# Hyperons in Finite and Infinite Nuclear Systems

## Abstract

**:**

## 1. Introduction

## 2. Hypernuclear Physics in a Nutshell

#### 2.1. Production of Hypernuclei

#### 2.2. $\gamma $-ray Spectroscopy of Hypernuclei

#### 2.3. Weak Decay of Hypernuclei

#### 2.4. Theoretical Description of Hypernuclei

## 3. Hyperons and Neutron Stars

#### 3.1. The Hyperon Puzzle and Some Possible Solutions

#### 3.1.1. Hyperon–Hyperon Repulsion

#### 3.1.2. Hyperonic Three-Body Forces

#### 3.1.3. Quark Matter Phase Transition below the Hyperon Threshold

#### 3.1.4. $\Delta $ Isobar and Kaon Condensation in Neutron Stars

#### 3.2. Effect of Hyperons on Proto-Neutron Stars

#### 3.3. Hyperons and Neutron Star Cooling

#### 3.4. Hyperons and R-Modes

## 4. Summary

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Conflicts of Interest

## References

- Lenske, H.; Dhar, M.; Gaitanos, T.; Cao, X. Baryons and baryon resonances in nuclear matter. Prog. Part. Nucl. Phys.
**2018**, 98, 119–206. [Google Scholar] [CrossRef] - Danysz, M.; Pniewski, J. Delayed disintegration of a heavy nuclear fragment: I. Philos. Mag.
**1953**, 44, 348–350. [Google Scholar] [CrossRef] - Hugenford, E.V. Experimental considerations in electromagnetic production of hypernuclei. Prog. Theor. Phys. Suppl.
**1994**, 117, 135–149. [Google Scholar] - Bianchin, S.; Achenbach, P.; Ajimura, S.; Borodina, O.; Fukuda, T.; Hoffmann, J.; Kavatsyuk, M.; Koch, K.; Koike, T.; Kurz, N.; et al. The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and Fair. Int. J. Mod. Phys. E
**2009**, 18, 2187–2191. [Google Scholar] [CrossRef] [Green Version] - Rappold, C.; Kim, E.; Nakajima, D.; Saito, T.R.; Bertini, O.; Bianchin, S.; Bozkurt, V.; Kavatsyuk, M.; Mab, Y.; Ma, F.; et al. Hypernuclear spectroscopy of products from
^{6}Li projectiles on a carbon target at 2AGeV. Nucl. Phys. A**2013**, 913, 170–184. [Google Scholar] [CrossRef] [Green Version] - Shapiro, S.L.; Teukolsky, S.A. Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Stars; Wiley and Sons: Hoboken, NJ, USA, 1983. [Google Scholar]
- Weber, F. Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics; Institute of Physics Publishing: Bristol, UK, 1999. [Google Scholar]
- Glendenning, N.K. Compact Stars: Nuclear Physics, Particle Physics and General Relativity, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Haensel, P.; Potekin, A.Y.; Yakovlev, D.G. Neutron Stars 1: Equation of State; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Rezzolla, L.; Pizzochero, P.; Jones, I.; Rea, N.; Vidaña, I. (Eds.) The Physics and Astrophysics of Neutron Stars; Springer Nature: Cham, Switzerland, 2018. [Google Scholar]
- Balberg, S.; Gal, A. An effective equation of state for dense matter with strangeness. Nucl. Phys. A
**1997**, 625, 435–472. [Google Scholar] [CrossRef] [Green Version] - Balberg, S.; Lichtenstadt, I.; Cook, G.B. Role of hyperons in neutron stars. Astrophys. J. Suppl. Ser.
**1999**, 121, 515. [Google Scholar] [CrossRef] - Millener, D.J.; Dover, C.B.; Gal, A. Λnucleus single-particle potentials. Phys. Rev. C
**1988**, 38, 2700. [Google Scholar] [CrossRef] - Yamamoto, Y.; Bandō, H.; Žofka, J. On the Λ-hypernuclear single particle energies. Prog. Theor. Phys.
**1988**, 80, 757–761. [Google Scholar] [CrossRef] [Green Version] - Fernández, F.; López–Arias, T.; Prieto, C. Skyrme-Hartree-Fock calculation of Λ-hypernuclear states from (π
^{+},K^{+}) reactions. Z. Phys. A**1989**, 334, 349–354. [Google Scholar] - Lanskoy, D.E.; Yamamoto, Y. Skyrme-Hartree-Fock treatment of Λ and ΛΛ hypernuclei with G-matrix motivated interactions. Phys. Rev. C
**1997**, 55, 2330. [Google Scholar] [CrossRef] - Tretyakova, T.Y.; Lanskoy, D.E. Structure of neutron-rich Λ hypernuclei. Eur. Phys. J. A
**1999**, 5, 391–398. [Google Scholar] [CrossRef] - Cugnon, J.; Lejeune, A.; Schulze, H.-J. Hypernuclei in the Skyrme-Hartree-Fock formalism with a microscopic hyperon-nucleon force. Phys. Rev. C
**2000**, 62, 064308. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Polls, A.; Ramos, A.; Schulze, H.-J. Hypernuclear structure with the new Nijmegen potentials. Phys. Rev. C
**2001**, 64, 044301. [Google Scholar] [CrossRef] [Green Version] - Zhou, X.-R.; Schulze, H.-J.; Sagawa, H.; Wu, C.-X.; Zhao, E.-G. Hypernuclei in the deformed Skyrme-Hartree-Fock approach. Phys. Rev. C
**2007**, 76, 034312. [Google Scholar] [CrossRef] - Zhou, X.-R.; Polls, A.; Schulze, H.-J.; Vidaña, I. Λ hyperons and the neutron drip line. Phys. Rev. C
**2008**, 78, 054306. [Google Scholar] [CrossRef] [Green Version] - Bednarek, I.; Haensel, P.; Zdunik, J.L.; Bejger, M.; Mańka, R. Hyperons in neutron-star cores and a 2M
_{⊙}pulsar. Astron. Astrophys.**2012**, 543, A157. [Google Scholar] [CrossRef] [Green Version] - Weissenborn, S.; Chatterjee, D.; Schaffner–Bielich, J. Hyperons and massive neutron stars: Vector repulsion and SU(3) symmetry. Phys. Rev. C
**2012**, 85, 065802. [Google Scholar] [CrossRef] [Green Version] - Van Dalen, E.N.E.; Colucci, G.; Sedrakian, A. Constraining hypernuclear density functional with Λ-hypernuclei and compact stars. Phys. Lett. B
**2014**, 734, 383–387. [Google Scholar] [CrossRef] [Green Version] - Oertel, M.; Providência, C.; Gulminelli, F.; Raduta, A.R. Hyperons in neutron star matter within relativistic mean-field models. J. Phys. G
**2015**, 42, 075202. [Google Scholar] [CrossRef] - Maslov, K.A.; Kolomeitsev, E.E.; Voskresensky, D.N. Solution of the hyperon puzzle within a relativistic mean-field model. Phys. Lett. B
**2015**, 748, 369–375. [Google Scholar] [CrossRef] [Green Version] - Fortin, M.; Avancini, S.S.; Providência, C.; Vidaña, I. Hypernuclei and massive neutron stars. Phys. Rev. C
**2017**, 95, 065803. [Google Scholar] [CrossRef] - Pal, S.; Hanauske, M.; Zakout, I.; Stöcker, G.W. Neutron star properties in the quark-meson coupling model. Phys. Rev. C
**1999**, 60, 015802. [Google Scholar] [CrossRef] [Green Version] - Stone, J.R.; Guinchon, P.A.M.; Matevosyan, H.H.; Thomas, A.W. Cold uniform matter and neutron stars in the quark-meson-coupling model. Nucl. Phys. A
**2007**, 792, 341–369. [Google Scholar] [CrossRef] [Green Version] - Bombaci, I.; Panda, P.K.; Providência, C.; Vidaña, I. Metastability of hadronic compact stars. Phys. Rev. D
**2008**, 77, 083002. [Google Scholar] [CrossRef] [Green Version] - Carroll, J.D.; Leinweber, D.B.; Williams, A.G.; Thomas, A.W. Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter. Phys. Rev. C
**2009**, 79, 045810. [Google Scholar] [CrossRef] [Green Version] - Miyatsu, T.; Saito, K. Effect of gluon and pion exchanges on hyperons in nuclear matter. Prog. Theor. Phys.
**2009**, 122, 1035–1044. [Google Scholar] [CrossRef] [Green Version] - Carroll, J.D. QMC and the nature of dense matter: Written in the stars? AIP Conf. Proc.
**2010**, 1261, 226–231. [Google Scholar] - Panda, P.K.; Santos, A.M.S.; Menezes, D.P.; Providência, C. Compact stars within a soft symmetry energy quark-meson-coupling model. Phys. Rev. C
**2012**, 85, 055802. [Google Scholar] [CrossRef] [Green Version] - Stone, J.R.; Dexheimer, V.; Guichon, P.A.M.; Thomas, A.W.; Typel, S. Equation of state of hot dense hyperonic matter in the Quark-Meson-Coupling (QMC-A) model. Month. Not. R. Astron. Soc.
**2019**, 502, 34767. [Google Scholar] - Antić, S.; Stone, J.R.; Thomas, A.W. Neutron stars from crust to core within the Quark-meson-coupling model. EPJ Web Conf.
