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Abstract: Ringdown gravitational waves of compact object binaries observed by ground-based
gravitational-wave detectors encapsulate rich information to understand remnant objects after the
merger and to test general relativity in the strong field. In this work, we investigate the ringdown
gravitational waves in detail to better understand their property, assuming that the remnant objects
are black holes. For this purpose, we perform numerical simulations of post-merger phase of
binary black holes by using the black hole perturbation scheme with the initial data given under
the close-limit approximation, and we generate data of ringdown gravitational waves with smaller
numerical errors than that associated with currently available numerical relativity simulations. Based
on the analysis of the data, we propose an orthonormalization of the quasinormal mode functions
describing the fundamental tone and overtones to model ringdown gravitational waves. Finally,
through some demonstrations of the proposed model, we briefly discuss the prospects for ringdown
gravitational-wave data analysis including the overtones of quasinormal modes.

Keywords: gravitational waves; quasinormal modes; black hole perturbation; binary black holes;
general relativity

1. Introduction

The remnant of merging black holes (BHs) is a perturbed compact object (a Kerr
BH [1], or even something more exotic) characterized by the set of complex frequencies
known as quasinormal modes (QNMs), and the gravitational radiation from this remnant
is called the ringdown phase of gravitational waves (GWs). Ringdown GWs from binary
BH mergers are now routinely detected by ground-based GW detectors, such as Advanced
LIGO and Virgo [2,3]. An accurate measurement of QNMs encoded in the ringdown signal,
therefore, offers various GR tests regarding the compact object, for example, to disclose
the remnant property (the ergo region of Kerr geometry [4–6], ringdown test of general
relativity (GR) [7], etc.), and to verify GR itself in the strong-field regime; we refer readers
to Ref. [8] for a review of the BH QNMs, and Ref. [9] for that of the ringdown GWs.

The theoretical investigation of QNMs has a long history since early 1970, includ-
ing Vishveshwara [10], Press [11], Teukolsky and Press [12], and Chandrasekhar and
Detweiler [13], and Detweiler [14]. In the 1980s, Detweiler [15] basically completed the
analysis of QNMs for Kerr BHs. Leaver [16] gave a standard method to calculate the QNM
frequencies very accurately (also see, e.g., Refs. [17–19], for more modern techniques to
compute QNMs, motivated by the recent development in the BH perturbation theory or
high-energy physics).

At the same time, the work on the data analysis of ringdown GWs also goes back to
the 1980s. Echeverria [20] and Finn [21] showed that one can indeed extract information
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of the mass and spin of the remnant Kerr BH from the ringdown signals. Flanagan and
Hughes [22,23] evaluated the signal-to-noise ratio (SNR) and parameter estimation errors
for practical GW detectors. Creighton [24] analyzed data from the Caltech 40-m prototype
interferometer with a single-filter search. Arnaud et al. [25] and Nakano et al. [26,27]
developed effective search methods of ringdown GWs. Tsunesada et al. [28–30] discussed
the detection efficiency, event selection, and parameter estimation of TAMA 300 (‘prototype’
KAGRA) data [31] in the matched filtering analysis. The LIGO-Virgo data in 2005 and
the LIGO-Virgo data in 2005–2010 were analyzed in Refs. [32,33], respectively (also see
Refs. [34–38] for the earlier related works).

Among that orderly development, the first direct GW detection of merging binary BHs:
GW150914 [39] has particularly burst the activity of QNMs and the ringdown GW data
analysis. In Ref. [40], three tests of GR involving the ringdown phase were attempted for
GW150914: consistency test between the remnant BH parameters evaluated by the inspiral
and post-inspiral signals; consistency check between the remnant BH parameters predicted
from an inspiral-merger-ringdown waveform in GR and evaluated by the least-damped
QNM; and constraining deviations from GR with a parametrized waveform model. This
analysis was based on the leading order, longest-lived QNM, i.e., the (` = 2, m = 2, n = 0)
mode; here, (`, m) are angular indices, and n shows the overtone index. (From this point
onward, we refer to n = 0 mode as the fundamental tone, while we refer to n ≥ 1 mode as
the overtone.), and it was a mainstream strategy for the ringdown GW data analysis (see,
e.g., Ref. [41], in the context of multiband GW observation with B-DECIGO [42–45]).

