, and show how they establish relations between the gravitational field equations.

Keywords: teleparallel gravity; action principle; variation; Palatini formulation

1. Introduction

Besides, its most well-known description in terms of the curvature of the Levi-Civita
connection, general relativity admits teleparallel descriptions, in which a flat connection
is used to mediate the gravitational action in addition to the metric [1]. While curvature
is absent in these alternative approaches, the role of the gravitational field strength is
attributed to the torsion [2–4] or the nonmetricity [5–10] of the flat connection, or to
both [11,12]. Despite their different geometric structure, each of these different approaches
lead to the same field equations for the metric degrees of freedom, so that they also share the
same solutions for the metric, and they are therefore regarded as equivalent. However, by
considering modifications of these equivalent theories, in order to address open questions
in gravity and cosmology, the equivalence is lost, and one finds new classes of gravity
theories that cannot be obtained from modifying the curvature based description of general
relativity [13–22].

Different geometric formulations are common for the aforementioned teleparallel
gravity theories. Considering the metric and a flat affine connection as fundamental
field variables is one approach, which is commonly used in the general and symmetric
teleparallel theories, in which nonmetricity is non-vanishing. This approach, which is
set in the metric-affine geometry [23], is also known as the Palatini approach [24]. It has
the advantage that the metric, which is physically observable through the motion of test
matter, is used as a fundamental variable, and no additional gauge degrees of freedom are
introduced. In contrast, in particular for metric teleparallel gravity theories, a description in
terms of tetrads and a spin connection is more common [15,25–27], which has the advantage
that the derivation of the gravitational field equations from the action of a given theory
is more straightforward, but it comes at the cost of introducing additional gauge degrees
of freedom. In the case of metric teleparallel gravity, one finds that the spin connection is
a pure gauge degree of freedom, and so it is also possible to a priori fix a specific gauge,
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which is called the Weitzenböck gauge, in which the spin connection vanishes, and to work
with the tetrad only.

Different methods have been introduced in order to derive the gravitational field
equations in the metric-affine and covariant tetrad formulations of teleparallel gravity
theories. The necessity of these methods arises from the assumed flatness of the spin
connection. Without taking this condition into account, and naively varying the action of a
teleparallel gravity theory with respect to all connection components, hence treating them
as independent fields, does not lead to the correct field equations [26]. Two approaches are
the most common for addressing this problem. One possibility is to introduce Lagrange
multipliers into the action, which impose the condition of vanishing curvature; the same
method may be used to also impose the vanishing torsion or nonmetricity in the case of
metric or symmetric teleparallel theories. While this approach is most straightforward, as
it allows for treating all connection components as independent variables, with respect to
which the action must be varied, it also turns out to be cumbersome, since the Lagrange
multipliers constitute additional variables, which must be eliminated from the Euler–
Lagrange equations, in order to obtain the field equations for the physical fields. This can
be circumvented by a priori imposing the condition of vanishing curvature (and possibly
also vanishing torsion or nonmetricity) on the connection, and only allow such variations
that preserve this condition. This approach is essentially equivalent to integrating the
flat connection, i.e., to assume that it is locally expressed as the derivative of a linear
transformation, and to consider this linear transformation as the fundamental variable that
is to be varied.

The multitude of geometric formulations and variation prescriptions in teleparallel
gravity theories raises the question as to whether these approaches are equivalent, and
give rise to the same field equations. This question is non-trivial, since the conditions
of vanishing curvature and, depending on the choice of either the metric-affine or tetrad
formulation, also of vanishing torsion or vanishing nonmetricity are non-holonomic, i.e.,
they depend not only on the dynamical fields, but also on their derivatives, and so care
must be taken when the method of Lagrange multipliers is used [28,29]. However, in
the case at hand, the constraints turn out to be semi-holonomic, as they exhibit an affine
dependence on the field derivatives, and they turn out to be (locally) integrable. Hence,
one may expect the different methods for deriving the field equations to be equivalent.
This has been studied in the metric teleparallel case, where the equivalence between the
restricted variation and Lagrange multiplier methods for deriving the field equations in
the tetrad formulation has been discussed [26].

The aim of this article is to give an overview of the different formulations and variation
prescriptions that are used for teleparallel gravity theories, and to show their equivalence
for deriving the gravitational field equations. Here, we follow a didactic approach, provid-
ing detailed steps for all of the necessary calculations. We show for each class of theories
how the constraints of vanishing curvature, torsion and nonmetricity can be integrated, in
order to obtain a restricted variation prescription. We then compare the result with the field
equations that were obtained from the Lagrange multiplier method. For the latter we show
that the Lagrange multipliers can be fully eliminated from the field equations, so that no
unphysical dependence of the solution on the initial conditions for the Lagrange multipliers
arises, which is a potential issue in the presence of non-holonomic constraints. We perform
these calculations in both the metric-affine and tetrad formulations, and explicitly show
their equivalence. For the latter, we make use of the language of differential forms, which
turns out to be the most concise and compact.

The outline of this article is as follows. In Section 2, we give a brief overview of the
different formulations that are used for teleparallel geometries, and define the notation that
will be used throughout the article. The main part is given by Section 3, where we study
the different classes of teleparallel gravity theories in the aforementioned formulations, and
explicitly demonstrate the equivalence of these formulations for deriving the gravitational
field equations. We conclude with a summary and outlook in Section 4. Throughout the
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article, we use the convention that Latin indices a, b, . . . = 0, . . . , 3 denote Lorentz indices,
while Greek indices µ, ν, . . . = 0, . . . , 3 are spacetime indices, and the Minkowski metric is
ηab = diag(−1, 1, 1, 1).

2. Teleparallel Geometries

We start our discussion of variational principles in teleparallel gravity with a brief
review of the geometries and an exposition of the notational conventions that we use in
this article. Two different formulations are commonly used for teleparallel gravity theories.
We discuss the tetrad formulation, which makes use of a tetrad and flat spin connection
as fundamental fields, in Section 2.1. Another approach, which we outline in Section 2.2,
is the metric-affine or Palatini formulation, in which a metric and a flat affine connection
are used as fundamental field variables. Section 2.3 summarizes the relation between
these formulations.

2.1. Tetrad Formulation

We start with a brief overview of the tetrad formulation of teleparallel geometry.
The most concise way to describe this formulation makes use of the language of differ-
ential forms. In this language, the fundamental fields are given by the tetrad one-forms,
θa = θa

µdxµ and the spin connection one-forms ωa
b = ωa

bµdxµ. The tetrad is assumed to
be invertible, with the inverse being given by the vector fields ea = ea

µ∂µ satisfying

ea
¬ θb = ea

µθb
µ = δb

a . (1)

The spin connection is further restricted to be flat, i.e., it has identically vanishing curvature

Ra
b = dωa

b + ωa
c ∧ωc

b ≡ 0 . (2)

In the general teleparallel class of theories, no further restrictions are imposed on the
tetrad and spin connection. This is different in the metric teleparallel setting, where one, in
addition, assumes vanishing nonmetricity

Qab = Dηab = dηab −ωc
a ∧ ηcb −ωc

b ∧ ηac . (3)

Using dηab = 0, vanishing nonmetricity implies that the spin connection is antisym-
metric, ω(ab) = 0, where we used the Minkowski metric to lower a Lorentz index. In
contrast, in the symmetric teleparallel class of gravity theories, the nonmetricity may be
non-vanishing, but one assumes vanishing torsion

Ta = Dθa = dθa + ωa
b ∧ θb . (4)

Note that the curvature and torsion are two-forms, while the nonmetricity is a one-form.
It follows from the flatness condition (2) that the spin connection can (on a simply-

connected region) be locally written in the form

ωa
b = (Ω−1)a

c ∧ dΩc
b , (5)

where the zero-forms Ωa
b form an invertible matrix. One finds that the curvature indeed

vanishes, since

dωa
b = d

[
(Ω−1)a

c ∧ dΩc
b

]
= −(Ω−1)a

d ∧ dΩd
c ∧ (Ω−1)c

e ∧ dΩe
b = −ωa

c ∧ωc
b . (6)

Another possibility to express the spin connection is through the decomposition

ωa
b = ω̊a

b + Ma
b = ω̊a

b + Ka
b + La

b (7)

into the Levi–Civita spin connection



Universe 2021, 7, 114 4 of 25

ω̊ab = −1
2
(eb
¬ ec
¬ dθa + ec

¬ ea
¬ dθb − ea

¬ eb
¬ dθc) ∧ θc , (8)

the contortion

Kab =
1
2
(eb
¬ ec
¬ Ta + ec

¬ ea
¬ Tb − ea

¬ eb
¬ Tc) ∧ θc (9)

and the disformation

Lab =
1
2
(ea
¬ Qbc − eb

¬ Qac − ec
¬ Qab) ∧ θc , (10)

where the latter two are subsumed in the distortion Ma
b.