**2020**, 232, 03001. [Google Scholar] [CrossRef] - Gaitanos, T.; Kaskulov, M. Momentum dependent mean-field dynamics of compressed nuclear matter and neutron stars. Nucl. Phys. A
**2013**, 899, 133–169. [Google Scholar] [CrossRef] [Green Version] - Moustakidis, C.C.; Gaitanos, T.; Margaritis, C.; Lalazissis, G.A. Bounds on the speed of sound in dense matter and neutron star structure. Phys. Rev. C
**2017**, 95, 045801. [Google Scholar] [CrossRef] - Gaitanos, T.; Chorozidou, A. Momentum dependent mean-fields of (anti)hyperons. Nucl. Phys. A
**2021**, 1008, 122153. [Google Scholar] [CrossRef] - Nagels, M.M.; Rijken, T.A.; de Swart, J.J. Determination of the mixing angle, F/(F +D) ratio, and coupling constants of the scalar-meson nonet. Phys. Rev. Lett.
**1973**, 31, 569. [Google Scholar] [CrossRef] - Nagels, M.M.; Rijken, T.A.; de Swart, J.J. Low-energy nucleon-nucleon potential from Regge-pole theory. Phys. Rev. D
**1978**, 17, 768. [Google Scholar] [CrossRef] - Machleidt, R.; Holinde, K.; Elster, C. The bonn meson-exchange model for the nucleon-nucleon interaction. Phys. Rep.
**1987**, 149, 1–89. [Google Scholar] [CrossRef] - Holzenkamp, B.; Holinde, K.; Speth, J. A meson exchange model for the hyperon-nucleon interaction. Nucl. Phys. A
**1989**, 500, 485–528. [Google Scholar] [CrossRef] - Maesen, P.M.M.; Rijken, T.A.; de Swart, J.J. Soft-core baryon-baryon one-boson-exchange models. II. Hyperon-nucleon potential. Phys. Rev. C
**1989**, 40, 2226. [Google Scholar] [CrossRef] - Rijken, T.A.; Stoks, V.G.J.; Yamamoto, Y. Soft-core hyperon-nucleon potentials. Phys. Rev. C
**1999**, 59, 21. [Google Scholar] [CrossRef] [Green Version] - Stoks, V.G.J.; Rijken, T.A. Soft-core baryon-baryon potentials for the complete baryon octet. Phys. Rev. C
**1999**, 59, 3009. [Google Scholar] [CrossRef] [Green Version] - Haidenbauer, J.; Meissner, U.-G. Jülich hyperon-nucleon model revisited. Phys. Rev. C
**2005**, 72, 044005. [Google Scholar] [CrossRef] [Green Version] - Rijken, T.A. Extended-soft-core baryon-baryon model. I. Nucleon-nucleon scattering with the ESC04 interaction. Phys. Rev. C
**2006**, 73, 044007. [Google Scholar] [CrossRef] [Green Version] - Rijken, T.A.; Yamamoto, Y. Extended-soft-core baryon-baryon model. II. Hyperon-nucleon interaction. Phys. Rev. C
**2006**, 73, 044008. [Google Scholar] [CrossRef] [Green Version] - Rijken, T.A.; Nagels, M.M.; Yamamoto, Y. Baryon-baryon interactions. Prog. Theor. Phys. Suppl.
**2010**, 185, 14. [Google Scholar] [CrossRef] - Weinberg, S. Nuclear forces from chiral lagrangians. Phys. Lett. B
**1991**, 251, 288. [Google Scholar] [CrossRef] - Weinberg, S. Effective chiral lagrangians for nucleon-pion interactions and nuclear forces. Nucl. Phys. B
**1991**, 363, 3–18. [Google Scholar] [CrossRef] - Entem, D.R.; Machleidt, R. Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C
**2003**, 68, 041001. [Google Scholar] [CrossRef] [Green Version] - Epelbaum, E.; Glöcke, W.; Meissner, U.-G. The two-nucleon system at next-to-next-to-next-to-leading order. Nucl. Phys. A
**2005**, 747, 362–424. [Google Scholar] [CrossRef] [Green Version] - Entem, D.R.; Machleidt, R.; Nosyk, Y. High-quality two-nucleon potentials up to fifth order of the chiral expansion. Phys. Rev. C
**2017**, 96, 024004. [Google Scholar] [CrossRef] - Epelbaum, E. Few-nucleon forces and systems in chiral effective field theory. Prog. Nucl. Part. Phys.
**2006**, 57, 654–741. [Google Scholar] [CrossRef] [Green Version] - Polinder, H.; Haidenbauer, J.; Meissner, U.-G. Hyperon–nucleon interactions—A chiral effective field theory approach. Nucl. Phys. A
**2006**, 779, 244–266. [Google Scholar] [CrossRef] [Green Version] - Haidenbauer, J.; Petschauer, S.; Kaiser, N.; Meissner, U.-G.; Nogga, A.; Weise, W. Hyperon–nucleon interaction at next-to-leading order in chiral effective field theory. Nucl. Phys. A
**2013**, 915, 24–58. [Google Scholar] [CrossRef] [Green Version] - Haidenbauer, J.; Meissner, U.-G.; Nogga, A. Hyperon-nucleon interaction within chiral effective field theory revisited. Eur. Phys. J. A
**2020**, 56, 91. [Google Scholar] [CrossRef] [Green Version] - Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hypernuclear matter in the Brueckner-Hartree-Fock approximation. Phys. Lett. B
**1995**, 355, 21–26. [Google Scholar] [CrossRef] [Green Version] - Schulze, H.-J.; Baldo, M.; Lombardo, U.; Cugnon, J.; Lejeune, A. Hyperonic nuclear matter in Brueckner theory. Phys. Rev. C
**1998**, 57, 704. [Google Scholar] [CrossRef] [Green Version] - Baldo, M.; Burgio, G.F.; Schulze, H.-J. Onset of hyperon formation in neutron star matter from Brueckner theory. Phys. Rev. C
**1998**, 58, 3688. [Google Scholar] [CrossRef] - Baldo, M.; Burgio, G.F.; Schulze, H.-J. Hyperon stars in the Brueckner-Bethe-Goldstone theory. Phys. Rev. C
**2000**, 61, 055801. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Polls, A.; Ramos, A.; Hjorth-Jensen, M.; Stoks, V.G.J. Strange nuclear matter within Brueckner-Hartree-Fock theory. Phys. Rev. C
**2000**, 61, 025802. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Polls, A.; Ramos, A.; Engvik, L.; Hjorth-Jensen, M. Hyperon-hyperon interactions and properties of neutron star matter. Phys. Rev. C
**2000**, 62, 035801. [Google Scholar] [CrossRef] [Green Version] - Schulze, H.-J.; Polls, A.; Ramos, A.; Vidaña, I. Maximum mass of neutron stars. Phys. Rev. C
**2006**, 73, 058801. [Google Scholar] [CrossRef] [Green Version] - Schulze, H.-J.; Rijken, T. Maximum mass of hyperon stars with the Nijmegen ESC08 model. Phys. Rev. C
**2011**, 84, 035801. [Google Scholar] [CrossRef] [Green Version] - Dapo, H.; Schaefer, B.-J.; Wambach, J. Appearance of hyperons in neutron stars. Phys. Rev. C
**2010**, 81, 035803. [Google Scholar] [CrossRef] [Green Version] - Sammarruca, F. Effect of Λ hyperons on the nuclear equation of state in a Dirac- Brueckner-Hartree-Fock model. Phys. Rev. C
**2009**, 79, 034301. [Google Scholar] [CrossRef] [Green Version] - Lonardoni, D.; Pederiva, F.; Gandolfi, S. Accurate determination of the interaction between Λ hyperons and nucleons from auxiliary field diffusion Monte Carlo calculations. Phys. Rev. C
**2014**, 89, 014314. [Google Scholar] [CrossRef] [Green Version] - Petschauer, S.; Haidenbauer, J.; Kaiser, N.; Meissner, U.-G.; Weise, W. Hyperons in nuclear matter from SU(3) chiral effective field theory. Eur. Phys. J. A
**2016**, 52, 15. [Google Scholar] [CrossRef] [Green Version] - Haidenbauer, J.; Meissner, U.-G.; Kaiser, N.; Weise, W. Lambda-nuclear interactions and hyperon puzzle in neutron stars. Eur. Phys. J. A
**2017**, 53, 121. [Google Scholar] [CrossRef] - Kohno, M. Comparative study of hyperon-nucleon interactions in a quark model and in chiral effective field theory by low-momentum equivalent interactions and G matrices. Phys. Rev. C
**2010**, 81, 014003. [Google Scholar] [CrossRef] [Green Version] - Kohno, M. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of YNN three-baryon interactions. Phys. Rev. C
**2018**, 97, 035206. [Google Scholar] [CrossRef] [Green Version] - Ohnishi, A.; Morita, K.; Miyahara, K.; Hyodo, T. Hadron–hadron correlation and interaction from heavy–ion collisions. Nucl. Phys. A
**2016**, 954, 294–307. [Google Scholar] [CrossRef] [Green Version] - Adamczewski–Musch, J.; Agakishiev, G.; Arnold, O.; Atomssa, E.T.; Behnke, C.; Berger-Chen, J.C.; Hades Collaboration. Λp interaction studied via femtoscopy in p→Nb reactions at s
_{NN}=3.18 GeV. Phys. Rev. C**2016**, 94, 025201. [Google Scholar] [CrossRef] [Green Version] - Hatsuda, T.; Morita, K.; Ohnishi, A.; Sasaki, K. pΞ
