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Abstract: We develop a many-particle quantum-hydrodynamical model of fermion matter interacting
with the external classical electromagnetic and gravitational/inertial and torsion fields. The con-
sistent hydrodynamical formulation is constructed for the many-particle quantum system of Dirac
fermions on the basis of the nonrelativistic Pauli-like equation obtained via the Foldy–Wouthuysen
transformation. With the help of the Madelung decomposition approach, the explicit relations be-
tween the microscopic and macroscopic fluid variables are derived. The closed system of equations
of quantum hydrodynamics encompasses the continuity equation, and the dynamical equations of
the momentum balance and the spin density evolution. The possible experimental manifestations of
the torsion in the dynamics of spin waves is discussed.
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1. Introduction

Spin (an intrinsic angular momentum) is an important physical property of matter,
associated with rotation, which is considered as the source of the gravitational field [1–10]
in the framework of the gauge gravity approach. The spin angular momentum, together
with the energy-momentum current, determines the geometrical structure of the spacetime
manifold and predicts nontrivial post-Riemannian deviations from Einstein’s general
relativity (GR) theory. The development of the gravitational theory with torsion has
a long history, going back to 1922 when Élie Cartan [1] introduced the corresponding
geometrical formalism. Since the 1960s, the interest in the theory of gravitation with
spin and torsion based on the Riemann–Cartan geometry had considerably grown, and
the consistent formalism was developed [2–7]. A further generalization of the gauge
gravitational theory takes into account the additional microstructural physical properties
of matter (encompassing the intrinsic shear and the dilation currents along with the spin)
as the sources of gravity, that results in the extension of the spacetime structure to the
metric-affine geometry [8]. An exhaustive overview of historic developments can be found
in [9,10].

The study of dynamics of the spinning matter on the Riemann–Cartan spacetime
represents a nontrivial problem which is of interest both theoretically and experimentally.
Quoting Einstein [11], “... the question whether this continuum has a Euclidean, Rieman-
nian, or any other structure is a question of physics proper which must be answered by
experience, and not a question of a convention to be chosen on grounds of mere expediency.”
It is now well established that the spacetime torsion can only be detected with the help of
the spin [12–14]. The early theoretical analysis of the possible experimental manifestations
of the torsion field at low energies can be found in [15].

By noticing that the spin and the energy-momentum tensors are the two Noether
currents for the Poincaré group, one can develop a natural formulation of the theory of
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gravity with torsion as a local gauge theory for the Poincaré spacetime symmetry [16–18].
This underlies the previous study of the quantum dynamics of a Dirac particle in the
Poincaré gauge gravitational field [19,20], where both the minimal and nonminimal cou-
pling of the Dirac fermion with the electromagnetic and the gauge gravitational fields was
comprehensively analysed for an arbitrary spacetime geometry with the curvature and
torsion. It was demonstrated that the Pauli-like equation for the spinning particles contains
new torsion-dependent terms which could give rise to the physical effects competing with
the electromagnetic ones.

The study of the spin-torsion coupling obviously fits into the general context of the
theoretical and experimental research of spin-dependent long-range forces [21–40]. Cer-
tain extensions of the Standard Model in the high energy particle physics predict the
existence of new particles, in particular, of the light pseudoscalar bosons (such as gold-
stones, axions [41–43], arions [44,45], etc.) that may give rise to the spin–spin interactions
of various kinds. An exchange via such light bosons between two fermions is qualitatively
described by a magnetic dipole-dipole type potential. Different methods were proposed
to detect these spin–spin interactions, including ferromagnetic detectors with a highly
sensitive two-channel UHF receiver [45], paramagnetic salt with a dc SQUID used in a
rotating copper mass [22,23], examining the hyperfine resonances for 9Be+ ions stored
in the Penning ion trap [24], and even treating the Earth as a polarized spin source [25].
In the recent experiment [26], the transversely polarized slow neutrons were used in an
attempt to observe a possible spin rotation of neutrons that traversed a meter of liquid 4He
under the action of the torsion field. Ultracold neutrons provide a convenient tool, with the
quantum gravitational states of ultracold neutrons being sensitive to the post-Riemannian
contributions [38]. On the theoretical side, the covariant multipolar technique was used for
the analysis of the equations of motion of test bodies with spin for a very general class of
gravitational theories with the minimal and nonminimal coupling [27,28]. An interesting
practical realization of theoretical findings has been recently proposed as a new Gravity
Probe Spin space mission using mm-scale ferromagnetic gyroscopes in orbit around the
Earth [29]. Typically, the predicted spin-torsion effects are expected to be quite small and
difficult to observe experimentally, however, one can set the experimental bounds on the
spin-torsion coupling constants and on the torsion field as well [30–40].