Nevertheless, Berti et al. [46] showed that the ringdown analysis with only (` = 2,
m = 2, n = 0) mode can lose 10% of potential LIGO events, and the recent development
has indeed revealed the importance of including QNM overtones in the ringdown GW
analysis. Notably, Giesler et al. [47] demonstrated that one can have a larger SNR for the
ringdown phase and better parameter estimations of the remnant BH with enough QNM
tones up to n = 7 (also see Refs. [48–50] for earlier work). The study was followed up
with more detailed theoretical investigation [51–58] to consider the QNM fits including
overtones to the numerical relativity (NR) waveforms of binary BH mergers [59–61] after
the time of peak amplitude (of some waveform quantity). The observational impacts of
including QNM overtones in the ringdown GW analysis are examined for GW150914 [62]
and for GW190521 [63], but the strong contribution of overtones and higher harmonics
was not found in the ringdown signal. Because GW190521 with a total mass of 150 M�
is the heaviest binary BH merger observed to date and its signal are dominated by the
merger and ringdown phases, three ringdown models were particularly considered in this
case [64]: a single damped sinusoid, a set of the (` = 2, m = 2) QNM fundamental tone
and overtones, i.e., n = 0, 1, 2, and a set of all fundamental tone of the QNMs up to the
` = 4 harmonic mode by taking the QNM starting time into account (also see Ref. [65]
about testing GR with ringdown GWs for binary BH events in GWTC-2 [2]).

To data, the contribution of QNM overtones to the ringdown has been largely in-
vestigated relying on the NR waveforms as a reference signal. Although NR waveforms
‘exactly’ describe the ringdown phase of the BH mergers, still, the relative error in the NR
strain data would be typically limited at ∼10−4 around the time of peak amplitude (see
Figure 2 of Ref. [47]), according to a publicly available NR catalogue of “SXS Gravitational
Waveform Database” [66]; also see other NR catalogues including “CCRG@RIT Catalog of
Numerical Simulations” [67], “Georgia tech catalog of gravitational waveforms” [68], and
“SACRA Gravitational Waveform Data Bank” [69].

Interestingly, it is found that the dominant (` = 2, m = 2) mode after the time of
the peak amplitude could be fitted by only the QNM fundamental tone and overtones
in the linearized perturbation around the remnant BH spacetime, making use of precise
NR waveforms [70–72]. This facts implies that the second and higher order QNMs would
not be excited enough, at least in the (` = 2, m = 2) mode (we note, however, that the
second order QNMs due to the self-coupling of the first-order, e.g., (` = 2, m = 2) mode
was already identified in the (` = 4, m = 4) mode of the NR waveforms [73]; also see,
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e.g., Refs. [74–76], for earlier works on the second order QNMs). This motivates us to work
with the close-limit approximation to the binary BH merges, proposed in the seminal work
by Price and Pullin [77], and Abrahams and Prices [78].

The close-limit approximation describes the last stage of a binary BH coalescence as a
perturbation of a single (remnant) BH, demonstrating a remarkably good agreement with
full NR simulation [79,80]; other recent applications of close-limit approximations are, for
example, for the initial data of the NR simulation [81] and for binary BH mergers beyond
GR [82]. A particularly relevant aspect of the closed-limit approximation here is that the
approximated system can be evolved highly accurately in the framework of the linear BH
perturbation theory. A range of methods for numerically evolving the linearized Einstein
equation is described in literature, and the numerical accuracy that we can achieve in this
work is at the level of 10−7 in the GW strain data at the time of the peak amplitude and
10−13 in the late time of simulations (see Figure 2). Therefore, our close-limit waveforms in
the BH perturbation approach allow us the more depth study regarding to the QNM fit
than using NR waveform with numerically accuracy available for now.