2.2. Metric-Affine Formulation

In the metric-affine or Palatini formulation of teleparallel gravity theories, for which
we will use the tensor component notation for convenience, the fundamental fields, are
a Lorentzian metric gµν and an affine connection with coefficients Γµ

νρ. As in the tetrad
formulation, the connection is assumed to be flat,

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

τρΓτ
νσ − Γµ

τσΓτ
νρ ≡ 0 . (11)

Also in this formulation, this is the only condition that is imposed in the general
teleparallel case. In the metric teleparallel case, one further imposes the condition of
vanishing nonmetricity

Qµνρ = ∇µgνρ = ∂µgνρ − Γσ
νµgσρ − Γσ

ρµgνσ , (12)

while, in symmetric teleparallel gravity, one demands that the torsion

Tµ
νρ = Γµ

ρν − Γµ
νρ (13)

vanishes.
Similarly to the tetrad formulation, also the flatness (11) can be integrated, in order to

locally write the connection coefficients in the form

Γµ
νρ = (Ω−1)µ

σ∂ρΩσ
ν (14)

through a tensor field Ωµ
ν. One easily checks that this satisfies

∂ρΓµ
νσ − ∂σΓµ

νρ = ∂ρ

[
(Ω−1)µ

τ∂σΩτ
ν

]
− ∂σ

[
(Ω−1)µ

τ∂ρΩτ
ν

]
= ∂ρ(Ω−1)µ

τ∂σΩτ
ν + (Ω−1)µ

τ∂ρ∂σΩτ
ν − ∂σ(Ω−1)µ

τ∂ρΩτ
ν − (Ω−1)µ

τ∂σ∂ρΩτ
ν

= −(Ω−1)µ
λ∂ρΩλ

ω(Ω−1)ω
τ∂σΩτ

ν + (Ω−1)µ
λ∂σΩλ

ω(Ω−1)ω
τ∂ρΩτ

ν

= −Γµ
τρΓτ

νσ + Γµ
τσΓτ

νρ ,

(15)

so that the resulting connection is indeed flat. Finally, one may also decompose the
coefficients of the affine connection in the form

Γρ
µν = Γ̊ρ

µν + Mρ
µν = Γ̊ρ

µν + Kρ
µν + Lρ

µν , (16)

where, in addition to the coefficients

Γ̊µ
νρ =

1
2

gµσ
(
∂νgσρ + ∂ρgνσ − ∂σgνρ

)
(17)



Universe 2021, 7, 114 5 of 25

of the Levi–Civita connection, we have the contortion tensor

Kµ
νρ =

1
2
(
Tν

µ
ρ + Tρ

µ
ν − Tµ

νρ

)
, (18)

as well as the disformation tensor

Lµ
νρ =

1
2
(
Qµ

νρ −Qν
µ

ρ −Qρ
µ

ν

)
, (19)

whose sum is the distortion Mµ
νρ.

Finally, it is helpful to note the first Bianchi identity, which reads

∇[σTρ
µν] + Tρ

τ[σTτ
µν] = 0 (20)

in the absence of curvature. From this relation, one obtains the contracted Bianchi identity

3∇[τTτ
ρσ] = −3Tτ

ω[τTω
ρσ] = Tτ

τωTω
ρσ + Tτ

ρωTω
στ − Tτ

σωTω
ρτ = Tτ

τωTω
ρσ , (21)

where the last two terms cancel each other due to symmetry. We will make use of this
geometric identity in later calculations.

2.3. Relation between Different Formulations

We finally summarize how the two different formulations of teleparallel geometries
that are shown above are related. For this purpose, we express the metric

gµν = ηabθa
µθb

ν (22)

and the coefficients
Γµ

νρ = ea
µ(∂ρθa

ν + ωa
bρθb

ν) (23)

of the affine connection in terms of the tetrad and the spin connection. While the metric
and affine connection are uniquely determined from the tetrad and spin connection, the
converse is not true: one also obtains the same metric and affine connection from the tetrad
and spin connection

θ′a = Λa
bθb , ω′ab = Λa

c(Λ−1)d
bωc

d + Λa
cd(Λ−1)c

b , (24)

which are related to the original field variables by a local Lorentz transformation Λa
b satisfying

ηabΛa
cΛb

d = ηcd . (25)

This Lorentz gauge invariance of the tetrad formulation must be taken into account
when the field equations are derived from the gravitational action, which will be done in
the following section.

3. Teleparallel Gravity Actions and Field Equations

Using the mathematical foundations laid out in the previous section, we now study
the variation of teleparallel gravity actions and the derivation of the corresponding field
equations in the different geometric formulations. In Section 3.1, we use the metric-
affine formulation, and we perform all of the calculations using the language of tensor
components. For the tetrad formulation that is discussed in Section 3.2, it turns out to be
more convenient to work with differential forms instead. We relate both formulations to
each other and show their equivalence in Section 3.3.

3.1. Metric-Affine Formulation

We start our derivation in the metric-affine formulation. Before we discuss specific
classes of teleparallel gravity theories, which are defined by the presence or absence
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of torsion and nonmetricity, we give a number of general remarks and definitions in
Section 3.1.1. These are used in the following sections. In particular, in Section 3.1.2, we
study general teleparallel gravity, continue with metric teleparallel gravity in Section 3.1.3,
and conclude with symmetric teleparallel gravity in Section 3.1.4.

3.1.1. General Action and Variation

We first consider the metric-affine formulation. Here, we split the teleparallel gravity
action in the general form

S = Sg[g, Γ] + Sm[g, ψ] + Sl[g, Γ, r, t, q] , (26)

into a gravitational part Sg, a matter part Sm and an optional Lagrange multiplier part Sl.
The gravitational part of the action depends on the metric and the affine connection, so
that its variation takes the general form

δSg = −
∫

M

(
1
2

Wµνδgµν + Yµ
νρδΓµ

νρ

)√
−gd4x , (27)

after eliminating any derivatives acting on the variations δgµν and δΓµ
νρ using integration

by parts. The tensorial quantities Wµν and Yµ
νρ will be the central ingredient to the

derivation of the gravitational field equations. The gravitational part of the action is
complemented by a matter part, for which we assume that it onlydepends on the metric
gµν and a set of matter fields ψI , which can be any tensor fields, but not on the independent
affine connection defined by Γµ

νρ. It follows that the variation of the matter action can be
written in the form

δSm =
∫

M

(
1
2

Θµνδgµν + ΨIδψI
)√
−gd4x , (28)

where Θµν is the familiar Hilbert energy-momentum tensor, while ΨI = 0 are the (tensorial)
matter field equations. Note that one could also relax this assumption and allow for a
direct coupling of matter to the teleparallel connection, by including a corresponding term
Hµ

νρδΓµ
νρ in the matter action [30,31]. We do not consider this term here, but it can be

easily incorporated into the calculations that are shown here by complementing Yµ
νρ in

the field equations with Hµ
νρ, in the same way as Θµν complements Wµν. The precise

steps of deriving the field equations depend on the choice of the underlying geometric
framework and the method of variation, and will be detailed below, where we also specify
the Lagrange multiplier term Sl and its variation.

As another restriction, we assume that each of the aforementioned parts of the action
are separately invariant under diffeomorphisms. Note that, under an infinitesimal diffeo-
morphism generated by a vector field Xµ, the metric and connection coefficients change
as [32]

δgµν = (LX g)µν = 2∇̊(µXν) , δΓµ
νρ = (LXΓ)µ

νρ = ∇ρ(∇νXµ − Tµ
νσXσ) (29)

in the absence of curvature. Together with the Lie derivative of the metric fields ψI , the
induced variation of the matter action is thus given by

0 = δXSm =
∫

M

(
Θµν∇̊µXν + ΨILXψI

)√−gd4x

=
∫

M

(
−∇̊µΘµνXν + ΨILXψI

)√−gd4x,
(30)

where we used the symmetry of the energy-momentum tensor to omit the symmetrization
brackets on the lower indices. On-shell, i.e., when the matter field equations ΨI = 0 are
satisfied, this implies the energy-momentum conservation

∇̊µΘµν = 0 . (31)
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For the gravitational part of the action, the corresponding variation reads

0 = δXSg = −
∫

M

[
Wµν∇̊µXν + Yµ

νρ∇ρ(∇νXµ − Tµ
νσXσ)

]√
−gd4x

=
∫

M

[
∇̊ν

(
Wµ

ν −∇ρYµ
νρ + Yµ

νρ Mσ
ρσ

)
+ (∇σYν

ρσ −Yν
ρσ Mτ

στ)Mν
ρµ

]√
−gd4x ,

(32)

after integration by parts and introducing distortion tensors in order to simplify the
resulting covariant derivatives. Thus, one obtains the equation

∇̊ν

(
Wµ

ν −∇ρYµ
νρ + Yµ

νρ Mσ
ρσ

)
+ (∇σYν

ρσ −Yν
ρσ Mτ

στ)Mν
ρµ = 0 , (33)

which is a geometric identity for any diffeomorphism invariant teleparallel gravity action,
i.e., it is satisfied for any metric and flat, affine connection, independently of whether these
satisfy the field equations of the theory or not.