^{-}correlation in relativistic heavy ion collisions with nucleon-hyperon Interaction from Lattice QCD. Nucl. Phys. A**2017**, 967, 856–859. [Google Scholar] [CrossRef] - Mihaylov, D.L.; Sarti, V.M.; Arnold, O.W.; Fabbietti, L.; Holweger, B.; Mathis, A.M. A femtoscopic correlation analysis tool using the Schrödinger equation (CATS). Eur. Phys. J. C
**2018**, 78, 394. [Google Scholar] [CrossRef] [Green Version] - Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; A Large Ion Collider Experiment Collaboration. First observation of an attractive interaction between a proton and a cascade baryon. Phys. Rev. Lett.
**2019**, 123, 112002. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Agnello, M.; ALICE Collaboration. p-p, p-Λ, and Λ-Λ correlations studied via femtoscopy in pp reactions at s=7 TeV. Phys. Rev. C
**2019**, 99, 024001. [Google Scholar] [CrossRef] [Green Version] - Acharya, S.; Adamová, D.; Adhya, S.P.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Castro, A.J.; ALICE Collaboration. Study of the Λ-Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC. Phys. Lett. B
**2019**, 797, 134822. [Google Scholar] [CrossRef] - Acharya, S.; Adamová, D.; Adler, A.; Adolfsson, J.; Aggarwal, M.M.; Rinella, G.A.; Casula, E.A.R.; ALICE Collaboration. Investigation of the p-Σ
^{0}interaction via femtoscopy in pp collisions. Phys. Lett. B**2020**, 805, 135419. [Google Scholar] [CrossRef] - Fabbietti, L.; Sarti, V.M.; Vázquez Doce, O.V. Hadron-hadron interactions measured by ALICE at the LHC. arXiv
**2012**, arXiv:2012.09806. [Google Scholar] - Tolós, L.; Fabbietti, L. Strangeness in nuclei and neutron stars. Prog. Part. Nucl. Phys.
**2020**, 112, 103770. [Google Scholar] [CrossRef] [Green Version] - ALICE Collaboration. Unveiling the strong interaction among hadrons at the LHC. Nature
**2020**, 588, 232–238. [Google Scholar] [CrossRef] - Pratt, S. Pion interferometry of quark-gluon plasma. Phys. Rev. D
**1986**, 33, 1314. [Google Scholar] [CrossRef] - Lisa, M.A.; Pratt, S.; Soltz, R.; Wiedemman, U. Femtoscopy in relativistic heavy ion collisions: Two decades of progress. Ann. Rev. Nucl. Part. Sci.
**2005**, 55, 357–402. [Google Scholar] [CrossRef] [Green Version] - Beane, S.R.; Savage, M. Nucleon–nucleon interactions on the lattice. Phys Lett. B
**2002**, 535, 177–180. [Google Scholar] [CrossRef] [Green Version] - Ishii, N.; Aoki, S.; Hatsuda, T. Nuclear force from lattice QCD. Phys. Rev. Lett.
**2007**, 99, 022001. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Aoki, S.; Hatsuda, T.; Ishii, N. Theoretical foundation of the nuclear force in QCD and its applications to central and tensor forces in quenched lattice QCD simulations. Prog. Theor. Phys.
**2010**, 123, 89–128. [Google Scholar] [CrossRef] [Green Version] - Beane, S.; Detmold, W.; Orginos, K.; Savage, M. Nuclear physics from lattice QCD. Prog. Part. Nucl. Phys.
**2011**, 66, 1–40. [Google Scholar] [CrossRef] [Green Version] - Aoki, S. Hadron interactions in lattice QCD. Prog. Part. Nucl. Phys.
**2011**, 66, 687–726. [Google Scholar] [CrossRef] [Green Version] - Aoki, S.; Doi, T.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K. Lattice quantum chromodynamical approach to nuclear physics. Prog. Theor. Exp. Phys.
**2012**, 1, 01A105. [Google Scholar] [CrossRef] - Nemura, H.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Iritani, T.; Ishii, N.; Miyamoto, T.; Sasaki, K.; et al. Lambda-Nucleon and Sigma-Nucleon interactions from lattice QCD with physical masses. arXiv
**2017**, arXiv:1702.00734. [Google Scholar] - Doi, T.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Iritani, T.; Ishii, N.; Miyamoto, T.; et al. Baryon interactions from lattice QCD with physical masses—overview and S=0, -4 sectors—. arXiv
**2017**, arXiv:1702.01600. [Google Scholar] - HALQCD Collaboration. Baryon interactions from lattice QCD with physical masses—S = -3 sector: ΞΣ and ΞΛ-ΞΣ—. PoS
**2017**, 256, 127. [Google Scholar] - HALQCD Collaboration. Baryon interactions from lattice QCD with physical masses—S = −2 sector—. arXiv
**2017**, arXiv:1702.06241. [Google Scholar] - Doi, T.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Iritani, T.; Ishii, N.; Miyamoto, T.; et al. Baryon interactions from lattice QCD with physical quark masses—Nuclear forces and ΞΞ forces—. EPJ Web. Conf.
**2018**, 175, 05009. [Google Scholar] [CrossRef] - Nemura, H.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Iritani, T.; Ishii, N.; Miyamoto, T.; Sasaki, K.; et al. Baryon interactions from lattice QCD with physical masses—strangeness S = -1 sector—. EPJ Web. Conf.
**2018**, 175, 05030. [Google Scholar] [CrossRef] - Iritani, T.; Aoki, S.; Doi, T.; Etminan, F.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Miyamoto, T.; et al. NΩ dibaryon from lattice QCD near the physical point. Phys. Lett. B
**2019**, 792, 284–289. [Google Scholar] [CrossRef] - Iritani, T.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Nemura, H.; Sasaki, K. Systematics of the HAL QCD potential at low energies in lattice QCD. Phys. Rev. D
**2019**, 99, 014514. [Google Scholar] [CrossRef] [Green Version] - Sasaki, K.; Aoki, S.; Doi, T.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Iritani, T.; Ishiie, N.; Murano, K.; et al. ΛΛ and NΣ interactions from lattice QCD near the physical point. Nucl. Phys. A
**2020**, 998, 121737. [Google Scholar] [CrossRef] - Beane, S.R.; Chang, E.; Cohen, S.D.; Detmold, W.; Lin, H.W.; Luu, T.C.; Orginos, K.; Parreño, A.; Savage, M.J.; Walker-Loud, A. Hyperon-nucleon interactions from Quantum Chromodynamics and the composition of dense nuclear matter. Phys. Rev. Lett.
**2012**, 109, 172001. [Google Scholar] [CrossRef] [PubMed] - Orginos, K.; Parreno, A.; Savage, M.J.; Beane, S.R.; Chang, E.; Detmold, W. Two nucleon systems at m
_{π}∼450 MeV from lattice QCD. Phys. Rev. D**2015**, 92, 114512. [Google Scholar] [CrossRef] [Green Version] - Illa, M.; Beane, S.R.; Chang, E.; Davoudi, Z.; Detmold, W.; Murphy, D.J.; Orginos, K.; Parreño, A.; Savage, M.J.; Shanahan, P.E.; et al. Low-energy scattering and effective interactions of two baryons at m
_{π}∼450 MeV from lattice quantum chromodynamics. Phys. Rev. D**2021**, 103, 054508. [Google Scholar] [CrossRef] - Botta, E.; Bressani, T.; Garbarino, G. Strangeness nuclear physics: A critical review on selected topics. Eur. Phys. J. A
**2012**, 48, 41–64. [Google Scholar] [CrossRef] [Green Version] - Gal, A.; Hugerford, E.V.; Millener, D.J. Strangeness in nuclear physics. Rev. Mod. Phys.
**2016**, 88, 035004. [Google Scholar] [CrossRef] - Hugenford, E.V. Topics in strangeness nuclear physics. Lect. Notes Phys.
**2007**, 274, 1. [Google Scholar] - Takahashi, H.; Ahn, J.K.; Akikawa, H.; Aoki, S.; Arai, K.; Bahk, S.Y. Observation of a ΛΛ6He double hypernucleus. Phys. Rev. Lett.
**2001**, 87, 212502. [Google Scholar] [CrossRef] [PubMed] - Khaustov, P. Evidence of Ξ hypernuclear production in the
^{12}C(K^{-},K^{+})Ξ^{-}12Be reaction. Phys. Rev. C**2000**, 61, 054603. [Google Scholar] [CrossRef] [Green Version] - Friedman, E.; Gal, A. Constraints on Ξ