This paper is organized as follows. In Section 2, we briefly review the close-limit
approximation of the post-Newtonian (PN) metric [83], which we use to prepare the initial
data for the BH perturbation calculation. In the calculation presented in this work, for
simplicity, we focus on the head-on collision of non-spinning binary BHs. Therefore, the
remnant BH can be considered as a (non-spinning) Schwarzschild BH. Our numerical
method in the BH perturbation approach is presented in Section 3, where we carefully
check the numerical accuracy. In Section 4, we propose a modified QNM fitting formula by
introducing an orthonormal set of mode function to analyze the ringdown waveforms. In
Section 5, we use the QNM fitting formulae in Section 4 and apply them to the GW data
obtained in Section 3. We will find the late-time power-law tail [84] in the fit residuals,
as well as a convergent behavior for the modified QNM fitting formula. In Section 6, we
summarize our analysis, and discuss some applications. A brief analysis of the dominant
(` = 2, m = 2) mode of NR waveforms for non-precessing binary BHs and the fitting with
the QNMs overtones is given in Appendices A and B. Here, we find some problematic
behavior in NR waveforms for the cases with a highly spinning remnant BH, and this is
discussed in Appendix C.

Throughout this paper, we adopt the negative metric signature (−+++), geometrized
units with c = G = 1, except in Section 2. The coordinates, xα = {ct, r, θ, ϕ}, are used
as the Schwarzschild coordinates for Schwarzschild spacetime and the Boyer-Lindquist
coordinates for Kerr spacetime.

2. Post-Newtonian Initial Conditions in the Close Limit: Head-On Collisions

We wish to describe the evolution of non-spinning binary BHs in its last stage, making
use of the close-limit approximation starting from a given initial condition. For this purpose,
we adopt the close-limit form of the post-Newtonian metric for two non-spinning BHs (or
point particles) of masses mA (A = 1, 2) derived by Le Tiec and Blanchet [83]. This close-
limit, PN metric is particularly convenient to examine the ringdown phase of asymmetric
mass-ratio binaries. To set the stage for our analysis, we review their essential discussion
and results here.

We assume that the binary system admits two different (dimensionless) small pa-
rameters. The first one is the close-limit parameter [77,78,80,85–87] in which the binary
separation r12 is sufficiently small compared to the distance r from any field point to a
reference source point (e.g., the center of mass of the system):

εCL ∼
r12

r
� 1 . (1)

The other is the post-Newtonian (PN) parameter [88–91] where the typical value of
the relative orbital velocity v12 is small enough compared to the speed of light (or that of
the separation between two masses r12 is sufficiently large):
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εPN ∼
v2

12
c2 ∼

GM
c2r12

� 1 . (2)

Here, M = m1 + m2 is the total mass of the binary system, and we shall say that a
term relative to O(εN

PN) is Nth PN order. We note that the PN expansion is valid when
r � r12/

√
GM/(c2r12) that defines the (so-named) near-zone.

The crux of this approach is that the metric of the binary system is formally expanded
in powers of both in εCL and εPN (though the close-limit approximation would imply
r12 & GM/c2, i.e., εPN . 1 [84]; also see Refs. [83,92,93] for an elaboration of this double
expansion). This allows us to recast the (late inspiral phase of) PN binary spacetime to a
PN vacuum perturbation of the single Schwarzschild spacetime. Specifically, we work with
the 2PN near-zone metric gPN

µν of two point masses [94–97], and then further expand it in
the power of εCL. The resultant metric can be manipulated to be identified with

gPN
µν = gSchw.

µν + hµν , (3)

where gSchw.
µν is the Schwarzschild metric with mass M, and hµν is the perturbation that

takes the schematic form

hµν = G
2

∑
n=0

∑
k≥0

h(n, k)
µν εn

PN εk+1
CL + O(G2) . (4)

We note that this expression is truncated at O(G) so that hµν consistently satisfies the
linearized Einstein equation to the 2PN order. The general explicit expressions for the
coefficients h(n, k)

µν are too unwieldy to be presented here; the expressions up to k = 2 in the
(slightly altered) Cartesian harmonic coordinates are listed in Equation (2.12) of Ref. [83],
for example.

Because the Schwarzschild spacetime is spherically symmetric, the angular depen-
dence of hµν in Equation (4) can be conveniently separated to decompose it in a given
tensor spherical harmonics. Using a standard Schwarzschild coordinates, this mode de-
composition takes a form (e.g., Section 4.2 of Ref. [98])

hµν =
10

∑
i=1

∑
`, m

h̄(i), `m(t, r)Y(i), `m
µν (θ, ϕ) , (5)

where Y(i), `m
µν is a basis of tensor spherical harmonics. A set of 10 time-radial functions

h̄(i), `m further decouples into two subsets: seven for even-parity perturbations, and three for
odd-parity ones, depending on whether they are “even” or “odd” under the transformation
(θ, ϕ)→ (π − θ, π + ϕ).