3.1.2. General Teleparallel Gravity

We now come to the derivation of the field equations in the general teleparallel class
of gravity theories, where the affine connection is assumed to be flat by the condition (11),
from the action (26). Note that simply taking the variation (27) of the gravitational action
with respect to the connection coefficients would not result in the correct field equations,
since it does not take the flatness condition into account. This condition can be imposed
on the variation in different ways. One possibility is to restrict the variation, such that
the flatness (11) is preserved; another approach makes use of Lagrange multipliers in-
stead. In the following, we display both approaches, and show that they lead to the same
field equations.

We start with the approach of restricted variation. For this purpose, note that the
variation of the curvature tensor of the affine connection can be written in the simple form

δRµ
νρσ = ∇ρδΓµ

νσ −∇σδΓµ
νρ + Tτ

ρσδΓµ
ντ (34)

in terms of the covariant derivative of the variation of the connection coefficients, which
is possible since the latter form the components of a tensor field. In order to satisfy this
constraint, one considers a restricted variation of the form

δΓµ
νρ = ∇ρξµ

ν , (35)

which can be obtained from the integral form (14) by setting

δΩµ
ν = Ωµ

ρξρ
ν . (36)

Inserting this ansatz into the flatness condition (34), one finds that it indeed yields

δRµ
νρσ = ∇ρ∇σξµ

ν −∇σ∇ρξµ
ν + Tτ

ρσ∇τξµ
ν = Rµ

τρσξτ
ν − Rτ

νρσξµ
τ = 0 , (37)

using the well-known expression for the commutator of covariant derivatives in terms of
the curvature and torsion. It follows that the variation of the total action with respect to the
spin connection reads

δΓS = −
∫

M
Yµ

νρ∇ρξµ
ν

√
−gd4x

=
∫

M

(
∇̊ρYµ

νρ −Yτ
νρ Mτ

µρ + Yµ
τρ Mν

τρ

)
ξµ

ν

√
−gd4x

=
∫

M

(
∇ρYµ

νρ −Yµ
ντ Mρ

τρ

)
ξµ

ν

√
−gd4x ,

(38)



Universe 2021, 7, 114 8 of 25

using integration by parts with the Levi–Civita covariant derivative, and so one obtains
the connection field equation

∇ρYµ
νρ −Yµ

ντ Mρ
τρ = 0 , (39)

where the trace of the distortion tensor is given by

Mρ
τρ = Tρ

ρτ −
1
2

Qτρ
ρ . (40)

With the help of this relation, it is possible to rewrite the connection field equation by
introducing the tensor density

Ỹµ
νρ = Yµ

νρ
√
−g . (41)

Using the covariant derivative

∇µ

√
−g =

1
2

Qµν
ν
√
−g , (42)

one has ∇ρỸµ
νρ − Ỹµ

ντTρ
ρτ = 0 , (43)

since the nonmetricity cancels [11,24]. Further, one calculates the variation of the action
with respect to the metric, which reads

δgS =
1
2

∫
M
(Θµν −Wµν)δgµν

√
−gd4x , (44)

so that one finds the corresponding field equation

Wµν = Θµν . (45)

We remark that this field equation is symmetric in its two indices, so that it has
10 independent components, whereas the connection field equations have no particular
symmetry, and so they have 16 independent components, which results in a total of 26
equations.

Instead of a priori imposing that the curvature and, hence, its variation vanishes, one
may also implement this constraint on the connection by adding a Lagrange multiplier term

Sl =
∫

M
rµ

νρσRµ
νρσ

√
−gd4x (46)

to the action. Variation with respect to the Lagrange multiplier rµ
νρσ then yields the flatness

condition (11), while the variation with respect to the metric is unaltered, and so it yields the
same Equation (45) as before. In this approach, the connection field equation is obtained by
varying the action with respect to all of the components Γµ

νρ of the connection coefficients,
which yields

δΓS =
∫

M

[
rµ

νρσ
(
∇ρδΓµ

νσ −∇σδΓµ
νρ + Tτ

ρσδΓµ
ντ

)
−Yµ

νρδΓµ
νρ

]√
−gd4x

=
∫

M

(
2∇σrµ

ν[ρσ] − 2rµ
ν[ρσ]Mτ

στ − 2rµ
ν[στ]Mρ

στ −Yµ
νρ
)

δΓµ
νρ

√
−gd4x ,

(47)

where we have once again used integration by parts, as well as the relation

Tµ
νρ = Mµ

ρν −Mµ
νρ . (48)

The field equations therefore read

2∇σrµ
ν[ρσ] − 2rµ

ν[ρσ]Mτ
στ − 2rµ

ν[στ]Mρ
στ −Yµ

νρ = 0 . (49)
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In order to eliminate the Lagrange multiplier, one may consider the covariant di-
vergence of this equation. The first term then yields the commutator of two covariant
derivatives, and so it becomes

2∇ρ∇σrµ
ν[ρσ] = 2∇[ρ∇σ]rµ

νρσ = −Tτ
ρσ∇τrµ

νρσ = 2Mρ
στ∇ρrµ

ν[στ] . (50)

Therefore, one arrives at the equation

0 = ∇ρ

(
Yµ

νρ + 2rµ
ν[ρσ]Mτ

στ + 2rµ
ν[στ]Mρ

στ

)
− 2Mρ

στ∇ρrµ
ν[στ]

= ∇ρYµ
νρ +∇ρrµ

ν[ρσ](2Tτ
τσ −Qστ

τ) + rµ
ν[ρσ]∇ρ(2Tτ

τσ −Qστ
τ)− rµ

ν[ρσ]∇τTτ
ρσ

= ∇ρYµ
νρ +∇ρrµ

ν[ρσ](2Tτ
τσ −Qστ

τ)− rµ
ν[ρσ](3∇[τTτ

ρσ] +∇[ρQσ]τ
τ) .

(51)

Two substitutions can be applied to the last term. We replace the covariant derivative
of the torsion tensor by using the contracted Bianchi identity (21). Further, the antisymmet-
ric part of the covariant derivative of the nonmetricity reads

∇[ρQσ]τ
τ = ∇[ρ(gωτ∇σ]gωτ) = −

1
2

Tµ
ρσgωτ∇µgωτ = −1

2
Tµ

ρσQµτ
τ . (52)

With these substitutions, the field equation becomes

0 = ∇ρYµ
νρ +∇ρrµ

ν[ρσ](2Tτ
τσ −Qστ

τ)− rµ
ν[ρσ]Tω

ρσ

(
Tτ

τω −
1
2

Qωτ
τ

)
= ∇ρYµ

νρ − 2∇σrµ
ν[ρσ]Mτ

ρτ + 2rµ
ν[ρσ]Mω

ρσ Mτ
ωτ .

(53)

To finally eliminate the Lagrange multipliers, we contract the original Equation (49)
with the trace Mτ

ρτ of the distortion, in order to obtain

0 = 2∇σrµ
ν[ρσ]Mτ

ρτ − 2rµ
ν[ρσ]Mτ

στ Mω
ρω − 2rµ

ν[στ]Mρ
στ Mω

ρω −Mτ
ρτYµ

νρ

= 2∇σrµ
ν[ρσ]Mτ

ρτ − 2rµ
ν[ρσ]Mω

ρσ Mτ
ωτ −Mτ

ρτYµ
νρ ,

(54)

noting that the second term in the first line vanishes due to symmetry, and renaming
contracted indices. We now see that in the sum of the last two equations, the Lagrange
multiplier cancels, and we obtain the previously found connection field equations (39).
Hence, the Lagrange multiplier approach yields the same field equations as the restricted
variation, as expected.

3.1.3. Metric Teleparallel Gravity

In the metric teleparallel case, we assume, in addition to vanishing curvature, that the
nonmetricity (12) vanishes. In the restricted variation approach, it thus follows that also
its variation

δQµνρ = ∇µδgνρ − gσρδΓσ
νµ − gνσδΓσ

ρµ (55)

must vanish. Together with the form (35) of the flatness preserving variation of the affine
connection, this reduces to

δQµνρ = ∇µδgνρ − gσρ∇µξσ
ν − gνσ∇µξσ

ρ = ∇µ(δgνρ − 2ξ(νρ)) , (56)

where we used the metric compatibility of the connection to commute lowering an index
with the covariant derivative. Hence, we can set

δgµν = 2ξ(µν) , (57)
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and consider the variation with respect to ξµν as the only necessary variation in order to
derive the field equations. The total variation is then given by

δS =
∫

M

(
Θµνξ(µν) −Wµνξ(µν) −Yµνρ∇ρξµν

)√−gd4x

=
∫

M

(
Θ(µν) −W(µν) +∇ρYµνρ −YµνρKτ

ρτ

)
ξµν
√−gd4x,

(58)

where we have performed integration by parts, so that we find the field equations

Wµν −∇ρYµνρ + YµνρTτ
τρ = Θµν , (59)

using the trace of the contortion tensor (18). Here, we have omitted the symmetrization
brackets on Wµν and Θµν, since these are symmetric by definition. It is instructive to
decompose these field equations into their symmetric and antisymmetric components,

Wµν −∇ρY(µν)ρ + Y(µν)ρTτ
τρ = Θµν , ∇ρY[µν]ρ −Y[µν]ρTτ

τρ = 0 , (60)

and to note that the antisymmetric part only arises from the variation with respect to the
independent connection. Note that the symmetric and antisymmetric parts, together, have
16 independent components.