^{-}nuclear interactions from capture events in emulsion. Phys. Lett. B**2021**, 820, 136555. [Google Scholar] [CrossRef] - Nakazawa, K.; Endo, Y.; Fukunaga, S.; Hoshino, K.; Hwang, S.H.; Imai, K.; Ito, H.; Itonaga, K.; Kanda, T.; Kawasaki, M.; et al. The first evidence of a deeply bound state of Ξ
^{-}-^{14}N system. Prog. Theor. Exp. Phys.**2015**, 2015, 033D02. [Google Scholar] [CrossRef] [Green Version] - Hiyima, E.; Nakazawa, K. Structure of S=-2 Hypernuclei and Hyperon–Hyperon Interactions. Ann. Rev. Nucl. Part. Sci.
**2018**, 68, 131–159. [Google Scholar] [CrossRef] - Hayakawa, S.H.; Agari, K.; Ahn, J.K.; Akaishi, T.; Akazawa, Y.; Ashikaga, S.; J-PARC E07 Collaboration. Observation of Coulomb-assisted nuclear bound state of Ξ
^{-}-^{14}N system. Phys. Rev. Lett.**2021**, 126, 062501. [Google Scholar] [CrossRef] - Hashimoto, O.; Tamura, H. Spectroscopy of Λ hypernuclei. Prog. Part. Nucl. Phys.
**2006**, 57, 564. [Google Scholar] [CrossRef] - Ukai, M. γ-ray spectroscopy of Λ16O and Λ15N hypernuclei via the
^{16}O(K^{-},π^{-}γ) reaction. Phys. Rev. C**2008**, 77, 054315. [Google Scholar] [CrossRef] - Bauer, E.; Garbarino, G.; Parreño, A.; Ramos, A. Microscopic approach to the proton asymmetry in the nonmesonic weak decay of Λ hypernuclei. Phys. Rev. C
**2012**, 85, 024321. [Google Scholar] [CrossRef] [Green Version] - Bauer, E.; Garbarino, G.; Rodríguez Peña, C.A. Nonmesonic weak decay of Λ hypernuclei: The ΛN-ΣN coupling. Phys. Rev. C
**2017**, 96, 044303. [Google Scholar] [CrossRef] [Green Version] - Parreño, A.; Bennhold, C.; Holstein, B.R. ΛN→NN weak interaction in effective-field theory. Phys. Rev. C
**2004**, 70, 051601. [Google Scholar] [CrossRef] [Green Version] - Pérez-Obiol, A.; Entem, D.R.; Juliá-Díaz, B.; Parreño, A. One-loop contributions in the effective field theory for the ΛN→NN transition. Phys. Rev. C
**2013**, 87, 044614. [Google Scholar] [CrossRef] [Green Version] - Alberico, W.M.; Garbarino, G. Weak decay of Λ hypernuclei. Phys. Rep.
**2002**, 369, 1. [Google Scholar] [CrossRef] [Green Version] - Parreño, A. Weak decays of hypernuclei. Lect. Note Phys.
**2007**, 724, 141–189. [Google Scholar] - Alberico, W.M.; De Pace, A.; Garbarino, G.; Ramos, A. Weak decays of medium and heavy Λ hypernuclei. Phys. Rev. C
**2000**, 61, 044314. [Google Scholar] [CrossRef] [Green Version] - Bouyssy, A.; Hüfner, J. Hypernuclei with A≥12. Phys. Lett. B
**1976**, 27, 276. [Google Scholar] [CrossRef] - Bouyssy, A. Strangeness exchange reactions and hypernuclear spectroscopy. Phys. Lett. B
**1979**, 84, 41–45. [Google Scholar] [CrossRef] - Dover, C.D.; Liedking, L.; Walker, G.E. Hypernuclear physics with pions. Phys. Recv. C
**1980**, 22, 2073. [Google Scholar] [CrossRef] - Motoba, T.; Bandō, H.; Wünsch, R.; Žofka, J. Hypernuclear production by the (π
^{+},K^{+}) reaction. Phys. Rev. C**1988**, 32, 1322. [Google Scholar] [CrossRef] [PubMed] - Boguta, J.; Bohrmann, S. Relativistic quantum field theory of a hypernuclei. Phys. Lett. B
**1981**, 102, 93–96. [Google Scholar] [CrossRef] [Green Version] - Mareš, J.; Žofka, J. On Λ-hyperon(s) in the nuclear medium. Z. Phys. A
**1989**, 333, 209. [Google Scholar] - Glendenning, N.K.; Von-Eiff, D.; Haft, M.; Lenske, H.; Weigel, M.K. Relativistic mean-field calculations of Λ and Σ hypernuclei. Phys. Rev. C
**1993**, 48, 889. [Google Scholar] [CrossRef] [PubMed] - Mareš, J.; Jennings, B.K. Relativistic description of Λ, Σ, and Ξ hypernuclei. Phys. Rev. C
**1993**, 49, 2472. [Google Scholar] [CrossRef] - Sugahara, Y.; Toki, H. Relativistic mean field theory for lambda hypernuclei and neutron stars. Prog. Theor. Phys.
**1994**, 92, 803–813. [Google Scholar] [CrossRef] - Lombard, R.J.; Marcos, S.; Mareš, J. Description of hypernuclei in the scalar derivative coupling model. Phys. Rev. C
**1995**, 51, 1784. [Google Scholar] [CrossRef] - Ma, Z.; Speth, J.; Krewald, S.; Chen, B.; Reuber, A. Hypernuclei with meson-exchange hyperon-nucleon interactions. Nucl. Phys. A
**1996**, 608, 305–315. [Google Scholar] [CrossRef] - Ineichenm, F.; Von-Eiff, D.; Weigel, M.K. A density-dependent relativistic Hartree approach for hypernuclei. J. Phys. G
**1996**, 22, 1421. [Google Scholar] [CrossRef] - Tsushima, K.; Saito, K.; Thomas, A.W. Self-consistent description of Λ hypernuclei in the quark-meson coupling model. Phys. Lett. B
**1997**, 411, 9–18. [Google Scholar] [CrossRef] [Green Version] - Tsushima, K.; Saito, K.; Haidenbauer, J.; Thomas, A.W. The quark-meson coupling model for Λ, Σ and Ξ hypernuclei. Nucl. Phys. A
**1998**, 630, 691–718. [Google Scholar] [CrossRef] [Green Version] - Brockmann, R.; Weise, W. Relativistic single particle motion and spin-orbit coupling in nuclei and hypernuclei. Nucl. Phys. A
**1981**, 355, 365–382. [Google Scholar] [CrossRef] [Green Version] - Chiapparini, M.; Gattone, A.O.; Jennings, B.K. Dirac phenomonology and the Λ-nucleus potential. Nucl. Phys. A
**1991**, 529, 589–597. [Google Scholar] [CrossRef] - Yamamoto, Y.; Bandō, H. Chapter II. baryon-baryon interactions and single-particle aspects of hypernuclei. Prog. Theor. Phys. Suppl.
**1985**, 81, 9–41. [Google Scholar] [CrossRef] [Green Version] - Yamamoto, Y.; Bandō, H. Hypernuclear properties derived from the Nijmegen soft-core OBE potential. Prog. Theor. Phys.
**1990**, 83, 254–264. [Google Scholar] [CrossRef] [Green Version] - Yamamoto, Y.; Reuber, A.; Himeno, H.; Nagata, S.; Motoba, T. Hypernuclear properties derived from the Jülich hyperon-nucleon interaction (in comparison with the Nijmegen interactions). Czec. J. Phys.
**1992**, 42, 1249–1260. [Google Scholar] [CrossRef] - Yamamoto, Y.; Motoba, T.; Himeno, H.; Ikeda, K.; Nagata, S. Hyperon-nucleon and hyperon-hyperon interactions in nuclei. Prog. Theor. Phys. Suppl.
**1994**, 117, 361–389. [Google Scholar] [CrossRef] - Halderson, D. G-matrix calculations in finite hypernuclei. Phys. Rev. C
**1993**, 48, 581. [Google Scholar] [CrossRef] - Hjorth–Jensen, M.; Polls, A.; Ramos, A.; Müther, H. Self-energy of Λ in finite nuclei. Nucl. Phys. A
**1996**, 605, 458. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Polls, A.; Ramos, A.; Hjorth–Jensen, M. Hyperon properties in finite nuclei using realistic YN interactions. Nucl. Phys. A
**1998**, 644, 201–220. [Google Scholar] [CrossRef] [Green Version] - Haidenbauer, J.; Vidaña, I. Structure of single-Λ hypernuclei with chiral hyperon-nucleon potentials. Eur. Phys. J. A
**2020**, 56, 55. [Google Scholar] [CrossRef] [Green Version] - Lonardoni, D.; Gandolfi, S.; Pederiva, F. Effects of the two-body and three-body hyperon-nucleon interactions in Λ hypernuclei. Phys. Rev. C
**2013**, 87, 041303(R). [Google Scholar] [CrossRef] - Beane, S.R.; Chang, E.; Cohen, S.D.; Detmold, W.; Lin, H.W.; Luu, T.C.; Orginos, K.; Parreño, A.; Savage, M.J.; Walker-Loud, A. Light nuclei and hypernuclei from quantum chromodynamics in the limit of SU(3) flavor symmetry. Phys. Rev. D
**2013**, 87, 034506. [Google Scholar] [CrossRef] [Green Version] - Robertson, N.J.; Dickhoff, W.H. Correlation effects on Λ propagation in nuclear matter. Phys. Rev. C
**2004**, 70, 044301. [Google Scholar] [CrossRef] - Vidaña, I. Single-particle spectral function of the Λ hyperon in finite nuclei. Nucl. Phys. A
**2017**, 958, 48–70. [Google Scholar] [CrossRef] [Green Version] - Botta, E.; Bressani, T.; Felicello, A. On the binding energy and the charge symmetry breaking in A≤16 Λ-hypernuclei. Nucl. Phys. A
**2017**, 960, 165–179. [Google Scholar] [CrossRef] [Green Version] - Pile, P.H.; Bart, S.; Chrien, R.E.; Millener, D.J.; Sutter, R.J.; Tsoupas, N.; Peng, J.