Model Problem: Head-On Collisions of Two Non-Spinning Black Holes

We now specialize the close-limit, 2PN metric to a head-on collision of two non-
spinning BHs. The head-on collision is not an astrophysically relevant scenario, but it
provides a useful and simple example to explore the ringdown radiation with a good
numerical accuracy in the remaining sections.

We adopt the notations of Le Tiec and Blanchet (Section 3 of Ref. [83]) and work with
the Regge-Wheeler basis of tensor Spherical harmonics and in the Regge-Wheeler gauge to
simplify the expressions [99] (also see Appendix A of Ref. [100]). In the case of the head-on
collision, the odd-parity perturbations are identically zero, and the non-trivial components
of even-parity perturbations (in the Regge-Wheeler gauge) are:
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h00 =

(
1− 2M

r

)
∑
`, m

H̃`m
0 Y`m , (6)

hrr =

(
1− 2M

r

)−1

∑
`, m

H̃`m
2 Y`m , (7)

hϕϕ = hθθ sin2 θ = r2 ∑
`, m

K̃`m sin2 θ Y`m . (8)

We then read off H̃`m
0 , H̃`m

2 and K̃`m from the close-limit expansion to the 2PN metric
in Equation (4). To model the ringdown radiation yet in the simple setup, we shall consider
only the ` = 2 and 3 perturbations that satisfy the linearized Einstein equations at the
first order in the (symmetric) mass ratio ν ≡ m1m2/M2 up to terms O(G2, c

6
, r4

12). This
restriction gives

H̃`m
0 ≡ H̃`m = H̃`m

2 . (9)

With this relation, the explicit expressions of ` = 2 components on the time symmetric
initial surface are (Equation (3.6) of Ref. [83]; r12 is the binary’s separation, and we assume
that the relative orbital velocity v12, orbital angular velocity ω12, and the orbital phase β
are all zero):

H̃2,0
CL =− 2

√
π

5
ν

M r2
12

r3 = K̃2,0
CL ,

H̃2,±2
CL =−

√
3
2

H̃2,0
CL ,

K̃2,±2
CL =−

√
3
2

K̃2,0
CL , (10)

and those of ` = 3 components are:

H̃3,±1
CL =∓

√
3π

7
ν

δMr3
12

r4 = K̃3,±1
CL ,

H̃3,±3
CL =−

√
5
3

H̃3,±1
CL ,

K̃3,±3
CL =−

√
5
3

K̃3,±1
CL , (11)

with δM ≡ m1 −m2.

3. Numerical Method

In this section, we shall use the close-limit, 2PN metric in Equations (10) and (11) (in
the Regge-Wheeler gauge) as initial data and numerically evolve it with the time-domain
(TD) implementation of the Regge-Wheeler-Zerilli equations, to obtain the associated
ringdown waveform.

Before proceeding, we note that Equation (10) in the equal-mass limit (ν = 1/4)
essentially agrees with the Brill-Lindquist geometry for the head-on collision [101], after a
certain coordinate adjustment to the initial separation r12. This will provide reassurance
that the physics in our TD numerical waveform should be largely independent of our
specific choice of the PN initial data (see Section 5 of Ref. [83] for further elaboration).

3.1. Initial Data and Gravitational Waveform in Terms of Master Functions

In the practical implementation, it is more preferable to use gauge-invariant master
functions that can be constructed from H̃`m

CL and K̃`m
CL in the Regge-Wheeler gauge. For even-
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parity perturbations, we use (the Regge-Wheeler-gauge expression for) the Zerilli-Moncrief
function given by (Equation (5.1) of Ref. [83]; also see Equation (126) of Ref. [98])

Ψ`m =
r

2(λ` + 1)

[
K̃`m +

r− 2M
λ` r + 3M

(
H̃`m − r ∂rK̃`m

)]
, (12)

where λ` ≡ (`− 1)(`+ 2)/2. Substituting Equations (10) and (11) into this, the ` = 2 and
3 multipolar coefficients for the head-on collisions are then translated to