In order to obtain these field equations from the Lagrange multiplier method, one
leaves the affine connection Γµ

νρ general a priori, and introduces a new term

Sl =
∫

M
(rµ

νρσRµ
νρσ + qµ(νρ)Qµνρ)

√
−gd4x (61)

into the total action. Variation with respect to the Lagrange multipliers rµ
νρσ and qµ(νρ)

then imposes the conditions of vanishing curvature (11) and nonmetricity (12). By variation
with respect to the now fully general connection coefficients, one then obtains

δΓS =
∫

M

[
rµ

νρσ
(
∇ρδΓµ

νσ −∇σδΓµ
νρ + Tτ

ρσδΓµ
ντ

)
− 2qµ(νρ)gσ(νδΓσ

ρ)µ −Yµ
νρδΓµ

νρ

]√
−gd4x

=
∫

M

(
2∇σrµ

ν[ρσ] − 2rµ
ν[ρσ]Mτ

στ − 2rµ
ν[στ]Mρ

στ − 2gµσqρ(νσ) −Yµ
νρ
)

δΓµ
νρ

√
−gd4x .

(62)

Hence, we obtain the field equations

2∇σrµν[ρσ] − 2rµν[ρσ]Kτ
στ − 2rµν[στ]Kρ

στ − 2qρ(µν) −Yµνρ = 0 , (63)

where we have raised one index for convenience, and replaced the distortion by the
contortion, while using the fact that the connection is metric, as imposed by the Lagrange
multiplier field equations. We see that the part of the equations that is symmetric in the
indices µ and ν has the only role to fix the value of the Lagrange multipliers qρ(µν), but
it does not yield and restrictions on the dynamical fields. Hence, one may restrict the
following considerations to the antisymmetric part

2∇σr[µν][ρσ] − 2r[µν][ρσ]Kτ
στ − 2r[µν][στ]Kρ

στ −Y[µν]ρ = 0 . (64)

In order to also eliminate the Lagrange multipliers rµνρσ from the resulting equation,
one may proceed in a similar fashion as for the general teleparallel case discussed in the
preceding section. Thus, we take the divergence with respect to the teleparallel connection
∇ρ. Further, using the relation

2∇ρ∇σr[µν][ρσ] = 2∇[ρ∇σ]r
[µν]ρσ = −Tτ

ρσ∇τr[µν]ρσ , (65)
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for the commutator of covariant derivatives, which follows from the fact that the telepar-
allel connection has vanishing curvature, but non-vanishing torsion, and this leads to
the equation

∇ρ

(
Y[µν]ρ + 2Kρ

τσr[µν][τσ] + 2Kσ
τσr[µν][ρτ]

)
+ Tτ

ρσ∇τr[µν]ρσ = 0. (66)

We continue by expanding the contortion tensor in terms of its definition (18). After
applying the product rule on the derivative terms, the equation becomes

∇ρY[µν]ρ − 2Tτ
τρ∇σr[µν][ρσ] − 3∇[τTτ

ρσ]r
[µν][ρσ] = 0 . (67)

On the last term, one can use the contracted Bianchi identity (21), which leads to
the equation

∇ρY[µν]ρ − 2Tτ
τρ∇σr[µν][ρσ] − Tτ

τωTω
ρσr[µν][ρσ] = 0 . (68)

We can compare this result with the antisymmetric Equation (64). One finds that it
matches the covariant derivative of the Lagrange multiplier r[µν][ρσ], which is contracted
with the trace Tτ

τω of the torsion tensor. Using again the antisymmetric Equation (64),
contracting it with the torsion in the same way, and finally expanding the contortion
tensor (18), one obtains, after simplification, the equation

Tτ
τω

(
2∇σr[µν][ωσ] + Tω

ρσr[µν][ρσ] −Y[µν]ω
)
= 0 . (69)

It is now straightforward that, by taking the sum of the last two equations, the La-
grange multiplier cancels. The remaining equation reproduces the antisymmetric part (60)
of the field equations that we derived using the restricted variation approach. In order to
obtain also the symmetric part, we consider the variation of the total action with respect to
the metric, which yields

δgS =
∫

M

[
1
2
(Θµν −Wµν)δgµν + qρ(µν)∇ρδgµν

]√
−gd4x

=
1
2

∫
M

(
Θµν −Wµν − 2∇ρqρ(µν) − 2qσ(µν)Mρ

σρ

)
δgµν

√
−gd4x

(70)

after integration by parts. Therefore, one finds the field equations

Wµν + 2∇ρqρ(µν) + 2qσ(µν)Mρ
σρ = Θµν . (71)

The Lagrange multiplier qρ(µν) can be substituted while using Equation (63) that was
obtained by variation with respect to the connection, leaving the Lagrange multiplier
r(µν)[ρσ] instead. Repeating essentially the same calculation, as we have done for the
connection field equation, but for the symmetric part in the indices µ and ν instead of the
antisymmetric part, one finds that the Lagrange multipliers cancel, and the metric field
equation reduces to the symmetric part of the field equations (60). Hence, we have obtained
the same set of field equations as in the restricted variation approach.

3.1.4. Symmetric Teleparallel Gravity

We finally come to the case of symmetric teleparallel gravity theories, where, in addi-
tion to the curvature, the torsion (13) of the independent affine connection is also assumed
to vanish. Using the approach of restricted variation, the corresponding torsion variation

δTµ
νρ = δΓµ

ρν − δΓµ
νρ (72)
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must therefore also vanish, and so the variation of the connection must be symmetric in its
lower indices. Together with the form (35) of the variation of a flat affine connection, one
thus has the condition

∇[ρξµ
ν] = 0 . (73)

These equations possess the general solution

ξµ
ν = ∇νζµ (74)

in terms of a vector field ζµ. Using the formula for the commutator of covariant derivatives,
one immediately finds

2∇[ρξµ
ν] = 2∇[ρ∇ν]ζ

µ = Rµ
σρνζσ − Tσ

ρν∇σζµ = 0 (75)

in the absence of curvature and torsion. Thus, for the variation of the action with respect to
the curvature follows

δΓS = −
∫

M
Yµ

νρ∇ρ∇νζµ
√
−gd4x

=
∫

M
(∇ρYµ

νρ −Yµ
νρLτ

ρτ)∇νζµ
√
−gd4x

= −
∫

M

[
∇ν(∇ρYµ

νρ −Yµ
νρLτ

ρτ)− (∇ρYµ
νρ −Yµ

νρLτ
ρτ)Lω

νω

]
ζµ
√
−gd4x ,

(76)

so that one obtains the field equation

∇ν∇ρYµ
νρ + Q(ν∇ρ)Yµ

νρ +
1
2
∇(νQρ)Yµ

νρ +
1
4

QνQρYµ
νρ = 0 , (77)

using the shorthand notation Qµ = Qµν
ν. A more convenient form of this equation can be

found using the density (41), which simply reads [24]

∇ν∇ρỸµ
νρ = 0 . (78)

Finally, for the variation with respect to the metric, no restrictions are applied,
and so one obtains the same metric field Equation (45) as in the general teleparallel
case. Together with the four components of the connection equation, one thus has 14
independent components.