-C.; Mishra, C.S.; Hungerford, E.V.; Reidy, J.; et al. Study of hypernuclei by associated production. Phys. Rev. Lett.
**1991**, 66, 2585. [Google Scholar] [CrossRef] - Ambartsumyan, V.A.; Saakyan, G.S. The degenerate superdense gas of elementary particles. Sov. Astron.
**1960**, 4, 187. [Google Scholar] - Champion, D.J.; Ransom, S.M.; Lazarus, P.; Camilo, F.; Bassa, C.; Kaspi, V.M.; Nice, D.J.; Freire, P.C.C.; Stairs, I.H.; van Leeuwen, J.; et al. An eccentric binary pulsar in the galatic plane. Science
**2008**, 320, 1309–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Demorest, P.; Pennucci, T.; Ransom, S.M.; Roberts, M.S.E.; Hessels, J.W.T. A two-solar-mass neutron star measured using Shapiro delay. Nature
**2010**, 467, 1081–1083. [Google Scholar] [CrossRef] - Antoniadis, J.; Freire, P.C.; Wex, N.; Tauris, T.M.; Lynch, R.S.; Van Kerkwijk, M.H.; Kramer, M.; Bassa, C.; Dhillon, V.S. A massive pulsar in a compact relativistic binary. Science
**2013**, 340, 1233232. [Google Scholar] [CrossRef] [Green Version] - Cromartie, H.T.; Fonseca, E.; Ransom, S.M.; Demorest, P.B.; Arzoumanian, Z.; Blumer, H.; Brook, P.R.; DeCesar, E.M.; Dolch, T.; Ellis, J.A.; et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat. Astron.
**2019**, 4, 72–76. [Google Scholar] [CrossRef] [Green Version] - Takatsuka, T.; Nishizaki, S.; Yamamoto, Y. Necessity of extra repulsion in hypernuclear systems: Suggestion from neutron stars. Eur. Phys. J. A
**2002**, 13, 213–215. [Google Scholar] [CrossRef] - Takatsuka, T.; Nishizaki, S.; Tamagaki, R. Three-body force as an extra repulsion suggested from hyperon- mixed neutron stars. Prog. Theor. Phys. Suppl.
**2008**, 174, 80–83. [Google Scholar] [CrossRef] - Vidaña, I.; Logoteta, D.; Providência, C.; Polls, A.; Bombaci, I. Estimation of the effect of hyperonic three-body forces on the maximum mass of neutron stars. Eur. Phys. Lett.
**2011**, 94, 11002. [Google Scholar] [CrossRef] [Green Version] - Yamamoto, Y.; Furumotom, T.; Yasutake, B.; Rijken, T.A. Multi-Pomeron repulsion and the neutron-star mass. Phys. Rev. C
**2013**, 88, 022801. [Google Scholar] [CrossRef] [Green Version] - Yamamoto, Y.; Furumoto, T.; Yasutake, B.; Rijken, T.A. Hyperon mixing and universal many-body repulsion in neutron stars. Phys. Rev. C
**2014**, 90, 045805. [Google Scholar] [CrossRef] [Green Version] - Lonardoni, D.; Lovato, A.; Gandolfi, S.; Pederiva, F. Hyperon puzzle: Hints from quantum Monte Carlo calculations. Phys. Rev. Lett.
**2014**, 114, 092301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Yamamoto, Y.; Furumoto, T.; Yasutake, N.; Rijken, T.A. Hyperon-mixed neutron star with universal many-body repulsion. Eur. Phys. J. A
**2016**, 52, 19. [Google Scholar] [CrossRef] [Green Version] - Yamamoto, Y.; Togashi, H.; Tamagawa, T.; Furumoto, T.; Yasutake, N.; Rijken, T.A. Neutron-star radii based on realistic nuclear interactions. Phys. Rev. C
**2017**, 96, 065804. [Google Scholar] [CrossRef] [Green Version] - Logoteta, D.; Vidaña, I.; Bombaci, I. Impact of chiral hyperonic three-body forces on neutron stars. Eur. Phys. J. A
**2019**, 55, 207. [Google Scholar] [CrossRef] - Burgio, G.F.; Baldo, M.; Sahu, P.K.; Schulze, H.-J. Hadron-quark phase transition in dense matter and neutron stars. Phys. Rev. C
**2002**, 66, 025802. [Google Scholar] [CrossRef] [Green Version] - Burgio, G.F.; Baldo, M.; Sahu, P.K.; Santra, A.B.; Schulze, H.-J. Maximum mass of neutron stars with a quark core. Phys. Lett. B
**2002**, 526, 19–26. [Google Scholar] [CrossRef] [Green Version] - Alford, M.; Blaschke, D.; Drago, A.; Klähn, T.; Pagliara, G.; Schaffner–Bielich, J. Quark matter in compact stars ? Nature
**2007**, 445, E7. [Google Scholar] [CrossRef] [PubMed] - Özel, F.; Psaltis, D.; Ransom, S.; Demorest, P.; Alford, M. The massive pulsar PSR J1614–2230: Linking quantum chromodynamics, gamma-ray bursts, and gravitational wave astronomy. Astrophys. J. Lett.
**2010**, 724, L199. [Google Scholar] [CrossRef] [Green Version] - Weissenborn, S.; Sagert, I.; Pagliara, G.; Hempel, M.; Schaeffner–Bielich, J. Quark matter in massive compact stars. Astophys. J. Lett.
**2011**, 740, L14. [Google Scholar] [CrossRef] - Schramm, S.; Negreiros, R.; Stenheimer, J.; Schürhoff, T.; Dexheimer, V. Properties and stability of hybrid stars. Act. Phys. Pol. B
**2012**, 43, 749. [Google Scholar] [CrossRef] - Bonanno, L.; Sedrakian, A. Composition and stability of hybrid stars with hyperons and quark color-superconductivity. Astron. Astrophys.
**2012**, 539, A16. [Google Scholar] [CrossRef] [Green Version] - Astowiecki, R.; Blaschke, D.; Grigorian, H.; Typel, S. Strangeness in the cores of neutron stars. Acta Phys. Polon. Suppl.
**2012**, 5, 535. [Google Scholar] [CrossRef] - Zdunik, J.L.; Haensel, P. Maximum mass of neutron stars and strange neutron-star cores. Astron. Astrophys.
**2013**, 551, A61. [Google Scholar] [CrossRef] - Klähn, T.; Blaschke, D.; Łastowiecki, D. Implications of the measurement of pulsars with two solar masses for quark matter in compact stars and heavy-ion collisions: A Nambu–Jona–Lasinio model case study. Phys. Rev. D
**2013**, 88, 085001. [Google Scholar] [CrossRef] [Green Version] - Shahrbaf, M.; Blaschke, D.; Grunfeld, A.G.; Moshfegh, H.R. First-order phase transition from hypernuclear matter to deconfined quark matter obeying new constraints from compact stars. Phys. Rev. C
**2020**, 101, 025807. [Google Scholar] [CrossRef] [Green Version] - Shahrbaf, M.; Blaschke, K.S. Mixed phase transition from hypernuclear matter to deconfined quark matter fulfilling mass-radius constraints of neutron stars. J. Phys. G Nucl. Part. Phys.
**2020**, 47, 115201. [Google Scholar] [CrossRef] - Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. The scenario of two families of compact stars. Part 1. Equations of state, mass-radius relations and binary systems. Eur. Phys. J. A
**2016**, 52, 40. [Google Scholar] [CrossRef] [Green Version] - Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. The scenario of two families of compact stars. Part 2: Transition from hadronic to quark matter and explosive phenomena. Eur. Phys. J. A
**2016**, 52, 41. [Google Scholar] [CrossRef] - Wiringa, R.B.; Stoks, V.G.J.; Schiavilla, R. Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C
**1995**, 51, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Isaka, M.; Yamamoto, Y.; Rijken, T.A. Effects of a hyperonic many-body force on B
_{Λ}values of hypernuclei. Phys. Rev. C**2017**, 95, 044308. [Google Scholar] [CrossRef] [Green Version] - Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron-quark crossover and massive hybrid stars with strangeness. Astrophys. J.