Here we for the first time develop the quantum hydrodynamics for the many-particle
system of massive Dirac fermion spin-1/2 particles interacting with external electromag-
netic, metric gravitational/inertial and torsion fields on the basis of the earlier analysis [19].

This article is organized as follows. In Section 2, we formulate a Pauli-type one-particle
equation for a Dirac fermion moving on the background of gravitational and electromag-
netic fields. In Section 3, we introduce the many-particle Pauli-like equation and construct
the many-particle quantum hydrodynamics for the non-relativistic particles in the external
classical fields. We derive the system of hydrodynamical equations and analyze the struc-
ture of force fields in these equations. In Section 4, we apply Madelung’s decomposition for
the spinor wave function to get the basic physical quantities in macroscopic form. Finally,
in Section 5 we discuss possible experimental manifestations of the results obtained in this
article, and Section 6 contains our conclusions.

Our basic conventions and notations are the same as in Reference [8]. In particular,
the world indices are labeled by Latin letters i, j, k, . . . = 0, 1, 2, 3 (for example, the local
spacetime coordinates xi and the holonomic coframe dxi), whereas we reserve Greek letters
for tetrad indices, α, β, . . . = 0, 1, 2, 3 (e.g., the anholonomic coframe ϑα = eα

i dxi). In order
to distinguish separate tetrad indices we put hats over them. Finally, spatial indices are
denoted by Latin letters from the beginning of the alphabet, a, b, c, . . . = 1, 2, 3. The metric of
the Minkowski spacetime reads gαβ = diag(c2,−1,−1,−1), and the totally antisymmetric
Levi-Civita tensor ηαβµν has the only nontrivial component η0̂1̂2̂3̂ = c, so that η0̂abc = cεabc
with the three-dimensional Levi-Civita tensor εabc. The spatial components of the tensor
objects are raised and lowered with the help of the Euclidean 3-dimensional metric δab.



Universe 2021, 7, 498 3 of 14

2. Pauli Equation for the System with Spin-Torsion Coupling
2.1. Poincaré Gauge Gravity Theory: The Basics

Recalling that the Standard Model in the fundamental particle physics is formulated as
a gauge theory for the internal unitary symmetry groups, one may say that, apart from the
gravitational interaction, the gauge-theoretic approach underlies the modern physics. There
exist, however, a natural extension of Einstein’s GR that is based on the Poincaré symmetry
group G = T4 o SO(1, 3), the semi-direct product of the four-parameter translation group
T4 and the six-parameter Lorentz group SO(1, 3), with the energy-momentum current and
the spin angular momentum current as the sources of the gravitational field [9,10,16–18].

The gauge fields act as mediators of physical interactions for the fermion matter source.
Specializing to the electromagnetic and gravitational interactions, in the framework of the
standard Yang–Mills–Sciama–Kibble approach [10], one then describes electromagnetism
by the U(1) gauge field potential Ai, and in similar way, one describes gravity by the
Poincaré gauge potentials eα

i and Γi
αβ. Geometrically, the 4 potentials eα

i of the translation
subgroup T4 are naturally interpreted as the coframe (or the tetrad) field of a physical
observer on the spacetime manifold M4, whereas the 6 potentials Γi

αβ = − Γi
βα for the

Lorentz subgroup SO(1, 3) are identified with the local connection that introduces the
parallel transport on the spacetime M4.

The multiplet of gauge potentials,{
Ai, eα

i , Γi
αβ
}

, (1)

determines the corresponding multiplet of the “Yang–Mills” gauge field strengths:

Fij = ∂i Aj − ∂j Ai, (2)

Tij
α = ∂ieα

j − ∂jeα
i + Γiβ

αeβ
j − Γjβ

αeβ
i , (3)

Rij
αβ = ∂iΓj

αβ − ∂jΓi
αβ + Γiγ

βΓj
αγ − Γjγ

βΓi
αγ. (4)

Thereby, we derive the Maxwell tensor Fij as the U(1) gauge field strength for the elec-
tromagnetic field, and the spacetime torsion tensor Tij

