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Abstract: We review the solution of QCD in two spacetime dimensions. Following the analysis of
Baluni, for a single flavor, the model can be analyzed using Abelian bosonization. The theory can be
analyzed in strong coupling, when the quarks are much lighter than the gauge coupling. In this limit,
the theory is given by a Luttinger liquid.
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1. Introduction

It is a pleasure for us to be able to contribute to this volume in memory of Dr. Hector
de Vega. Hector was both a great physicist and a true gentleman. The subject of this
pedagogical article is not directly about keV warm dark matter, to which this volume is
devoted, but to other subjects on which Hector worked before delving into cosmology,
in particular his work on integrable models in 1 + 1 dimensions.

In particular, R.D.P. would like to express that it is a great honor to contribute to this
volume, as I had both the joy of working with Hector [1,2], and of considering him a
good friend.

The subject of this paper is the behavior of quantum chromodynamics (QCD) in 1 + 1
dimensions. This problem has been analyzed several times over the years, and recently [3].
The purpose of this article is to bring together the results, which tend to span a rather wide
range of methods. What is interesting is that if one concentrates just on the low energy
excitations for cold, dense QCD in 1 + 1 dimensions, then the theory reduces to that for a
single, massless boson, which propagates with a speed less than that of light. This is what
is known as a Luttinger liquid.

We first sketch how to derive these results, and then conclude with some speculations
as to their possible relevance for cold, dense QCD in 3 + 1 dimensions.

2. QCD for a Single Flavor

We begin with the usual Lagrangian for QCD, where the quarks lie in the fundamental
representation of a SU(Nc) color group,

L =
∫

d2x
[
− 1

4
trGµνGµν + q̄ f ,σγµDµ,σσ′q f ,σ′ + mq̄ f ,σq f ,σ

]
. (1)

Dµ = ∂µ − igAµ ; Gµν = ∂µ Aν − ∂ν Aµ − ig[Aµ, Aν] . (2)

The gauge coupling g has dimensions of mass in two spacetime dimensions; the quark
fields q̄, q carry a, b . . . = 1, ...N f flavor and α, β . . . = 1, ...Nc color indices.

In two dimensions, gauge fields are not propagating degrees of freedom, which allows
one to simplify the theory. It helps to choose the gauge A0 = 0. This still leaves Ax, which,
for simplicity, we denote just as the color matrix A. Baluni [4] noted that one can further
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choose a “hybrid” gauge, which vastly simplifies the analysis. First, to assume that the
gauge potential, A, is an off-diagonal matrix, and that the electric field, E, is diagonal:

Aαβ = 0 , α = β ; Eαβ = 0 , α 6= β ; Eαα = −1
2

(
eα − 1

Nc

Nc

∑
β=1

eβ

)
. (3)

This gauge is useful in imposing Gauss’ law, DxE = J0, where J0 is the quark current.
Besides the contribution of the quark current, this also involves the covariant derivative,
Dx, and so, the commutator of the gauge potential with the electric field. In the hybrid
gauge, however, the diagonal elements of the electric field are directly proportional to
the diagonal elements of the quark current, while the off-diagonal elements of the gauge
potential are proportional to the off-diagonal elements of the quark current:

∂xeα = jαα
0 ; ig(eα − eβ)Aαβ = jαβ

0 α 6= β ; jαβ
0 = q̄αγ0qβ . (4)

There is no sum over repeated indices: jαα
0 is just a single element of the diagonal

quark current, with color α. For the color diagonal current, Aαβ does not enter, because it is
taken to be purely off-diagonal. Similarly, for the elements of the color current which are
off-diagonal in color, the spatial derivative of the electric field does not enter, because it is
assumed to be purely diagonal.

In two dimensions, there is no magnetic field, so the action for the gauge field just
involves the square of the electric field. Thus the above doesn’t look very useful, since j0
is proportional to the spatial derivative of the electric field. This is where bosonization
is useful, as the current j0 ∼ ∂xφ, where φ is a boson field. By Gauss’ law, in the hybrid
gauge, the electric field eα is naturally proportional to the scalar field of bosonization.

The result for the Hamiltonian after bosonization is

H = H0 +Hint ,

H0 =
1
2

Nc

∑
α=1

π2
α + 2mΛ

(
1− cos(2

√
πeα)

)
,

Hint =
g2

8πNc

Nc

∑
α,β=1

(
eα − eβ

)2
+ Λ2

Nc

∑
α,β=1

sin(2
√

π(eα − eβ))

(eα − eβ)
, (5)

where πα is the momentum conjugate to the electric field eα. We are sloppy about nor-
malization, and in particular, about normal ordering. As is typical with bosonization,
most terms contain ultraviolet divergences (from tadpole-like diagrams), and are only well
defined if normal-ordered. The terms inH0 are standard for bosonization. The term inHint,
which is proportional to (eα − eβ)2, is related to the usual electric field term. The second
term in Hint arises from the current–current interaction which the gauge field induces.
The mass scale Λ arises from normal ordering, and previous analysis took it as proportional
to the gauge coupling, Λ ∼ g. While this at least ensures that the perturbative expansion is
well defined, it is not evident that this is consistent. In particular, it is not obvious how to
normal order expressions such as sin(φ)/φ.