**2013**, 764, 12. [Google Scholar] [CrossRef] [Green Version] - Masuda, K.; Hatsuda, T.; Takatsuka, T. Hadron-quark crossover and massive hybrid stars. Prog. Theor. Exp. Phys.
**2013**, 7, 073D01. [Google Scholar] - Drago, A.; Lavagno, A.; Pagliara, G.; Pigato, D. Early appearance of Δ isobars in neutron stars. Phys. Rev. C
**2014**, 90, 065809. [Google Scholar] [CrossRef] - Ribes, P.; Ramos, A.; Tolós, L.; Gonzalez–Boquera, C.; Centelles, M. Interplay between Δ particles and hyperons in neutron stars. Astrophys. J.
**2019**, 883, 168. [Google Scholar] [CrossRef] - Kaplan, D.B.; Nelson, A.E. Strange goings on in dense nucleonic matter. Phys. Lett. B
**1986**, 175, 57–63. [Google Scholar] [CrossRef] - Kaplan, D.B.; Nelson, A.E. Erratum. Phys. Lett. B
**1986**, 179, 409. [Google Scholar] - Brown, G.E.; Lee, C.-H.; Rho, M.; Thorsson, V. From kaon-nuclear interactions to kaon condensation. Nucl. Phys. A
**1994**, 567, 937–956. [Google Scholar] [CrossRef] [Green Version] - Thorsson, V.; Prakash, M.; Lattimer, J.M. Composition, structure and evolution of neutron stars with kaon condensates. Nucl. Phys. A
**1994**, 572, 693–731. [Google Scholar] [CrossRef] [Green Version] - Lee, C.-H. Kaon condensation in dense stellar matter. Phys. Rep.
**1996**, 275, 255–341. [Google Scholar] [CrossRef] [Green Version] - Glendenning, N.K.; Schaffner-Bielich, J. Kaon condensation and dynamical nucleons in neutron stars. Phys. Rev. Lett.
**1998**, 81, 4564. [Google Scholar] [CrossRef] [Green Version] - Keil, W.; Janka, H.-T. Hadronic phase transitions at supranuclear densities and the delayed collapse of newly formed neutron stars. Astron. Astrophys.
**1996**, 296, 145. [Google Scholar] - Bombaci, I. The maximum mass of a neutron star. Astron. Astrophys.
**1996**, 305, 871. [Google Scholar] - Prakash, M.; Bombaci, I.; Prakash, M.; Ellis, P.J.; Knorren, R.; Lattimer, J.M. Composition and structure of proto-neutron stars. Phys. Rep.
**1997**, 280, 1–77. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Bombaci, I.; Polls, A.; Ramos, A. Microscopic study of neutrino trapping in hyperon stars. Astron. Astrophys.
**2003**, 399, 687–693. [Google Scholar] [CrossRef] - Burgio, G.F.; Schulze, H.-J.; Li, A. Hyperon stars at finite temperature in the Brueckner theory. Phys. Rev. C
**2011**, 83, 025804. [Google Scholar] [CrossRef] [Green Version] - Lattimer, J.M.; Pethick, C.J.; Prakash, M.; Haensel, P. Direct URCA process in neutron stars. Phys. Rev. Lett.
**1991**, 66, 2701. [Google Scholar] [CrossRef] - Balberg, S.; Barnea, N. S-wave pairing of Λ hyperons in dense matter. Phys. Rev. C
**1998**, 57, 409. [Google Scholar] [CrossRef] [Green Version] - Takatsuka, T.; Tamagaki, R. Superfluidity of Λ-hyperons admixed in neutron star cores. Prog. Theor. Phys.
**1999**, 102, 1043–1048. [Google Scholar] [CrossRef] [Green Version] - Takatsuka, T.; Nishizaki, S.; Yamamoto, Y.; Tamagaki, R. The possibility of hyperon superfluids in neutron star cores. Prog. Theor. Phys.
**2000**, 105, 179–184. [Google Scholar] [CrossRef] [Green Version] - Takatsuka, T.; Nishizaki, S.; Yamamoto, Y.; Tamagaki, R. Superfluidity of hyperon-mixed neutron stars. Prog. Theor. Phys. Suppl.
**2002**, 146, 279–288. [Google Scholar] [CrossRef] [Green Version] - Vidaña, I.; Tolós, L. Superfluidity of Σ
^{-}hyperons in β-stable neutron star matter. Phys. Rev. C**2004**, 70, 028802. [Google Scholar] [CrossRef] [Green Version] - Zhou, X.-R.; Schulze, H.-J.; Pan, F.; Drayer, J.P. Strong hyperon-nucleon pairing in neutron stars. Phys. Rev. Lett.
**2005**, 95, 051101. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wag, Y.N.; Shen, H. Superfluidity of Λ-hyperons in neutron stars. Phys. Rev. C
**2010**, 81, 025801. [Google Scholar] - Lindblom, L. Estimates of the maximum angular velocity of rotating neutron stars. Astrophys. J.
**1986**, 303, 146–153. [Google Scholar] [CrossRef] - Friedman, J.L.; Ipser, J.R.; Parker, L. Rapidly rotating neutron star models. Astrophys. J.
**1986**, 304, 115–139. [Google Scholar] [CrossRef] - Lindblom, L. Critical angular velocities of rotating neutron stars. Astrophys. J.
**1995**, 438, 265–268. [Google Scholar] [CrossRef] - Anderson, N. A new class of unstable modes of rotating relativistic stars. Astrophys. J.
**1998**, 502, 708. [Google Scholar] [CrossRef] [Green Version] - Friedman, J.L.; Morsink, S.M. Axial instability of rotating relativistic stars. Astrophys. J.
**1998**, 502, 714. [Google Scholar] [CrossRef] [Green Version] - Chandrasekhar, S. Solutions of two problems in the theory of gravitational radiation. Phys. Rev. Lett.
**1970**, 24, 611. [Google Scholar] [CrossRef] - Friedman, J.L.; Schutz, B.F. Lagrangian perturbation theory of non-relativistic fluids. Astrophys. J.
**1978**, 221, 937–957. [Google Scholar] [CrossRef] - Friedman, J.L.; Schutz, B.F. Secular instability of rotating Newtonian stars. Astrophys. J.
**1978**, 222, 281–296. [Google Scholar] [CrossRef] [Green Version] - Langer, W.D.; Cameron, A.G.W. Effects of hyperons on the vibrations of neutron stars. Astrophys. Space Sci.
**1969**, 5, 213–253. [Google Scholar] [CrossRef] - Jones, P.B. Astrophysical significance of the dissipation of turbulence in a dense baryon fluid. Proc. R. Soc. Lond. A
**1971**, 323, 111–125. [Google Scholar] - Levin, Y. Runaway heating by R-modes of neutron stars in low-mass X-ray binaries. Astrophys. J.
**1999**, 517, 328. [Google Scholar] [CrossRef] [Green Version] - Jones, P.B. Comment on “gravitational radiation instability in hot young neutron stars”. Phys. Rev. Lett.
**2001**, 86, 1384. [Google Scholar] [CrossRef] - Jones, P.B. Bulk viscosity of neutron-star matter. Phys. Rev. D
**2001**, 64, 084003. [Google Scholar] [CrossRef] - Lindblom, L.; Owen, B.J. Effect of hyperon bulk viscosity on neutron star r-modes. Phys. Rev. D
**2002**, 65, 0653006. [Google Scholar] [CrossRef] [Green Version] - Haensel, P.; Levenfish, K.P.; Yakovlev, D.G. Bulk viscosity in superfluid neutron star cores. Astron. Astrophys.
**2002**, 381, 1080–1089. [Google Scholar] [CrossRef] - Van Dalen, E.N.E.; Dieperink, A.E. Bulk viscosity in neutron stars from hyperons. Phys. Rev. C
**2004**, 69, 025802. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, D.; Bandyopadhyay, D. Effect of hyperon-hyperon interaction on bulk viscosity and r-mode instability in neutron stars. Phys. Rev. D
**2006**, 74, 023003. [Google Scholar] [CrossRef] [Green Version] - Bondarescu, R.; Teukolsky, S.A.; Wasserman, I. Spin evolution of accreting neutron stars: Nonlinear development of the r-mode instability. Phys. Rev. D
**2007**, 76, 064019. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, D.; Bandyopadhyay, D. Hyperon bulk viscosity in the presence of antikaon condensate. Astrophys. J.
**2008**, 680, 686. [Google Scholar] [CrossRef] - Gusakov, M.E.; Kantor, E.M. Bulk viscosity of superfluid hyperon stars. Phys. Rev. D
**2008**, 78, 083006. [Google Scholar] [CrossRef] [Green Version] - Sinha, M.; Bandyopadhyay, D. Hyperon bulk viscosity in strong magnetic fields. Phys. Rev. D
**2009**, 79, 123001. [Google Scholar] [CrossRef] [Green Version] - Patruno, A. The accreting millisecond X-ray pulsar IGR J00291 + 5934: Evidence for a long timescale Spin evolution. Astrophys. J.
**2010**, 722, 909. [Google Scholar] [CrossRef] [Green Version] - Jha, T.K.; Mishra, H.; Sreekanth, V. Bulk viscosity in a hyperonic star and r-mode instability. Phys. Rev. C
**2010**, 82, 025803. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Momentum transferred to the $\Lambda $ as a function of the incident particle momentum for the elementary process $n({K}^{-},{\pi}^{-})\Lambda $, $n({\pi}^{+},{K}^{+})\Lambda $ and $p(\gamma ,{K}^{+})\Lambda $ at ${0}^{0}$. Figure adapted from [108].