α and the curvature tensor Rij
αβ =

− Rij
βα as the two Poincaré (T4 “translational” and SO(1, 3) “rotational”, respectively)

gauge field strengths for the gravitational field.
The nontrivial “mixed” form of the torsion (3) is explained by the semi-direct structure

of the Poincaré symmetry group. The resulting Riemann–Cartan geometry on the spacetime
M4 is characterized by the nonvanishing torsion and curvature, whereas in the special case
Tij

α = 0 we recover the Riemannian geometry, and for Rij
αβ = 0 one finds the Weitzenböck

space of distant parallelism.
Here we do not discuss the construction of the complete dynamical scheme of the

Poincaré gauge theory that requires the introduction of the corresponding gravitational
field Lagrangian, and consider the electromagnetic and the gravitational fields as a non-
dynamical background. It is important to recall, though, that the variation of the La-
grange density of matter with respect to the gauge field potentials (1) gives rise to the
corresponding dynamical currents: the electric current, the canonical energy-momentum
tensor, and the spin angular momentum tensor, respectively. Further details can be found
in [9,10,16–18], and we conclude this section with the following technical points which are
needed for the subsequent discussion.

One can decompose the local Lorentz connection into the sum:

Γi
αβ = Γ̃i

αβ − Ki
αβ (5)
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of the Riemannian connection (denoted by the tilde), which is torsionless ∂ieα
j − ∂jeα

i +

Γ̃iβ
αeβ

j − Γ̃jβ
αeβ

i = 0 and metric-compatible, plus the post-Riemannian contortion tensor,

Kiαβ =
1
2
(
Tαβi − Tiαβ + Tiβα

)
. (6)

On the other hand, the torsion tensor Tµν
α = ei

µej
νTij

α can be decomposed into the
three irreducible parts:

Tµν
α =

1
3
(δα

µTν − δα
ν Tµ) +

1
3

ηµνλ
αŤλ+↗Tµν

α, (7)

where↗Tµν
α is the trace-free and axial trace-free tensor, the torsion trace vector Tµ = Tαµ

α,
and the axial trace vector:

Ťα = − 1
2

ηαµνλTµνλ, (8)

with the totally antisymmetric Levi-Civita tensor ηαµνλ.

2.2. Hamiltonian for the Dirac Fermion

The Pauli-like equation for a fermion particle, moving under the action of the torsion
field had been derived in [15] for the flat Minkowski spacetime, and in [19] for an arbitrary
curved space background. The relativistic dynamics of the Dirac particle with spin 1/2,
electric charge q, and mass m minimally coupled to the gravitational and electromagnetic
fields is described by the invariant action:

S =
∫

d4x
√
−gL, (9)

where the Lagrangian of the spinor wave function ψ and ψ = ψ†γ0̂ has the form:

L =
ih̄
2
(
ψγαDαψ− Dαψγαψ

)
−mc ψψ . (10)

The spinor covariant derivative describes the minimal coupling of the charged Dirac
particle with the external electromagnetic and gravitational gauge fields (1):

Dα = ei
α

(
∂i −

iq
h̄

Ai +
i
4

Γi
βγσβγ

)
. (11)

Here, c and h̄ are the speed of light and Planck’s constant, respectively, the 4-potential of the
electromagnetic field Ai = (−φ, A) encompasses the scalar φ and vector A potentials, and
σαβ = i

2
(
γαγβ − γβγα

)
are the Lorentz algebra generators, where the flat Dirac matrices

γα are defined in local Lorentz frames.
We denote the local spatial and time coordinates by xi = (t, xa), a, b, c = 1, 2, 3.

An orthonormal coframe (tetrad) is needed to attach spinor spaces at every point of the
space–time manifold. Then the dynamics of the Dirac particle can be investigated in an
arbitrary Poincaré gauge field (eα

i , Γi
αβ), where the components of tetrads in the Schwinger

gauge [19] read:

e 0̂
i = V δ 0

i , eâ
i = W â

b

(
δb

i − cKb δ 0
i

)
, a, b = 1, 2, 3. (12)

As was shown in reference [19], the Hermitian Hamiltonian of the fermion particle has the
form:

H = βmc2V + qΦ +
c
2

(
πb F b

aαa + αaF b
aπb

)
+

c
2
(K·π + π ·K) +

h̄c
4
(Ξ·Σ− Υγ5), (13)
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where the kinetic 3-momentum operator πa = −ih̄∂a − qAa = pa − qAa accounts of the
interaction with the electromagnetic field, and we denoted:

F b
a = VWb

â, Υ = Vεâb̂ĉΓâb̂ĉ, Ξa =
V
c

εâb̂ĉ(Γ0̂b̂ĉ + Γb̂ĉ0̂ + Γĉ0̂b̂

)
. (14)

As usual, αa = βγa (a, b, c, · · · = 1, 2, 3) and the spin matrices Σ1 = iγ2̂γ3̂, Σ2 = iγ3̂γ1̂, Σ3 =

iγ1̂γ2̂ and γ5 = iα1̂α2̂α3̂. Boldface notation is used for 3-vectors K = {Ka}, π = {πa}, α =
{αa}, Σ = {Σa}.

Taking into account the decomposition of the connection (5) into the Riemannian and
post-Riemannian parts, we find that the Pauli-like equation with the Hermitian Hamilto-
nian (13) encompasses the spin-torsion coupling:

Υ = Υ̃ + VcŤ0̂, Ξâ = Ξ̃â −VŤ â. (15)

The tilde denotes the Riemannian quantities. The post-Riemannian contributions come
from the components Ťα = (Ť0̂, Ť â) of the axial torsion vector (8). Accordingly, the spin-
torsion coupling terms read explicitly

− h̄cV
4

(
Σ·Ť + cγ5Ť0̂

)
. (16)

The above general formalism can be applied to the study of fermion’s dynamics in
arbitrary external electromagnetic and gravitational (including the post-Riemannian one)
fields.

Let us now specialize to the analysis of the possible physical effects of the spacetime
torsion and the inertial forces on the non-relativistic particle in the rotating reference frame
(such as the Earth), [46]:

V = 1, W â
b = δa

b , Ka = − (ω× r)a

c
, Γ0̂

âb̂ = − εabcωc

c
, Γ0̂

â0̂ = 0. (17)

Substituting this configuration into the Hamiltonian (13) we derive:

H = βmc2 + cα ·π −ω · (r×π)− h̄
2

ω · Σ− h̄c
4

(
Ť0̂cγ5 + Ť · Σ

)
. (18)

In order to reveal the physical contents of the Schrödinger equation, we need to go to the
Foldy–Wouthuysen (FW) representation. Applying the methods developed in [19], we find
the FW Hamiltonian:

H = βε + qφ−ω · (r×π)− h̄
2

ω · Σ− qh̄c2

4

{
1
ε

, B ·Π
}

+
h̄c3

8

{
π ·Π

ε
, Ť0̂
}
− h̄c

8

{
mc2

ε
, Ť · Σ

}
− h̄c3

8

[
Σ ·π

ε(ε + mc2)
π · Ť + Ť ·π Σ ·π

ε(ε + mc2)

]
− qh̄c

8

{
1

ε(ε + mc2)
, Σ · (E×π −π ×E)

}
. (19)

Here, Π = βΣ, { , } denotes anticommutators, ε =
√

m2c4 + c2π2, and E = E + B× (ω×
r) is the physical electric field as seen in the noninertial rotating reference frame.

Under ordinary conditions we assume |eh̄B| � m2c2, that is the magnetic field is much
smaller than the critical field |B| � Bc = m2c2/eh̄, and particle’s velocity is much smaller
than the speed of light, |π|/m� c. Then ε = mc2 + π2/2m, and in the semiclassical limit
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of (19) we finally obtain the Pauli-type equation ih̄ ∂ψ
∂t = Hnrψ with the non-relativistic

Hamiltonian:

Hnr =
π2

2m
+ qφ−ω · (r×π)− h̄

2
ω · σ − qh̄

2m
B · σ +

h̄c
8m

{
π · σ, Ť0̂

}
− h̄c

4
Ť · σ. (20)

This result is consistent with an alternative analysis based on the method of exact FW
transformations [20], see the relevant discussion in [47,48].

In the physically important situations, the torsion pseudovector is spacelike, and
|Ť | � cŤ0̂. Taking this into account, we now switch to the physically interesting case
Ť0̂ = 0. This is the true for the fermions (10) and (11) minimally coupled to gravity.

