# Nuclear Matter in 1 + 1 Dimensions

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. QCD for a Single Flavor

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Boyanovsky, D.; de Vega, H.J.; Holman, R.; Kumar, S.P.; Pisarski, R.D. Nonequilibrium evolution of a ’Tsunami’: Dynamical symmetry breaking. Phys. Rev. D
**1998**, 57, 3653–3669. [Google Scholar] [CrossRef] [Green Version] - Boyanovsky, D.; de Vega, H.J.; Holman, R.; Kumar, S.P.; Pisarski, R.D. Real time relaxation of condensates and kinetics in hot scalar QED: Landau damping. Phys. Rev. D
**1998**, 58, 125009. [Google Scholar] [CrossRef] [Green Version] - Lajer, M.; Tsvelik, A.; Konik, R.; Pisarski, R.D. When nuclear matter in (1+1)d and (3+1)d is not a Fermi liquid. in press.
- Baluni, V. The Bose Form of Two-dimensional Quantum Chromodynamics. Phys. Lett. B
**1980**, 90, 407–412. [Google Scholar] [CrossRef] [Green Version] - Steinhardt, P.J. Baryons and Baryonium in QCD in Two-dimensions. Nucl. Phys. B
**1980**, 176, 100–112. [Google Scholar] [CrossRef] - Cohen, E.; Frishman, Y.; Gepner, D. Bosonization of Two-dimensional QCD With Flavor. Phys. Lett. B
**1983**, 121, 180–182. [Google Scholar] [CrossRef] - Gepner, D. Nonabelian Bosonization and Multiflavor QED and QCD in Two-dimensions. Nucl. Phys. B
**1985**, 252, 481–507. [Google Scholar] [CrossRef] - Frishman, Y.; Sonnenschein, J. Bosonization and QCD in two-dimensions. Phys. Rept.
**1993**, 223, 309–348. [Google Scholar] [CrossRef] [Green Version] - Abdalla, E.; Abdalla, M. Updating QCD in two-dimensions. Phys. Rept.
**1996**, 265, 253–368. [Google Scholar] [CrossRef] [Green Version] - Armoni, A.; Frishman, Y.; Sonnenschein, J. The String tension in massive QCD in two-dimensions. Phys. Rev. Lett.
**1998**, 80, 430–433. [Google Scholar] [CrossRef] [Green Version] - Armoni, A.; Frishman, Y.; Sonnenschein, J.; Trittmann, U. The Spectrum of multiflavor QCD in two-dimensions and the nonAbelian Schwinger equation. Nucl. Phys. B
**1999**, 537, 503–515. [Google Scholar] [CrossRef] [Green Version] - Dempsey, R.; Klebanov, I.R.; Pufu, S.S. Exact Symmetries and Threshold States in Two-Dimensional Models for QCD. arXiv
**2021**, arXiv:2101.05432. [Google Scholar] - Witten, E. Nonabelian Bosonization in Two-Dimensions. Commun. Math. Phys.
**1984**, 92, 455–472. [Google Scholar] [CrossRef] - James, A.J.A.; Konik, R.M.; Lecheminant, P.; Robinson, N.J.; Tsvelik, A.M. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-abelian bosonization to truncated spectrum methods. Rept. Prog. Phys.
**2018**, 81, 046002. [Google Scholar] [CrossRef] - ’t Hooft, G. A Two-Dimensional Model for Mesons. Nucl. Phys. B
**1974**, 75, 461–470. [Google Scholar] [CrossRef] [Green Version] - Bringoltz, B. Solving two-dimensional large-N QCD with a nonzero density of baryons and arbitrary quark mass. Phys. Rev.
**2009**, D79, 125006. [Google Scholar] [CrossRef] [Green Version] - McLerran, L.; Pisarski, R.D. Phases of cold, dense quarks at large N(c). Nucl. Phys.
**2007**, A796, 83–100. [Google Scholar] [CrossRef] [Green Version] - Andronic, A.; Blaschke, D.; Braun-Munzinger, P.; Cleymans, J.; Fukushima, K.; McLerran, L.D.; Oeschler, H.; Pisarski, R.D.; Redlich, K.; Sasaki, C.; et al. Hadron Production in Ultra-relativistic Nuclear Collisions: Quarkyonic Matter and a Triple Point in the Phase Diagram of QCD. Nucl. Phys. A
**2010**, 837, 65–86. [Google Scholar] [CrossRef] [Green Version] - Kojo, T.; Hidaka, Y.; McLerran, L.; Pisarski, R.D. Quarkyonic Chiral Spirals. Nucl. Phys.