This form of the theory has been analyzed by several authors [5–12]. We assume a
single flavor, because with two or more flavors,Hint involves the conjugate momenta, πα,
as well as the coordinates eα [5–8]. This significantly complicates the analysis. For several
flavors, it is more useful to adopt non-Abelian bosonization [3,7,8,10–13] (for a recent
review of non-Abelian bosonization, see Ref. [14]). Even so, the case of a single flavor is
still most illustrative.

Returning to the present approach, even with a single flavor, there are Nc − 1 coupled
sine-Gordon models, with a peculiar coupling, from the last term of Hint. A single sine-
Gordon model has a rich spectrum of excitations: both small fluctuations, analogous to
mesons, and kinks and anti-kinks, analogous to baryons and anti-baryons. With Nc − 1
coupled sine-Gordon models, the spectrum becomes even more convoluted. Notice, how-
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ever, that the fields for the lightest mesons are naturally proportional to the ∼ eα − eβ.
From the above, their mass is ∼ g, and so this represents a set of mesons/glueballs. There
are then baryons, given by kinks [5–8]. For further studies of the spectra of this model,
see Refs. [3,8–12]. Certainly, as a confining gauge theory, it is expected that all excitations
are massive.

In Ref. [3], an alternate approach was taken. The gauge Ax = 0 was taken, and the
free gauge field integrated out:

H =
Nc

∑
α=1

∫
dx
[
− iq̄R,α∂xqR,α + iq̄L,α∂xqL,α −m(q̄R,αqL,α + q̄L,αqR,α)

]

− πg2
∫

dxdy
N2

c−1

∑
A=1

JA
0 (x)|x− y|JA

0 (y) ; (6)

where qL,R = (1± γ5)q are the right- and left- moving components of the quark field.
The currents for right- and left- moving quarks, JA

R,L, are given by

JA
0 = JA

R + JA
L , JA

R = q̄R,α (t)A
αβ qR,β, JA

L = q̄L,α (t)A
αβ qL,β , (7)

With (tA)αβ matrices for the adjoint representation. The chiral currents JR,L obey a
SU(Nc) Kac–Moody algebra [14].

Introducing the chiral currents is especially useful when expanding about the massless
limit. With the fields qR,α ∼ exp(i

√
4πϕα) and qL,α ∼ exp(i

√
4πϕ̄α). After bosonizing the

current-current interaction, one obtains two terms in the potential. The first is from the
diagonal elements,

VCartan(x) = −πg2(1− 1/Nc)
∫

dy|x− y|∂xΦα(x)∂yΦα(y) = g2(1− 1/Nc)Φα(x)Φα(x) , (8)

where Φ = ϕ + ϕ̄. The off-diagonal terms contribute

Voff−diag = ∑
α>β

∫
dy

g2

4π
|x− y|−1

{
cos[
√

4π[ϕαβ(x)− ϕαβ(y)]]

+ cos[
√

4π[ϕ̄αβ(x)− ϕ̄αβ(y)]]− 2|x− y|2 cos[
√

4π[ϕαβ(x) + ϕ̄αβ(y)]]
}

(9)

With ϕαβ = ϕα − ϕβ.
It is useful to contrast these analyses with the solution of QCD at large Nc by ’t

Hooft [15]. Again, one goes to axial gauge, so that the propagator for the gauge field
reduces to that of a free field. Doing so, it is possible to solve the Schwinger–Dyson
equation for the quark propagator. This demonstrates a confining spectrum. This has been
extended to nonzero quark density by Bringoltz [16], who finds chiral density waves for a
massive quark.

There is a peculiarity in the diagonal potential, VCartan. The bosonized fields, ϕ or ϕ̄,
are manifestly periodic. However, VCartan is clearly not periodic. This is also present in the
previous form, the “mass” term in Equation (5). It was not apparent in this form, nor the
lack of periodicity appreciated. In terms of the ϕ and ϕ̄ fields, though, it demonstrates that
since periodicity is lost, the only topologically non-trivial configurations are those which
involve the sum of all angles. The only soft mode remaining is the sum of the Φα’s,

Φ =
1√
Nc

∑
α

Φα . (10)

This is completely unaffected by the potential terms in Equations (8) and (9), which
only involve the differences, ϕα − ϕβ, etc.