**Figure 2.**Energy of a $\Lambda $ hyperon in the single-particle states $s,p,d,f$ and g of several hypernuclei as a function of ${A}^{-2/3}$ deduced from emulsion, $({K}^{-},{\pi}^{-})$ and $({\pi}^{+},{K}^{+})$ reactions. The lines are drawn just to help the reader.

**Figure 3.**Level scheme and $\gamma $-ray transitions and ${}_{\Lambda}^{16}$O measured at BNL. Figure adapted from [116].

**Figure 4.**Weak decay rate $\Gamma $ as a function of the total number of particles in units of the weak decay rate of the $\Lambda $ in free space ${\Gamma}_{\Lambda}^{\mathrm{free}}$. Dot, dashed and solid lines show, respectively, the theoretical predictions of the mesonic ${\Gamma}_{M}$, non-mesonic ${\Gamma}_{NM}$ and total ${\Gamma}_{T}$ decay rates. Dot-dashed lines labeled ${\Gamma}_{1}$ and ${\Gamma}_{2}$ display the contributions of one-nucleon and two-nucleon induced decay modes to the non-mesonic decay rate (see Equations (10) and (11)). Experimental values of the total and non-mesonic decay rates are given by the squares and circle marks, respectively. Figure adapted from the original one in [123].

**Figure 5.**BHF approximation of the finite nucleus $\Lambda $ self-energy (

**a**), split into the sum of a first order contribution (

**b**) and a second order 2p1h correction (

**c**).

**Figure 6.**Gravitational mass as a function of the baryonic mass for neutrino-free (solid lines) and neutrino-trapped (dashed lines) matter. Panel (

**a**) shows the results for matter containing nucleons and hyperons, whereas the results for pure nucleonic matter are shown in panel (

**b**). Dotted horizontal and vertical lines show the window of metastability in the gravitational and baryonic masses. Figure adapted from [197].

**Figure 7.**Panel (

**a**): r-mode instability region for a pure nucleonic and a hyperonic star with $1.27{M}_{\odot}$. The frequency of the mode is taken as $\omega ={10}^{4}$ s${}^{-1}$. Panel (

**b**): Bulk viscosity as a function of the density for $T={10}^{9}$ K and $\omega ={10}^{4}$ s${}^{-1}$. Contributions from the direct and modified nucleonic Urca processes as well as from the weak non-leptonic process $n+n\leftrightarrow p+{\Sigma}^{-}$ are included.