3. Quantum Hydrodynamics for Spin-Torsion Coupling

In this section, we derive the many-particle quantum hydrodynamics (MPQHD)
equations from the many-particle Pauli-like equation for the system of charged particles
with spin-1/2. The method of MPQHD allows to present the dynamics of a system of
interacting quantum particles in terms of the functions defined in the three-dimensional
physical space. This is important for the study of wave process, which take place in a
three-dimensional physical space [49,50]. In flat spacetime, the MPQHD formalism for
many-particles fermion systems was previously developed in [51–53], whereas the case
of the noninertial reference frames was considered in [54]. The methods of MPQHD can
be used for the analysis of a wide variety of systems of many interacting particles. In
particular, the finite temperature hydrodynamic model has been derived recently in [55]
for the spin-1 ultracold bosons. In Reference [56] the method was applied to the study of
the polarization dynamics in a system of quantum particles with nontrivial electric dipole
moments.

After applying the Foldy–Wouthuysen transformation for Dirac particle in combina-
tion with the method of many-particle quantum hydrodynamics, we arrive at the many-
particle Pauli-like equation:

ih̄
∂ψs

∂t
= Ĥψs, (21)

where the many-particle wave function of the system of N spinning particles:

ψs(R, t) = ψs(r1, r2, . . . , rN , t) (22)

is a spinor function in the 3N-dimensional configuration space (s is the spin index), and
the many-particle Hamiltonian reads:

Ĥ =
N

∑
p=1

(
π̂2

p

2mp
+

h̄
2

σ ·Ωp + φp

)
. (23)

Here, we introduced:

Ωp = −ω−
qp

mp
Bp −

c
2

Ť p, (24)

φp = qp φ(rp)−
mp

2
[ω× rp]

2, (25)

π̂p = − ih̄∇p − qp Ap −mp ω× rp , (26)

and mp and qp denote the mass and the charge of p-th particle, respectively. In particular,
qp stands for the charge of electrons qe = − e, or for the charge of ions qi = e. The
electromagnetic vector and scalar potentials Ap = A(rp) and φ = φ(rp) are taken at the
positions rp of the p-th particle, and the same applies to the external magnetic Bp = B(rp)
and the torsion Ť p = Ť(rp) fields. The last terms in (25) and (26) manifest the inertial
contributions in the rotating reference frame with the angular velocity ω.



Universe 2021, 7, 498 7 of 14

As compared to the standard case of a system in an external electromagnetic field, the
many-particle Hamiltonian (23) includes the torsion effects, encoded in the second term
∼ σ · Ť p, that has the same form as the Zeeman energy in the magnetic field. In addition,
this Hamiltonian includes Mashhoon’s spin-rotation contribution ∼ σ ·ω, see [57–59].

The state of the system is characterized by the concentration of particles in the neigh-
borhood of a point r in the physical space as:

n(r, t) =
∫

dR
N

∑
p=1

δ(r− rp)ψ
∗
s (R, t)ψs(R, t) = 〈ψ†n̂ψ〉. (27)

Here the integration measure reads dR = ∏p d3rp. The function n(r, t) is thus determined
as the quantum average of the concentration operator n̂ = ∑p δ(r− rp) in the coordinate
representation. The spin density vector of fermions is determined in a similar way:

S(r, t) =
∫

dR
N

∑
p=1

δ(r− rp)ψ
∗
s (R, t)(ŝp)ss′ψs′(R, t) = 〈ψ†sψ〉, (28)

as the quantum average of the spin operator s = ∑p δ(r− rp)ŝp, with ŝp = h̄
2 σp.

The continuity equation for the concentration of the particles n(r, t) can be derived
by taking the time derivative of the definition (27) and making use of the many-particle
Pauli-like Equation (21):

∂tn(r, t) +∇ · J(r, t) = 0, (29)

where the current density is defined as the microscopic average J(r, t) = 1
2 〈ψ†Jψ + c.c.〉 of

the operator

J = ∑
p

δ(r− rp)
π̂p

mp
. (30)

Here the generalized momentum operator is defined by (26).