We also derive this equation using the method of Lagrange multipliers. Here, we add
the term

Sl =
∫

M
(rµ

νρσRµ
νρσ + tµ

νρTµ
νρ)
√
−gd4x (79)

to the action, which implements the conditions of vanishing curvature and torsion. The
variation of the total action with respect to the unrestricted affine connection then reads

δΓS =
∫

M

[
rµ

νρσ
(
∇ρδΓµ

νσ −∇σδΓµ
νρ + Tτ

ρσδΓµ
ντ

)
− 2tµ

νρδΓµ
νρ −Yµ

νρδΓµ
νρ

]√
−gd4x

=
∫

M

(
2∇σrµ

ν[ρσ] − 2rµ
ν[ρσ]Mτ

στ − 2rµ
ν[στ]Mρ

στ − 2tµ
[νρ] −Yµ

νρ
)

δΓµ
νρ

√
−gd4x ,

(80)

and thus yields the field equations

2∇σrµ
ν[ρσ] − 2rµ

ν[ρσ]Lτ
στ − 2tµ

[νρ] −Yµ
νρ = 0 , (81)

where we have replaced the distortion by the disformation, since the torsion vanishes, and
omitted a term that cancels due to the symmetry of the disformation in its lower indices.
We see that the part of the equations that is antisymmetric in the indices ν and ρ simply
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determines the values of the Lagrange multipliers tµ
[νρ], and can therefore be removed

from the equations by only retaining the symmetric part, which reads

Yµ
(νρ) = ∇σrµ

ν[ρσ] +∇σrµ
ρ[νσ] +

1
2

Qσ(rµ
ν[ρσ] + rµ

ρ[νσ]) , (82)

using the trace

Lµ
µν = −1

2
Qνµ

µ = −1
2

Qν (83)

One then proceeds similarly to the calculation that is shown in Section 3.1.2 in the
case of general teleparallel gravity. In order to eliminate the remaining Lagrange multiplier
rµ

ν[ρσ], one may attempt to calculate the divergence with respect to the covariant derivative
∇ρ, which yields

∇ρYµ
(νρ) = ∇ρ∇σrµ

ρ[νσ] +
1
2
∇ρQσrµ

ρ[νσ] +
1
2

Qσ∇ρ(rµ
ν[ρσ] + rµ

ρ[νσ]) , (84)

where we have omitted terms that cancel due to symmetry. One realizes that the last terms
are similar to contracting the original Equation (82) with the trace of the nonmetricity,
which yields

QρYµ
(νρ) = Qρ∇σrµ

ν[ρσ] + Qρ∇σrµ
ρ[νσ] +

1
2

QρQσrµ
ρ[νσ] , (85)

once again omitting a term that cancels due to symmetry. We see that, in the combination

∇ρYµ
(νρ) + 1

2 QρYµ
(νρ) = ∇ρ∇σrµ

ρ[νσ] + 1
2∇ρQσrµ

ρ[νσ] + Q(ρ∇σ)rµ
ρ[νσ] + 1

4 QρQσrµ
ρ[νσ] (86)

several terms cancel. To cancel the remaining terms, we once again take the divergence
to obtain

∇ν

(
∇ρYµ

(νρ) + 1
2 QρYµ

(νρ)
)
= 1

2 Qσ∇ν∇ρrµ
ρ[νσ] + 1

4∇νQρQσrµ
ρ[νσ] + 1

4 QρQσ∇νrµ
ρ[νσ] (87)

where we used

∇ρQσ∇νrµ
ρ[νσ] +∇νQρ∇σrµ

ρ[νσ] = (∇ρQσ −∇σQρ)∇νrµ
ρ[νσ] = 2∇[ρQσ]∇νrµ

ρ[νσ] = 0 , (88)

among other relations, to remove terms that vanish or cancel each other. We can compare
this with the result obtained by contracting once again with the trace of the nonmetricity
tensor, which reads

Qν

(
∇ρYµ

(νρ) + 1
2 QρYµ

(νρ)
)
= Qν∇ρ∇σrµ

ρ[νσ] + 1
2 Qν∇ρQσrµ

ρ[νσ] + 1
2 QνQρ∇σrµ

ρ[νσ] (89)

Taking into account the antisymmetrization in ν and σ on the right hand side, we see
that, in the combined equation

∇ν

(
∇ρYµ

(νρ) +
1
2

QρYµ
(νρ)

)
+

1
2

Qν

(
∇ρYµ

(νρ) +
1
2

QρYµ
(νρ)

)
= 0 (90)

the Lagrange multiplier terms cancel. Finally, using the product rule and shifting the
symmetrization brackets to the lower indices, we therefore re-obtain the connection field
Equation (77).
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We conclude this section by pointing out a peculiar property of the field equations in
the symmetric teleparallel class of gravity theories. From the diffeomorphism invariance
condition (33) follows

∇̊νWµ
ν = ∇̊ν

(
∇ρYµ

νρ −Yµ
νρLσ

ρσ

)
− (∇σYν

ρσ −Yν
ρσLτ

στ)Lν
ρµ

= ∇ν

(
∇ρYµ

νρ −Yµ
νρLσ

ρσ

)
−
(
∇ρYµ

σρ −Yµ
σρLτ

ρτ

)
Lν

σν

= ∇ν∇ρYµ
νρ + Q(ν∇ρ)Yµ

νρ +
1
2
∇(νQρ)Yµ

νρ +
1
4

QνQρYµ
νρ ,

(91)

where we used that Mµ
νρ = Lµ

νρ in the absence of torsion, the symmetry Lµ
[νρ] = 0 of

the disformation, its trace (83), and the commutativity (52) of the symmetric teleparallel
covariant derivative, ∇[µQν] = 0. We see that the right hand side is simply the connec-
tion Equation (77), whose components are therefore not independent of the metric field
equations. Hence, we find that, for any solution of the metric field Equation (45), which
satisfies ∇̊νWµ

ν = 0 as a consequence of the matter energy-momentum conservation (31),
the connection field Equation (77) is also solved [24].

3.2. Tetrad Formulation

Having derived the field equations for all three classes of teleparallel gravity theories
in the metric-affine formulation, we continue with the tetrad formulation. As in the metric-
affine case, we start with a number of general remarks in Section 3.2.1. These are then
applied to the different classes of teleparallel gravity theories. In particular, we consider
general teleparallel gravity in Section 3.2.2, metric teleparallel gravity in Section 3.2.3, and
symmetric teleparallel gravity in Section 3.2.4.

3.2.1. General Action and Variation

We begin our discussion of teleparallel gravity theories in the tetrad formulation by
providing the necessary definitions and notation. Similarly to the metric-affine formulation,
we split the action in the form

S = Sg[θ, ω] + Sm[θ, ψ] + Sl[θ, ω, r, t, q] , (92)

where the three parts Sg, Sm, Sl have the same meaning as in the split (26). Additionally,
here we assume that the matter action does not depend on the connection variable, which,
in this case, is the spin connection ωa

b, and it is the only part that involves the matter fields
ψI , which we now assume to be given by arbitrary differential forms. It follows that we
may write the general variation of the matter action as

δSm =
∫

M
(Σa ∧ δθa + ΨI ∧ δψI) , (93)

where we have introduced the energy-momentum three-forms Σa, as well as differential
forms ΨI , whose rank depends on the rank of the matter fields ψI , and which constitute
the matter field equations ΨI = 0. Similarly, we write the variation of the gravitational part
of the action in the form

δSg =
∫

M
(∆a ∧ δθa + Ξa

b ∧ δωa
b) , (94)

where ∆a and Ξa
b are three-forms.

In order to achieve an equivalence between the tetrad and metric-affine formulations
of teleparallel gravity theories, we must further demand that each component of the
action (92) is invariant under local Lorentz transformations (24) of the tetrad and spin
connection. For the matter action, this implies that the variation of the action with respect
to an infinitesimal local Lorentz transformation

δλθa = λa
bθb , δλωa

b = λa
cωc

b −ωa
cλc

b − dλa
b = −Dλa

b , (95)
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which follows from the finite case (24) with Λa
b = δa

b + λa
b and λ(ab) = 0, vanishes. Hence,

0 = δλSm =
∫

M
Σa ∧ (λa

bθb) =
∫

M
Σ[a ∧ θb]λab , (96)

since only the antisymmetric part λ[ab] contributes. This vanishes for arbitrary local Lorentz
transformations if and only if the energy-momentum three-forms are symmetric,

Σ[a ∧ θb] = 0 . (97)

For the gravitational part of the action, one analogously demands the Lorentz invariance

0 = δλSg =
∫

M

[
∆a ∧ (λa

bθb)− Ξa
b ∧Dλa

b

]
=
∫

M

(
∆[a ∧ θb] − ηc[aDΞc

b]
)

λab , (98)

where we have performed integration by parts in the second term. Thus, it follows that the
condition for local Lorentz invariance reads

∆[a ∧ θb] − ηc[aDΞc
b] = 0 . (99)

Note that, in general, one cannot commute raising one Lorentz index and taking the
exterior covariant derivative, since, in the presence on nonmetricity, one has Dηab 6= 0. Fi-
nally, we must also impose local Lorentz invariance of the Lagrange multiplier contribution
Sl. This will be done later, by explicitly specifying a Lorentz invariant action.