Universe 2021, 7, 411 4 of 6

The ground state corresponds to the state where all fields are equal. Projecting the
mass term onto this vacuum gives a single sine-Gordon model:

He f f =
1
2

{
Π2 + (∂xΦ)2

}
+ 2

m̃
2π

[
1− cos

(√
4π

Nc
Φ

)]
. (11)

In this expression, m̃ is proportional to the original mass scale, including the effects
of renormalization by normal ordering. Naturally, the projection assumes that the energy
scale generated by the mass term is much smaller than the energies of the mesonic fields.
Besides the U(1) field Φ, there are also color singlet excitations above ΛQCD, involving
fluctuations of individual fields Φα around the minimum of the potential. By going to
energies below the scale of the gauge coupling, all of these massive degrees of freedom can
be ignored.

This implies that in 1 + 1 dimensions, dense QCD is much simpler than one might
expect. By bosonization, a nonzero chemical potential is incorporated simply by shifting(4π

Nc

)1/2
Φ→ 2 k0x +

(4π

Nc

)1/2
Φ , k0 =

µ

Nc
. (12)

This follows directly because j0 ∼ ∂xφ. It is only Φ that is affected, as fermion number
only couples to the global U(1) symmetry for fermion number. The resulting effective
Lagrangian is then

L =
1
2
(∂µΦ)2 − m̃

2π
cos

(√
4π

Nc
Φ + 2k0x

)
, (13)

As mentioned above, in vacuum, the spectrum of this model consists of a soliton
with mass ms, and anti-soliton with the same mass, and 2Nc − 2 breathers, which are also
massive. These are all gauge invariant states.

The chemical potential does not affect the system until µ > ms. At that point, the so-
lution becomes massless, while all other states, the anti-solition and the breathers, remain
massive. Analysis shows that at µ > ms, this model renormalizes into that of a Luttinger
liquid:

Le f f =
K̃(µ)

2

[
vF(µ)

−1(∂τΦ)2 + vF(µ)(∂xΦ)2
]
, (14)

This is a single, massless boson, which propagates with a speed less than that of light.
The solution of the model is the following. The overall normalization of the effective

Lagrangian is the Luttinger parameter, K̃, while vF is the Fermi velocity; both are functions
of the chemical potential, µ. The extraction of these dependencies requires the exact solution
of the sine-Gordon model.

The limits of these parameters are easy to understand. At the edge of the Fermi surface,
where kF → 0, the Luttinger parameter K̃ → 1. In contrast, the Fermi velocity vF → 0. This
implies that the Φ field does not propagate, as the spatial term vanishes. For asymptotically
high density, kF → ∞, the Luttinger parameter K̃ → 1/Nc, and the Fermi velocity vF → 1.
This implies that in the limit of infinite Nc, that there is a density at which K̃ goes from
being of order one, as is typical of dilute fermions, to order ∼ 1/Nc. This is only valid at
infinite Nc; at finite Nc, K̃ varies smoothly with density.

The solution for arbitrary chemical potential can be carried out through the thermody-
namic Bethe ansatz. This is valid for arbitrary fermion mass. It is also possible to compute
using perturbation theory in the mass parameter. Details, and a solution for two flavors
and colors, are given in Ref. [3].

For an arbitrary number of flavors, presumably the theory is always a Luttinger liquid.
The solution is rather more complicated, and involves non-Abelian bosonization. For an
arbitrary number of flavors, it is not direct to solve the theory in weak coupling, when the
mass is much larger than the gauge coupling. Thus, it is only a conjecture that the theory is
a Luttinger liquid, although in two dimensions, it is most natural to expect.
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It is an extraordinary feature of Fermi surfaces in two dimensions that the excitations
near the Fermi surface are not fermions, but bosons. This is only possible because of
bosonization in two dimensions.

It is impossible to resist speculating upon whether something analogus happens in
3+ 1 dimensions. In a quarkyonic phase [17–33], while the free energy is that of deconfined
quarks and gluons, excitations near the Fermi surface are confined. It is conceivable that
this introduces a strong anisotropy into the system, so that it is essentially one-dimensional.
If true, then there is a complicated pattern of excitations which arise. Especially with two
or more light flavors, an involved pattern of chiral density waves can arise.

What is most intriguing, however, is whether the quarkyonic phase in 3+ 1 dimensions
is a Luttinger liquid. That is, a type of non-Fermi liquid. In particular, are the excitations
near the Fermi surface not controlled by nucleons, but by (effective) bosons. The properties
of an effective non-Fermi liquid can be described by an (anisotropic) effective Lagrangian,
and used to compute the transport properties of a quarkyonic regime.
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