**Table 1.**Energy of the $\Lambda $ single-particle bound states for several hypernuclei from ${}_{\Lambda}^{5}$He to ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{209}$Pb. Results are shown for the chiral $YN$ interactions NLO13 [58] and NLO19 [59] of the Jülich–Bonn–Munich group for different values of the cutoff of the interaction. Available experimental data [107,152] for the closest measured hypernuclei are included. ${}^{\u2020}$ The weak signal for ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{40}$Ca [153] is not included in the recent compilation in [107].

NLO13 | NLO19 | Exp. | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|

Cutoff (MeV) | 500 | 550 | 600 | 650 | 700 | 500 | 550 | 600 | 650 | 700 | |

${}_{\Lambda}^{5}$He | ${}_{\Lambda}^{5}$He | ||||||||||

${s}_{1/2}$ | $-0.73$ | $-0.15$ | $-0.63$ | $-2.36$ | $-4.90$ | $-2.16$ | $-1.36$ | $-1.77$ | $-3.42$ | $-5.63$ | $-3.12\left(2\right)$ |

${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{13}$C | ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{13}$C | ||||||||||

${s}_{1/2}$ | $-4.44$ | $-2.24$ | $-3.72$ | $-8.91$ | $-13.40$ | $-8.91$ | $-6.42$ | $-7.22$ | $-10.81$ | $-14.98$ | $-11.69\left(12\right)$ |

${p}_{3/2}$ | − | − | − | − | $-1.22$ | − | − | − | $-0.12$ | $-1.76$ | $-0.8\left(3\right)$ (p) |

${p}_{1/2}$ | − | − | − | − | $-0.97$ | − | − | − | − | $-1.40$ | |

${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{17}$O | ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{16}$O | ||||||||||

${s}_{1/2}$ | $-6.07$ | $-3.46$ | $-5.35$ | $-10.51$ | $-16.37$ | $-11.46$ | $-8.61$ | $-9.55$ | $-13.60$ | $-18.18$ | $-13.0\left(2\right)$ |

${p}_{3/2}$ | − | − | − | $-1.22$ | $-4.04$ | $-1.26$ | $-0.14$ | $-0.53$ | $-2.40$ | $-4.89$ | $-2.5\left(2\right)$ (p) |

${p}_{1/2}$ | − | − | − | $-0.66$ | $-3.31$ | $-0.51$ | − | − | $-1.69$ | $-4.10$ | |

${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{41}$Ca | ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{40}$Ca | ||||||||||

${s}_{1/2}$ | $-12.37$ | $-8.78$ | $-11.24$ | $-17.56$ | $-24.36$ | $-19.51$ | $-15.86$ | $-16.80$ | $-21.30$ | $-26.47$ | $-18.7\left(1.1\right){\phantom{\rule{0.166667em}{0ex}}}^{\u2020}$ |

${p}_{3/2}$ | $-4.95$ | $-2.54$ | $-3.98$ | $-8.82$ | $-13.43$ | $-9.91$ | $-6.93$ | $-7.48$ | $-11.04$ | $-15.06$ | $-11.0\left(5\right)$ (p) |

${p}_{1/2}$ | $-4.37$ | $-2.08$ | $-3.50$ | $-7.73$ | $-12.87$ | $-9.13$ | $-6.23$ | $-6.82$ | $-10.42$ | $-14.47$ | |

${d}_{5/2}$ | − | − | − | $-0.40$ | $-3.59$ | $-1.47$ | − | − | $-1.99$ | $-4.67$ | $-1.0\left(5\right)$ (d) |

${d}_{3/2}$ | − | − | − | $-0.50$ | $-4.02$ | $-0.56$ | − | − | $-1.20$ | $-3.84$ | |

${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{91}$Zr | ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{89}$Y | ||||||||||

${s}_{1/2}$ | $-19.36$ | $-14.66$ | $-17.83$ | $-25.10$ | $-32.50$ | $-27.72$ | $-22.57$ | $-23.19$ | $-28.94$ | $-34.61$ | $-23.6\left(5\right)$ |

${p}_{3/2}$ | $-14.24$ | $-10.59$ | $-13.27$ | $-19.27$ | $-25.45$ | $-20.59$ | $-16.24$ | $-16.94$ | $-22.05$ | $-26.96$ | $17.7\left(6\right)$ (p) |

${p}_{1/2}$ | $-13.95$ | $-10.39$ | $-13.05$ | $-19.07$ | $-25.31$ | $-20.45$ | $-15.96$ | $-16.67$ | $-21.86$ | $-26.82$ | |

${d}_{5/2}$ | $-6.21$ | $-3.33$ | $-5.24$ | $-10.30$ | $-15.27$ | $-11.92$ | $-8.10$ | $-8.44$ | $-12.68$ | $-16.78$ | $-10.9\left(6\right)$ (d) |

${d}_{3/2}$ | $-5.80$ | $-2.98$ | $-4.88$ | $-9.70$ | $-14.97$ | $-11.65$ | $-7.61$ | $-7.98$ | $-12.27$ | $-16.40$ | |

${f}_{7/2}$ | − | − | − | $-1.68$ | $-5.63$ | $-4.04$ | $-0.98$ | $-0.89$ | $-3.97$ | $-7.04$ | $-3.7\left(6\right)$ (f) |

${f}_{5/2}$ | − | − | − | $-1.28$ | $-5.23$ | $-3.59$ | $-0.33$ | $-0.28$ | $3.39$ | $-6.54$ | |

${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{209}$Pb | ${}_{\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\phantom{\rule{0.166667em}{0ex}}\Lambda}^{208}$Pb | ||||||||||

${s}_{1/2}$ | $-25.75$ | $-21.41$ | $-25.09$ | $-32.28$ | $-39.51$ | $-36.28$ | $-29.50$ | $-29.60$ | $-35.84$ | $-41.58$ | $-26.9\left(8\right)$ |

${p}_{3/2}$ | $-21.88$ | $-15.77$ | $-18.33$ | $-25.13$ | $-31.83$ | $-33.72$ | $-26.73$ | $-25.27$ | $-30.26$ | $-34.71$ | $-22.5\left(6\right)$ (p) |

${p}_{1/2}$ | $-21.55$ | $-15.53$ | $-18.14$ | $-25.00$ | $-31.74$ | $-33.58$ | $-26.57$ | $-25.13$ | $-30.17$ | $-34.64$ | |

${d}_{5/2}$ | $-14.47$ | $-8.79$ | $-9.96$ | $-14.78$ | $-19.98$ | $-25.49$ | $-19.28$ | $-16.84$ | $-20.08$ | $-23.15$ | $-17.4\left(7\right)$ (d) |

${d}_{3/2}$ | $-14.35$ | $-8.71$ | $-9.83$ | $-14.62$ | $-19.83$ | $-25.29$ | $-18.98$ | $-16.57$ | $-19.85$ | $-22.97$ | |

${f}_{7/2}$ | $-4.46$ | − | − | $-5.91$ | $-12.57$ | $-16.23$ | $-10.15$ | $-7.91$ | $-11.90$ | $-15.80$ | $-12.3\left(6\right)$ (f) |

${f}_{5/2}$ | $-4.42$ | − | − | $-5.60$ | $-12.24$ | $-15.96$ | $-9.70$ | $-7.47$ | $-11.47$ | $-15.38$ | |

${g}_{9/2}$ | $-1.87$ | − | − | $-3.23$ | $-9.21$ | $-13.72$ | $-7.55$ | $-5.18$ | $-8.92$ | $-12.32$ | $-7.2\left(6\right)$ (g) |

${g}_{7/2}$ | $-1.38$ | − | − | $-2.91$ | $-8.94$ | $-13.38$ | $-7.03$ | $-4.69$ | $-8.53$ | $-12.00$ |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vidaña, I.
Hyperons in Finite and Infinite Nuclear Systems. *Universe* **2021**, *7*, 376.
https://doi.org/10.3390/universe7100376

**AMA Style**

Vidaña I.
Hyperons in Finite and Infinite Nuclear Systems. *Universe*. 2021; 7(10):376.
https://doi.org/10.3390/universe7100376

**Chicago/Turabian Style**

Vidaña, Isaac.
2021. "Hyperons in Finite and Infinite Nuclear Systems" *Universe* 7, no. 10: 376.
https://doi.org/10.3390/universe7100376