As in the metric-affine approach, here we also demand that each part of the action is
separately invariant under diffeomorphisms. Under an infinitesimal diffeomorphism that
is generated by a vector field Xµ, the tetrad and spin connection transform as one-forms
satisfying Cartan’s formula

δθa = LXθa = d(X ¬ θa)+ X ¬ dθa , δωa
b = LXωa

b = d(X ¬ ωa
b)+ X ¬ dωa

b . (100)

For the matter action, the diffeomorphism invariance implies that, on-shell, when the
matter field equations ΨI = 0 are satisfied, the energy-momentum three-form satisfies [16]

0 = δXSm =
∫

M
{Σa ∧ [d(X ¬ θa) + X ¬ dθa]}

=
∫

M
[dΣa + Σb ∧ (ea

¬ dθb)](X ¬ θa)

=
∫

M
[dΣa + Σb ∧ ω̊b

a](X ¬ θa)

=
∫

M
D̊Σa(X ¬ θa) ,

(101)

where we used the Lorentz invariance condition (97) to cancel the symmetric contribution
from the Levi-Civita connection (8). Because this is imposed for arbitrary vector fields Xµ,
one finds

D̊Σa = 0 , (102)

and so the energy-momentum three-form is conserved. For the gravitational part of the
action, one similarly finds

0 = δXSg =
∫

M
(∆a ∧ LXθa + Ξa

b ∧ LXωa
b)

=
∫

M
{∆a ∧ [d(X ¬ θa) + X ¬ dθa] + Ξa

b ∧ [d(X ¬ ωa
b) + X ¬ dωa

b]}

=
∫

M
[d∆a + ∆b ∧ (ea

¬ dθb) + dΞb
c ∧ (ea

¬ ωb
c) + Ξb

c ∧ (ea
¬ dωb

c)](X ¬ θa) ,

(103)
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and so one obtains the condition

d∆a + ∆b ∧ (ea
¬ dθb) + dΞb

c ∧ (ea
¬ ωb

c) + Ξb
c ∧ (ea

¬ dωb
c) = 0 . (104)

This can be simplified in a few steps. Using the flatness (2) of the teleparallel connec-
tion, one can replace dωb

c in the last term, and so the contribution from Ξa
b becomes

dΞb
c ∧ (ea

¬ ωb
c) + Ξb

c ∧ (ea
¬ dωb

c)
= dΞb

c ∧ (ea
¬ ωb

c)− Ξb
c ∧ [ea

¬ (ωb
d ∧ωd

c)] = DΞb
c ∧ (ea

¬ ωb
c) .

(105)

In the next step, it is helpful to apply the decomposition (7). Using the fact that the
Levi–Civita spin connection is antisymmetric, one then has

DΞb
c ∧ (ea

¬ ωb
c) = ηd[bDΞd

c] ∧ (ea
¬ ω̊bc) + DΞb

c ∧ (ea
¬ Mb

c) . (106)

We then turn our attention to the first term. Using the Lorentz invariance condition (99)
and the definition (8), this can be written as

ηd[bDΞd
c] ∧ (ea

¬ ω̊bc) = − 1
2 ∆[b ∧ θc] ∧ (ec

¬ ea
¬ dθb + ea

¬ eb
¬ dθc − eb

¬ ec
¬ dθa) , (107)

and one can omit the antisymmetrization on both sides, since the Levi–Civita connection
is already antisymmetric by definition. In combination with the second term from the
original Equation (104), one thus has

∆b ∧ (ea
¬ dθb) + ηd[bDΞd

c] ∧ (ea
¬ ω̊bc) = −∆b ∧ ω̊ab = −ω̊b

a ∧ ∆b , (108)

which is further combined with the first term to yield a covariant exterior derivative. Thus,
the condition (104) is finally rewritten as

D̊∆a + DΞb
c ∧ (ea

¬ Mb
c) = 0 . (109)

Note that this derivation holds independently of any gravitational field equations,
and so the resulting equation it must be a geometric identity, which is satisfied by any
teleparallel geometry, irrespective of whether it satisfies the field equations or not.

3.2.2. General Teleparallel Gravity

Again in analogy to the metric-affine formulation, we now derive the field equations
for the general teleparallel class of gravity theories, in which the connection must only
satisfy the flatness condition (2), but may have both non-vanishing torsion and nonmetricity.
Additionally, here we follow two approaches, by either restricting the variation of the spin
connection, such that it remains flat, or by imposing the flatness via a suitable Lagrange
multiplier. Starting with the former approach, note that the variation of the curvature is
given by

δRa
b = dδωa

b + δωa
c ∧ωc

b + ωa
c ∧ δωc

b = Dδωa
b . (110)

In order for this to vanish, one sets

δωa
b = Dξa

b (111)

with arbitrary zero-forms ξa
b, or equivalently

δΩa
b = Ωa

cξc
b (112)

using the integral form (5) of the spin connection. From this follows

δRa
b = D2ξa

b = Ra
c ∧ ξc

b − Rc
b ∧ ξa

c = 0 , (113)
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due to the vanishing curvature. The connection field equation then follows from the variation

0 = δωS =
∫

M
Ξa

b ∧Dξa
b =

∫
M

DΞa
b ∧ ξa

b , (114)

and so reads
DΞa

b = 0 . (115)

For the tetrad, the variation takes the form

0 = δθS =
∫

M
(∆a + Σa) ∧ δθa , (116)

and so the field equations simply read

∆a + Σa = 0 . (117)

It is worth taking a closer look at the antisymmetric part of the field equations. Because
of the symmetry (97) of the energy-momentum three-forms, these read

∆[a ∧ θb] = 0 , (118)

and because of the Lorentz invariance (99), are thus identical to the antisymmetric part of
the spin connection field equations. Thus, the number of independent field equations is 10
from the symmetric part of the tetrad field equations, 10 from the symmetric part of the
connection field equations, and six from the common antisymmetric part of both equations.

This approach can be contrasted with the Lagrange multiplier method. In this case,
the spin connection ωa

b and its variation δωa
b are not a priori restricted to obey the flatness

condition, but this is imposed by adding a Lagrange multiplier term

Sl =
∫

M
ra

b ∧ Ra
b (119)

to the action, with the Lagrange multiplier two-forms ra
b. Variation with respect to the

Lagrange multiplier then yields the flatness condition (2), while the variation with respect
to the tetrad is unaffected. However, for the spin connection, one now considers an arbitrary
variation, and so obtains

0 = δωS =
∫

M

(
Ξa

b ∧ δωa
b + ra

b ∧Dδωa
b

)
=
∫

M

(
Ξa

b −Dra
b
)
∧ δωa

b , (120)

so that one arrives at the field equations

Ξa
b −Dra

b = 0 , (121)

which now also involve the Lagrange multipliers. In order to eliminate these from the field
equations, one makes use of the flatness of the connection, which implies D2 = 0, by taking
the covariant derivative to obtain

0 = DΞa
b −D2ra

b = DΞa
b , (122)

and so one finds the same equations for the spin connection as with the restricted variation
approach, hence proving the equivalence of both approaches.

3.2.3. Metric Teleparallel Gravity

We continue with the metric teleparallel class of gravity theories, where, in addition to
the flatness, we also impose vanishing nonmetricity (3). Following the restricted variation
approach, we therefore introduce the additional restriction that the variation

δQab = −2δω(ab) = −2Dξ(ab) (123)
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of the nonmetricity vanishes, and so the variation parameters ξab must be antisymmetric
in their indices, ξ(ab) = 0. It follows that the corresponding variation (114) of the action
now reads

0 = δωS =
∫

M
Ξ[ab] ∧Dξab =

∫
M

DΞ[ab] ∧ ξab , (124)

so that the spin connection field equations become

DΞ[ab] = 0 . (125)

For the variation with respect to the tetrad, nothing changes when compared to
the general teleparallel case we discussed before; the variation (116) leads to the field
equations (117). In this case, we find that the antisymmetric part (118) of the latter is
identical to the spin connection field equations, and so the latter do not constitute an
independent field equation. Hence, there are only 10 + 6 independent components of the
field equations. The latter reflects the fact that the spin connection, which is constrained by
the conditions of vanishing curvature and non to be of the form (5) with Ωa

b given by a
local Lorentz transformation, can always be chosen to vanish by performing the inverse
Lorentz transformation on both the tetrad and the spin connection. Hence, it is not a
physical degree of freedom and, thus, cannot mediate the gravitational interaction; the
latter is attributed to the tetrad only. Instead, the role of the spin connection is merely to
implement the local Lorentz invariance of the metric teleparallel gravity, which otherwise
appears to be broken in a pure-tetrad formulation, due to the explicit Lorentz gauge choice
with vanishing spin connection in this approach, as discussed in [26].

Following the Lagrange multiplier approach, we introduce another set of Lagrange
multiplier three-forms qab = q(ab), thus enhancing the corresponding term (119) to read

Sl =
∫

M
(ra

b ∧ Ra
b + q(ab) ∧Qab) . (126)

Variation with respect to the Lagrange multipliers then imposes the conditions of
vanishing curvature and nonmetricity, while variation with respect to the spin connection
now reads

0 = δωS =
∫

M

(
Ξa

b ∧ δωa
b + ra

b ∧Dδωa
b − 2qab ∧ δω(ab)

)
=
∫

M

(
Ξab −Drab − 2q(ab)

)
∧ δωab ,

(127)

which yields the field equation

Ξab −Drab − 2q(ab) = 0 . (128)

The symmetric part of this equation simply determines the value of the Lagrange
multiplier q(ab), and can therefore be omitted as a field equation for the physical fields.
Thus, one is left with the antisymmetric part

Ξ[ab] −Dr[ab] = 0 . (129)

Finally, one proceeds as in the general teleparallel case and it uses the flatness D2 = 0
to also eliminate the Lagrange multiplier r[ab], so that the remaining field equation becomes
the same as in the restricted variation approach.