3.1. Spin Density Evolution

In a similar way, the dynamical equation for the spin density can be obtained by
differentiating the definition (28) with respect to time and making use of the many-particle
Pauli-like Equation (21):

∂tSa(r, t) + ∂bΛba(r, t) = εabcΩbSc(r, t). (31)

Here the spin precession angular velocity is defined as:

Ω = −ω− q
m

B− c
2

Ť , (32)

cf. (24), whereas the spin current density tensor is introduced as a microscopic average
Λba(r, t) = 1

2 〈ψ†Lbaψ + c.c.〉 of the operator

Lba = ∑
p

δ(r− rp)
π̂a

p ŝb
p

mp
. (33)

3.2. Equation of Motion

Along the same lines, the derivation of the equation of motion of a hydrodynamic
system in an external electromagnetic and torsion fields is based on differentiating the
expression for the current density J(r, t) with respect to time and using the Pauli-like
Equation (21) with the Hamiltonian (23). The result reads:

m∂t Ja(r, t) + ∂bΠab(r, t) = qnEa(r, t) + qεabc Jb(r, t)Bc(r, t)− Sb(r, t)∂aΩb + Fa
iner, (34)
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where the momentum flux tensor appears in fluid dynamics as a quantum average
Πab(r, t) = 1

2 〈ψ†Pabψ + c.c.〉 of the operator

Pab = ∑
p

δ(r− rp)
π̂
(a
p π̂

b)
p

mp
. (35)

The equation of motion (34) describes the influence of the external electromagnetic and
torsion fields on the fermion matter in terms of the Lorentz and the Stern-Gerlach forces.

As a next step, one can move from the microscopic representation of the particle
current density and the spin current density to their corresponding macroscopic variables
by making use of an explicit representation of the spinor wave function. Such an explicit
representation of the wave function is known as the Madelung decomposition.

4. Madelung Decomposition

The microscopic many-particle wave function or the Madelung decomposition [60]
of the N-particle wave function can be represented in terms of the amplitude a(R, t), the
phase ξ(R, t) and the local spinor Z(R, r, t), defined in the local rest frame and normalized
so that Z†Z = 1:

ψ(R, t) = a(R, t) ϕ(R, r, t), ϕ(R, r.t) = e
i
h̄ ξ(R,t) Z(R, r, t). (36)

Applying the decomposition (36) to the p-th particle, we can introduce a microscopic veloc-
ity and a microscopic spin as vp := 1

mp
ϕ† π̂p ϕ and sp := ϕ† ŝp ϕ = h̄

2 ϕ† σp ϕ, respectively.
Explicitly, we then find:

vp(R, r, t) =
1

mp

(
∇p ξ − qAp − ih̄Z†∇p Z −mp ω× rp

)
, (37)

sp(R, r, t) =
h̄
2
Z†σpZ . (38)

The velocity field of the p-th particle can be decomposed vp(R, r, t) = v(r, t) + ηp(R, r, t)
into a sum of the macroscopic average v(r, t) and the thermal fluctuations part ηp(R, r, t)
of the velocity. In a similar way, the spin of the p-th particle can be represented as the
sum sp(R, r, t) = s(r, t) + τp(R, r, t) of the macroscopic average s(r, t) and the thermal
fluctuations part τp(R, r, t) of the spin. By definition, the averages of the fluctuations
vanish, 〈a2ηp〉 = 0 and 〈a2τp〉 = 0. We assume that the particle system is closed and not
placed in a thermostat. Recalling that the temperature is the average kinetic energy of the
chaotic motion of the particles of the system, we consider deviations of the velocity and
spin of quantum particles from the local average values, which correspond to the ordered
motion of the particles.

Combining Equations (27), (30) and (28) with (36)–(38), we can derive the macroscopic
concentration, the macroscopic current density and the macroscopic spin density from the
corresponding microscopic variables:

n(r, t) =
∫

dR
N

∑
p=1

δ(r− rp) a2(R, t), (39)

J(r, t) =
∫

dR
N

∑
p=1

δ(r− rp) a2(R, t) vp(R, r, t) = n(r, t) v(r, t), (40)

S(r, t) =
∫

dR
N

∑
p=1

δ(r− rp) a2(R, t) sp(R, r, t) = n(r, t) s(r, t). (41)



Universe 2021, 7, 498 9 of 14

After the Madelung decomposition procedure for the basic physical variables in the
microscopic representation, the spin current density (33) and the momentum flux (35) can
be recast in terms of the fluid variables into:

Λba(r, t) =
∫

dR
N

∑
p=1

δ(r− rp)

(
a2sa

pvb
p −

a2

mp
εacdsc

p∂b
psd

p

)
, (42)

Πab(r, t) =
∫

dR
N

∑
p=1

δ(r− rp)

(
h̄2

2mp
(∂a

pa∂b
pa− a∂a

p∂b
pa)