**2010**, A843, 37–58. [Google Scholar] [CrossRef] [Green Version] - Kojo, T.; Pisarski, R.D.; Tsvelik, A.M. Covering the Fermi Surface with Patches of Quarkyonic Chiral Spirals. Phys. Rev.
**2010**, D82, 074015. [Google Scholar] [CrossRef] [Green Version] - Kojo, T.; Hidaka, Y.; Fukushima, K.; McLerran, L.D.; Pisarski, R.D. Interweaving Chiral Spirals. Nucl. Phys.
**2012**, A875, 94–138. [Google Scholar] [CrossRef] [Green Version] - Fukushima, K.; Kojo, T. The Quarkyonic Star. Astrophys. J.
**2016**, 817, 180. [Google Scholar] [CrossRef] [Green Version] - McLerran, L.; Reddy, S. Quarkyonic Matter and Neutron Stars. Phys. Rev. Lett.
**2019**, 122, 122701. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pisarski, R.D.; Skokov, V.V.; Tsvelik, A.M. Fluctuations in cool quark matter and the phase diagram of Quantum Chromodynamics. Phys. Rev. D
**2019**, 99, 074025. [Google Scholar] [CrossRef] [Green Version] - Jeong, K.S.; McLerran, L.; Sen, S. Dynamically generated momentum space shell structure of quarkyonic matter via an excluded volume model. Phys. Rev. C
**2020**, 101, 035201. [Google Scholar] [CrossRef] [Green Version] - Duarte, D.C.; Hernandez-Ortiz, S.; Jeong, K.S. Excluded Volume Model for Quarkyonic Matter II: Three-flavor Shell-like Distribution of Baryons in Phase Space. Phys. Rev. C
**2020**, 102, 065202. [Google Scholar] [CrossRef] - Duarte, D.C.; Hernandez-Ortiz, S.; Jeong, K.S. Excluded-volume model for quarkyonic Matter: Three-flavor baryon-quark Mixture. Phys. Rev. C
**2020**, 102, 025203. [Google Scholar] [CrossRef] - Sen, S.; Warrington, N.C. Finite-Temperature Quarkyonic Matter with an Excluded Volume Model. Nucl. Phys. A
**2020**, 1006, 122059. [Google Scholar] [CrossRef] - Sen, S.; Sivertsen, L. Mass and radius relations of quarkyonic matter using an excluded volume model. Astrophys. J.
**2020**, 915, 109. [Google Scholar] [CrossRef] - Zhao, T.; Lattimer, J.M. Quarkyonic Matter Equation of State in Beta-Equilibrium. Phys. Rev. D
**2020**, 102, 023021. [Google Scholar] [CrossRef] - Pisarski, R.D.; Tsvelik, A.M.; Valgushev, S. How transverse thermal fluctuations disorder a condensate of chiral spirals into a quantum spin liquid. Phys. Rev. D
**2020**, 102, 016015. [Google Scholar] [CrossRef] - Pisarski, R.D. Remarks on nuclear matter: How an ω
_{0}condensate can spike the speed of sound, and a model of Z(3) baryons. Phys. Rev. D**2021**, 103, L071504. [Google Scholar] [CrossRef] - Pisarski, R.D.; Tsvelik, A.M. Low energy physics of interacting bosons with a moat spectrum, and the implications for condensed matter and cold nuclear matter. arXiv
**2021**, arXiv:2103.15835. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Pisarski, R.D.; Lajer, M.; Tsvelik, A.M.; Konik, R.M.
Nuclear Matter in 1 + 1 Dimensions. *Universe* **2021**, *7*, 411.
https://doi.org/10.3390/universe7110411

**AMA Style**

Pisarski RD, Lajer M, Tsvelik AM, Konik RM.
Nuclear Matter in 1 + 1 Dimensions. *Universe*. 2021; 7(11):411.
https://doi.org/10.3390/universe7110411

**Chicago/Turabian Style**

Pisarski, Robert D., Marton Lajer, Alexei M. Tsvelik, and Robert M. Konik.
2021. "Nuclear Matter in 1 + 1 Dimensions" *Universe* 7, no. 11: 411.
https://doi.org/10.3390/universe7110411