3.2.4. Symmetric Teleparallel Gravity

Finally, we discuss the class of symmetric teleparallel gravity theories, in which one
assumes vanishing curvature and torsion, but allows for non-vanishing nonmetricity. In the
restricted variation approach, one must therefore implement the condition that the variation

δTa = Dδθa + δωa
b ∧ θb = Dδθa + Dξa

b ∧ θb (130)
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of the torsion vanishes. This can be done by making the ansatz

ξa
b = eb

¬ (Dζa − δθa) , (131)

in terms of zero-forms ζa. By direct calculation, using the product rule for the exterior
covariant derivative as well as the vanishing curvature (2) and torsion (4), one easily shows
that, indeed

δTa = Dδθa + D[eb
¬ (Dζa − δθa)] ∧ θb

= Dδθa + D
{
[eb
¬ (Dζa − δθa)] ∧ θb

}
− [eb

¬ (Dζa − δθa)] ∧Dθb

= Dδθa + D(Dζa − δθa)− [eb
¬ (Dζa − δθa)] ∧Dθb

= Dδθa + Ra
b ∧ ζb −Dδθa − [eb

¬ (Dζa − δθa)] ∧ Tb

= 0 .

(132)

Because ζa and δθa are arbitrary, independent variations, we can consider them
separately, starting with the case δθa = 0. Then the variation of the action with respect to
ζa alone is given by

δζ S =
∫

M
Ξa

b ∧D(eb
¬ Dζa) = −

∫
M

D(eb
¬ DΞa

b) ∧ ζa , (133)

and so we find the corresponding field equation

D(eb
¬ DΞa

b) = 0 . (134)

We then continue with the tetrad variation, where we must take into account that this
incurs also a term resulting from the dependent variation of the spin connection. Hence,
the variation of the total action reads

0 = δθS =
∫

M

[
(∆a + Σa) ∧ δθa − Ξa

b ∧D(eb
¬ δθa)

]
=
∫

M(∆a + Σa + eb
¬ DΞa

b) ∧ δθa
(135)

which results in the field equations

∆a + Σa + eb
¬ DΞa

b = 0 . (136)

Note that the spin connection field Equation (134) is a four-form with a free Lorentz
index, and so it has four independent components, while the tetrad equations (136) are
three-forms with the same number of Lorentz indices, and so yield 16 equations. Taking
the Lorentz invariance into account, as a consequence of which six equations are not
independent, one arrives at 14 independent equations.

For comparison, we also derive the field equations using the Lagrange multiplier
method. Here, we introduce a term

Sl =
∫

M
(ra

b ∧ Ra
b + ta ∧ Ta) (137)

into the action, where the Lagrange multiplier two-forms ra
b and ta impose the conditions

of vanishing curvature and torsion. The variation of the total action with respect to an
arbitrary, unrestricted spin connection is then given by

0 = δωS =
∫

M

(
Ξa

b ∧ δωa
b + ra

b ∧Dδωa
b + ta ∧ δωa

b ∧ θb
)

=
∫

M

(
Ξa

b −Dra
b − ta ∧ θb

)
∧ δωa

b .
(138)
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Hence, we find the field equations

Ξa
b −Dra

b − ta ∧ θb = 0 , (139)

from which the Lagrange multipliers must be eliminated. We see that ra
b contributes to the

field equations in form of a total derivative, which is eliminated by applying, once again,
the exterior covariant derivative D, so that one obtains

DΞa
b −Dta ∧ θb = 0 , (140)

and we omitted a vanishing torsion term Dθb. In the next step, we take the interior product
with eb, using the relations

(eb
¬ Dta) ∧ θb = 3Dta , eb

¬ θb = δb
b = 4 (141)

for the three-form Dta. Hence, we obtain the equation

eb
¬ DΞa

b + Dta = 0 . (142)

Finally, applying the exterior covariant derivative D once more, the Lagrange multi-
plier term D2ta = 0 drops out and one is left with the previously found field Equation (134).
Proceeding analogously with the tetrad variation, we find that the variation of the full
action is given by

0 = δθS =
∫

M
(∆a ∧ δθa + Σa ∧ δθa + ta ∧Dδθa) =

∫
M
(∆a + Σa −Dta) ∧ δθa , (143)

and, hence, leads to the field equations

∆a + Σa −Dta . (144)

Here, we are left with the Lagrange multiplier term Dta, which must be eliminated.
However, note that it is not sufficient to take the exterior covariant derivative of this
equation, since it is not independent of the previously derived Equation (142), which also
involves Dta. Combining these equations, one finally arrives at the field Equation (136),
which we have also obtained from the restricted variation approach, thus showing the
equivalence of both approaches.

We finally return to the remark made at the end of Section 3.1.4, where we have shown
that the connection field equations can be derived from the metric field equations and the
diffeomorphism invariance. This can also be shown in the tetrad formulation. Taking the
Levi–Civita exterior covariant derivative of the tetrad field Equation (136), and applying
the diffeomorphism invariance (109), one finds

0 = D̊
(

∆a + Σa + eb
¬ DΞa

b
)
= D̊(eb

¬ DΞa
b) + (ea

¬ DΞb
c) ∧Mb

c = D(eb
¬ DΞa

b) , (145)

which is the spin connection field Equation (134). Hence, any solution of the tetrad
field equation also satisfies the spin connection field equation, as a consequence of the
diffeomorphism invariance of the action.

3.3. Relation between Metric-Affine and Tetrad Formulations

In the previous sections, we have derived the field equations for the different classes
of teleparallel gravity theories in both the metric-affine and tetrad formulation, using the
methods of Lagrange multipliers and constrained variation. We will now show that the
two geometric formulations we used are indeed equivalent. As with the previous sections,
we proceed in several steps. We start by discussing the relation between the variations
of the fundamental fields in the different geometric frameworks and its consequences for
the matter action in Section 3.3.1, before we apply these findings to the different classes of
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teleparallel gravity theories. These are general teleparallel gravity in Section 3.3.2, metric
teleparallel gravity in Section 3.3.3, and symmetric teleparallel gravity in Section 3.3.4.

3.3.1. General Action and Variation

One needs to relate the variations of the different geometries to each other in or-
der to relate the metric-affine and tetrad formulations. This relation follows from the
relations (22) and (23) defining the metric and affine connection in terms of the tetrad and
spin connection. Variation with respect to the latter yields the metric variation

δgµν = 2ηabθa
(µδθb

ν) (146)

and the affine connection

δΓµ
νρ = ea

µ
(

∂ρδθa
ν + ωa

bρδθb
ν − Γσ

νρδθa
σ + δωa

bρθb
ν

)
. (147)

In particular, it follows from the invariance of the metric and affine connection under
local Lorentz transformations (24) of the tetrad and spin connection that their variations
vanish if they are induced by an infinitesimal Lorentz transformation (95). It follows that,
starting from any teleparallel gravity action in the metric-affine formulation and expressing
it in terms of the tetrad formulation by using the relations (22) and (23), leads to an action
that satisfies the conditions (96) and (98) of local Lorentz invariance, which is the reason
for imposing these conditions in the preceding section. For the matter action, it follows
that the variation (28) of the matter action can be expressed as

δSm =
∫

M

(
ηabΘ(µν)θa

µδθb
ν + ΨIδψI

)
θ d4x , (148)

while the variation (27) of the gravitational action becomes

δSg = −
∫

M

[
ηabW(µν)θa

µδθb
ν + Yµ

νρea
µ
(

∂ρδθa
ν + ωa

bρδθb
ν − Γσ

νρδθa
σ + δωa

bρθb
ν

)]
θ d4x

= −
∫

M

[(
Wµ

ν −∇ρYµ
νρ + Yµ

νσ Mρ
σρ

)
ea

µδθa
ν + Yµ

νρea
µθb

νδωa
bρ

]
θ d4x ,

(149)

where we have performed integration by parts, replaced the metric determinant
√−g by

the tetrad determinant θ and omitted the symmetrization brackets on the already symmetric
term Wµν. In order to relate these expressions to the differential form language we used
in the preceding section, it is helpful to write the scalar product of two one-forms that are
induced by the metric in terms of the hodge star, which reads

β ∧ ?α = α ∧ ?β = 〈α, β〉 volθ = gµναµβν

√
−gd4x . (150)

Together with the hodge dual

? θa = ηabeb
¬ volθ =

1
6

ηabεbcdeθc ∧ θd ∧ θe =
1
6

θa
τ gτµεµνρσdxν ∧ dxρ ∧ dxσ (151)

of the tetrad one-forms, which form a basis of the cotangent space, we then arrive at
the expressions

Σa = −
1
6

ea
τΘτ

µεµνρσdxν ∧ dxρ ∧ dxσ , (152a)