+mpa2va
pvb

p +
a2

mp
∂a

psc
p∂b

psc
p

)
, (43)

respectively. We are now ready to write down the complete set of dynamical equations for
the quantum system of spinning particles explicitly in terms of the fluid variables. This set
encompasses the continuity equation

∂tn +∇ · (n v) = 0, (44)

and the momentum balance equation

(∂t + vb∂b) va =
q
m

Ea +
q
m
(v× B)a − 1

n
∂b pab +

h̄2

2m2 ∂a
(

∆
√

n√
n

)
+

1
2m2 ∂a(∂bs · ∂bs)− 1

m
s · ∂aΩ̂ + f a

iner −
1
m

Qa
therm, (45)

whereas the spin evolution Equation (31) reads:

(∂t + vb∂b) s = Ω̂× s−Θtherm, (46)

where the spin precession angular velocity is modified, cf. (32),

Ω̂ = −ω− q
m

B− c
2

Ť − 1
mn

∂b(n∂bs). (47)

This modification arises from the interaction of spin with the surrounding spin-texture of
the fluid, and one can formally interpret this in terms of an effective magnetic field defined
as a sum of an external magnetic field and the emergent field:

B̂ = B +
1

qn
∂b(n∂bs). (48)

In fact, one can also view the first term on the right-hand side of (47), which is due to
Mashhoon’s spin-rotation coupling term and describes the Barnett effect, and the third
term on the right-hand side of (47), representing the spin-torsion coupling, as the two
additional contributions to the “effective” magnetic field

Bω =
m
q

ω, BT =
mc
2q

Ť . (49)

The dynamical Equation (46) describes the precession of spin under the action of the
torque produced by the external magnetic field and the emergent fields, leading to the
Zeeman type effect. The additional torque in (46) arises from thermal-spin interactions:

Θtherm = ∂b

∫
dR

N

∑
p=1

δ(r− rp)

(
a2ηb

psp −
a2

mp
sp × ∂b

pτp

)
, (50)
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that is also responsible for the last force term in the momentum balance Equation (45)

Qa
therm =

1
n

∂b

∫
dR

N

∑
p=1

δ(r− rp)
a2

mp

(
∂b

pτp · ∂a
psp + ∂b

psp · ∂a
pτp − ∂a

pτp · ∂b
pτp

)
− ∂a

{
1
n

∂b

[
n ∂b

( 1
n

∫
dR

N

∑
p=1

δ(r− rp)
a2

2mp
τp · τp

)]}
. (51)

Analysing the structure of the equation of motion (45), we identify the first two terms
on the right hand side with the Lorenz force determined by the external electric and
magnetic fields E and B, while the third term is the divergence of the kinetic pressure
tensor

pab(r, t) =
∫

dR
N

∑
p=1

δ(r− rp) a2 mp ηa
p ηb

p. (52)

The fifth term on the right hand side of the Equation (45) represents the effect of spin–spin
interactions inside the fluid, the interaction of the spin with the spin background texture.
The sixth term describes the Stern–Gerlach force that characterizes the influence of the non-
uniform effective magnetic and the torsion field. In the non-inertial frame, an additional
contribution encompasses the Coriolis force, the centrifugal force and Euler force field:

finer = − 2 ω× v−ω× (ω×R)− ∂ω

∂t
×R, (53)

where the vector of center of mass is defined as:

R(r, t) =
1
n

∫
dR

N

∑
p=1

δ(r− rp)ψ
∗
s (R, t)rpψs(R, t). (54)

Our derivations are consistent with the earlier analysis [54].

5. Experimental Manifestations of Spin-Torsion Coupling

Experimental search for the nontrivial torsion effects is naturally embedded into the
broader framework of the studies of the spin-dependent long-range forces [21–40]. By
making use of the corresponding experimental techniques, it is possible to find strong
limits on the values of the gauge gravity spin-torsion coupling constants and on the torsion
field itself. A good example of an efficient approach in this respect gives an observation
of the nuclear spin precession in gaseous spin polarized 3He or 129Xe samples with the
help of a highly sensitive low-field magnetometer [61–63] detecting a sidereal variation
of the relative spin precession frequency in a new type of 3He/129Xe clock comparison
test. In a similar experiment [64], the ratio of nuclear spin-precession frequencies of 199Hg
and 201Hg atoms was measured in the magnetic field and the Earth’s gravitational field.
Based on the corresponding experimental data from [64], the analysis of dynamics of the
minimally coupled Dirac fermion [19] in external electromagnetic and gravitational fields
revealed the strong bounds on the possible background space-time torsion:

c
2
|Ť | · | cos θ| < 6.45× 10−6s−1, (55)

where θ is the angle between the magnetic B and torsion Ť fields. On the other hand, by
making use of the experimental data from [61], one finds the restriction:

c
2
|Ť | · | cos θ| < 3.59× 10−7s−1. (56)