∆a =
1
6

ea
τ
(
Wτ

µ −∇ωYτ
µω + Yτ

µω Mω
ψω

)
εµνρσdxν ∧ dxρ ∧ dxσ , (152b)

Ξa
b =

1
6

ea
τθb

ωYτ
ωµεµνρσdxν ∧ dxρ ∧ dxσ (152c)
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for the three-forms that we encountered in the tetrad formulation of teleparallel gravity
theories. It is now straightforward to check that they indeed satisfy the Lorentz invariance
conditions (97) and (99). By direct calculation, we find

Σ[a ∧ θb] = −1
6

θ[aτθb]
ωΘτµεµνρσdxν ∧ dxρ ∧ dxσ ∧ dxω

= −θ[aτθb]
ωΘτωvolθ

= −θa
τθb

ωΘ[τω]volθ

= 0

(153)

and

∆[a ∧ θb] − ηc[aDΞc
b] =

1
6

[
θ[aτθb]

ωgτλ
(
Wλ

µ −∇ψYλ
µψ + Yλ

µψ Mφ
ψφ

)
εµνρσ + ∂ω

(
ec

ληc[aθb]
ψYλ

ψµεµνρσ

)
− ed

λωd
cωηc[aθb]

ψYλ
ψµεµνρσ + ec

ληc[aωb]
dωθd

ψYλ
ψµεµνρσ

]
dxν ∧ dxρ ∧ dxσ ∧ dxω

=
1
6

[
θ[aτθb]

ωgτλ
(
Wλ

µ −∇ψYλ
µψ + Yλ

µψ Mφ
ψφ

)
+ ec

ληc[aθb]
ψ

(
∂ωYλ

ψµ − Γφ
λωYφ

ψµ + Γψ
φωYλ

φµ + Γ̊φ
φωYλ

ψµ
)]

εµνρσdxν ∧ dxρ ∧ dxσ ∧ dxω

= θ[aτθb]
µgτλ

(
Wλ

µ −∇ψYλ
µψ + Yλ

µψ Mφ
ψφ + ∂ψYλ

µψ − Γφ
λψYφ

µψ + Γµ
φψYλ

φψ + Γ̊φ
ψφYλ

µψ
)
volθ

= θa
τθb

µW [τµ]volθ

= 0 ,

(154)

using the symmetry of Wµν and Θµν. These relations will be instrumental when we show
the equivalence of the field equations that are derived in the two different geometric
frameworks.

Finally, we also translate the equations that we obtained from the assumption that
each part of the action is invariant under diffeomorphisms. For the matter part (102)
then follows

0 = D̊Σa = − 1
6
[
∂ω

(
ea

τΘτ
µεµνρσ

)
− ω̊a

bωeb
τΘτ

µεµνρσ

]
dxω ∧ dxν ∧ dxρ ∧ dxσ

= −ea
τ∇̊µΘτ

µvolθ ,
(155)

which is the energy-momentum conservation (31). Similarly, for the gravitational part
one has

0 = D̊∆a + DΞb
c ∧ (ea

¬ Mb
c)

= ea
τ
[
∇̊µ

(
Wτ

µ −∇ωYτ
µω + Yτ

µω Mω
ψω

)
+ Mν

µτ

(
∇ψYν

µψ −Yν
µψ Mφ

ψφ

)]
volθ ,

(156)

which reproduces its metric-affine equivalent (33).

3.3.2. General Teleparallel Gravity

We now show that the field equations for the class of general teleparallel gravity
theories derived in the metric-affine formulation in Section 3.1.2 and in the tetrad formula-
tion in Section 3.2.2 agree. Using the relations (152) between the variation terms, this task
becomes nearly trivial. In analogy to the calculation (154), one finds that the connection
field Equation (115) reduces to

0 = DΞa
b = ea

τθb
µ

(
∇ψYτ

µψ −Yτ
µψ Mφ

ψφ

)
volθ , (157)

and so it reproduces the connection field Equation (39). When this equation is satisfied, the
tetrad field Equation (117) simplifies and yields

0 = ∆a + Σa =
1
6

θa
τ(Wτµ −Θτµ)εµνρσdxν ∧ dxρ ∧ dxσ , (158)
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so that one obtains the metric field Equation (45).

3.3.3. Metric Teleparallel Gravity

We then proceed with the metric teleparallel class of theories. The tetrad field equations
take the same form (117) as in the general teleparallel case, as argued in Section 3.2.3. Using
only the relations (152), without imposing any further equations to hold, one thus obtains

0 = ∆a + Σa =
1
6

θa
τ

(
Wτµ −∇ωYτµω + YτµψTω

ωψ −Θτµ
)
εµνρσdxν ∧ dxρ ∧ dxσ , (159)

where we used that the distortion tensor reduces to the contortion tensor in the absence
of nonmetricity. We see that this result agrees with the combined metric and connection
field Equation (59). Further, in Section 3.2.3 we have shown that the connection field
Equation (125) are identical to the antisymmetric part of the tetrad field equations. Indeed,
we see that the corresponding equation

0 = DΞ[ab] = −θa
τθb

µ

(
∇ψY[τµ]ψ −Y[τµ]ψTφ

φψ

)
volθ (160)

reproduces the antisymmetric part in the split (60).

3.3.4. Symmetric Teleparallel Gravity

Finally, we come to the case of symmetric teleparallel gravity. First, it is helpful to
note that

0 = DΞa
b = ea

τθb
µ

(
∇ψYτ

µψ +
1
2

Yτ
µψQψφ

φ

)
volθ , (161)

and so

0 = eb
¬ DΞa

b =
1
6

ea
τ

(
∇ψYτ

µψ +
1
2

Yτ
µψQψφ

φ

)
εµνρσdxν ∧ dxρ ∧ dxσ . (162)

Hence, for the tetrad field Equation (136), we find

0 = ∆a + Σa + eb
¬ DΞa

b =
1
6

ea
τ(Wτ

µ −Θτ
µ)εµνρσdxν ∧ dxρ ∧ dxσ , (163)

which reproduces the metric field Equation (45). For the connection field Equation (134),
one has

0 = D(eb
¬ DΞa

b)

= −ea
τ
[
∇µ

(
∇ψYτ

µψ + 1
2 Yτ

µψQψφ
φ
)
+ 1

2 Qµν
ν
(
∇ψYτ

µψ + 1
2 Yτ

µψQψφ
φ
)]

volθ ,
(164)

which yields the connection field Equation (77).

4. Conclusions

We have derived the field equations for the three generic families of teleparallel gravity
theories, in which one of the dynamical field variables is a connection with vanishing
curvature, but non-vanishing torsion or nonmetricity, or both. For each family, we have
used two different geometric formulations, either in terms of a metric and affine connection,
or through a tetrad and spin connection. Further, we have used different methods to
implement the constraints on the connection variable in the derivation of the field equations,
either by using Lagrange multipliers in the action or by restricting the variation of the
field variables, such that they preserve the constraint. By comparing the results, we have
explicitly shown the equivalence of the different geometric formulations and variation
prescriptions for each of the three classes of teleparallel gravity theories.

For the tetrad formulation, we have chosen the Lorentz covariant formulation of
teleparallel gravity theories [27], in which the action is invariant under combined Lorentz
transformation of the tetrad and the spin connection. Further, we have assumed that
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the action functional is invariant under diffeomorphisms. From this assumption, we
have derived a number of geometric identities that are automatically satisfied by the
terms obtained by varying the gravitational part of the action. In particular, we have
shown that in the case of symmetric teleparallel gravity theories, these identities are fully
sufficient to obtain the connection field equations from the metric ones. This finding
supports the interpretation of the connection as a gauge degree of freedom that is related
to diffeomorphism invariance in these theories.

While we have focused on the derivation of the gravitational field equations by
variation of teleparallel gravity actions, and shown the equivalence of different approaches
for this task, one may wonder whether this equivalence also holds beyond the level of
the classical field equations. Possible applications include the Casimir effect [33,34] and
the entropy of black holes [33,35], where surface terms in the action are also relevant.
Further, teleparallel gravity theories may also be studied within more general geometric
frameworks, such as higher gauge theory [36] or Cartan geometry [37–41]. Another
possible extension is to study teleparallel gravity theories that are not defined by an action
functional, but in the premetric approach via a constitutive relation [42–46].

In this work, we have considered teleparallel gravity theories within the realm of clas-
sical field theory, and so one may wonder whether our results can also be extended to the
quantum level. The latter is not necessarily the case, since, although we have demonstrated
that various geometric formulations yield the same classical field equations and space of
solutions, they feature different field variables, from which quantum corrections may arise.
This question is of particular interest for teleparallel gravity theories, which reproduce
general relativity at the classical level [1,11,12]. While one may expect the same difficul-
ties to arise that obstruct a quantization of general relativity in its curvature formulation,
teleparallel gravity theories may offer a better approach to solve these difficulties through
a suitable quantum modified gravity theory.
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