These results are consistent with the alternative empirical estimates for the torsion
limits [30–40]. As another powerful tool one can mention the use of the quantum interfer-
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ometry to probe the spacetime structure, including the search for possible post-Riemannian
deviations, focusing on the detection of the phase shift and polarization rotation effects for
the neutron and atom beams [65–69].

As an application of the quantum hydrodynamics formalism, let us investigate a
simple model of a continuous medium of particles with spin and consider the dynamics
of the spin waves in such a particle system. Neglecting the spin-thermal coupling in the
spin dynamical Equation (46) and assuming the small perturbations of the spin s = s0 + δs
around an undisturbed value |s0| = h̄/2, we find, in the first order,

∂tδs = Ω̂(0) × δs + Ω̂(1) × s0. (57)

Here, the equilibrium values of the external background fields are encoded in Ω̂(0) =
−ω0 − q

m B0 − c
2 Ť , where B0, ω0 and Ť are the external uniform magnetic field, the Earth’s

angular velocity and the background torsion, respectively, and the small disturbance reads:

Ω̂(1) = − ∆δs
m

, (58)

Assuming that the perturbations of the spin vary as δs ∼ exp(−iωst + ik · r), we then
derive the dispersion law relating the wave frequency ωs and the wave vector k for the
spin waves excited in the external magnetic and torsion fields:

ω2
s = Ω2

c +
c2

4
Ť2 + ω2

0 + 2Ωcω0 cos θ1 + c ΩcŤ cos θ2 + c ω0Ť cos(θ2 − θ1). (59)

Here, Ωc =
qB0
m + h̄k2

2m , whereas θ1 and θ2 are, respectively, the angle between the external
magnetic field and Earth’s angular velocity, and the angle between B0 and the background
torsion Ť . Equation (59) is a generalization for the dispersion relation of spin waves found
in Reference [70] and it takes into account the contribution of the spin part of the quantum
Bohm potential as an additional spin torque due to the self-action inside the system of
particles, which leads to the propagation of spin waves. The square of the frequency ω2

s
encompasses a contribution proportional to the square of the modulus of the wave vector
∼ k2. As we can see from the dispersion relation (59) the torsion effect is maximal when
the pseudovector field Ť is aligned along the external magnetic field.

6. Discussion and Conclusions

In this paper, we for the first time developed the quantum hydrodynamics for the
many-particle system of massive Dirac fermion spin-1/2 particles interacting with external
electromagnetic, metric gravitational/inertial and torsion fields. This essentially extends
the single-particle quantum hydrodynamical approach which was developed for the flat
spacetime, see [71–76] and the references therein. Taking as the basis of the earlier general
formalism [19], the consistent hydrodynamical formulation was constructed for the many-
particle quantum system of fermions, and the explicit relations between the microscopic
and macroscopic fluid variables were derived with help of the Madelung decomposition
approach. In the present study, we have focused on the physically important situation with
Ť0̂ = 0, a more exotic case with Ť0̂ 6= 0 (which may be realized in cosmology, for example,
see the earlier work [15], or in the more general models) will be considered elsewhere.

The resulting system of hydrodynamical equations consists of the continuity
Equation (44), the momentum balance Equation (45) and the spin dynamics Equation (46).
The momentum balance equation includes the contributions in the form of the quantum
Bohm potential and a new spin part of the Bohm quantum potential which are propor-
tional to the square of Planck’s constant. In addition, the dynamical equations take into
account the thermal effects resulting from the fluctuations of the spin and velocity near
their average values. As an application of the formalism, we evaluated the possible effects
of the spacetime torsion and the spin part of quantum Bohm potential on the dispersion
characteristics of the spin waves (59) excited in the many-particle fermion system. The
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developed hydrodynamical model can be used in the future studies of various types of
transport phenomena in spinning matter with an account of external electromagnetic and
gravitational fields.
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9. Blagojević, M. Gravitation and Gauge Symmetries; IOP: Bristol, UK, 2002.
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