Ψ2, 0 =
1
3

√
π

5
νM

r2
12
r2

5M− 6r
3M + 2r

, (13)

Ψ3,±1 = ±1
4

√
π

21
νδM

r3
12
r3

7M− 10r
3M + 5r

, (14)

with Ψ2,±2 = −
√

3/2 Ψ2, 0 and Ψ3,±3 = −
√

5/3 Ψ3,±1.
Furthermore, the Zerilli-Moncrief function in Equation (12) is directly related to the

GW strain

h+ − ih× = ∑
`,m

√
(`− 1)`(`+ 1)(`+ 2)

r
Ψ`m(t, r) −2Y`m(θ, ϕ) , (15)

where −2Y`m is the spin-weighted spherical harmonics with s = −2 (note that the contri-
bution from the odd-parity perturbation identically vanishes in the case of the head-on
collision). To avoid the dependence of the polarization on the observer’s location, we focus
on Ψ`m in the remaining sections.

3.2. Time Domain Integration of the Zerilli Equation

In our model problem of the head-on collision, the Zerilli-Moncrief function Ψ`m

satisfies the homogeneous Zerilli equation. We write the equation in the double null
coordinates, in practice, [

∂2

∂u∂v
+

1
4

VZ
` (r)

]
Ψ`m(u, v) = 0 , (16)

where u = t− r∗, and v = t + r∗, with the tortoise coordinate r∗ = r + 2M ln[r/(2M)− 1],
and

VZ
` =

(
1− 2M

r

)[
`(`+ 1)

r2 − 6M
r3

λ`(λ` + 2) r2 + 3M(r−M)

(λ` r + 3M)2

]
(17)

is the Zerilli potential.
To evolve Equation (16), we use the finite-difference scheme developed by Lousto and

Price [102]. We introduce an uniform null grid in the 1 + 1 numerical domain as the left
panel of Figure 1. Consider a grid cell with the size of h× h in the domain. Integrating
Equation (16) over the cell gives

Ψ1 −Ψ2 −Ψ3 + Ψ4 +
h2

8
VZ
` (rc)(Ψ2 + Ψ3) + O(h4) = 0 , (18)

where rc is the value of r at the center of the cell, and Ψi for i = 1, 2, 3, 4 correspond to the
values of Ψ (we have omitted the indices (`, m) here) at the vertices of the cell in the right
panel of Figure 1. By using the above equation, we can obtain Ψ1 from Ψ2, Ψ3 and Ψ4 with
the local error term of O(h4),

Ψ1 = Ψ2 + Ψ3 −Ψ4 −
h2

8
VZ
` (rc)(Ψ2 + Ψ3) + O(h4) . (19)
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The local error is accumulated through the integration over v and u to give a global
error of O(h2).

The finite-difference scheme on the initial surface should be derived separately. To
implement the time-symmetric initial conditions in Equations (13) and (14), we also assume
the time symmetry on the initial surface; therefore, ∂tΨ|t=t0 = 0, which leads to

Ψ1 = Ψ4 + O(h3) , (20)

if the vertices 2 and 3 are on the surface. From this relation, we find that the finite-difference
scheme on the initial surface is

Ψ1 =
Ψ2 + Ψ3

2
− h2

16
VZ
` (rc)(Ψ2 + Ψ3) + O(h3) . (21)

While the local error term in this case is O(h3), it eventually gives the global error of
O(h2) because the error is accumulated only over the initial surface. Hence, the convergence
of our numerical solution through the finite difference scheme in Equations (19) and (21) is
quadratic with respect to h (see Figure 2 below).

Initial surface t=ti

v=v
f

t

r*

vu

1

2 3

4

c

h h

Figure 1. (Left) Schematic picture of the numerical domain in the double null coordinates, (u =

t− r∗, v = t + r∗). We impose the close-limit, PN initial condition in Equations (13) and (14) on
the surface with t = ti (the bold dashed line) and extract the waveform on the surface with v = v f
(the bold solid line). (Right) A cell in the numerical domain with the size of h× h, where h is the
resolution, and C denotes the center of the cell.

3.3. Simulation Parameters

In this paper, we calculate the Zerilli-Moncrief function with the close-limit, 2PN
initial data for head-on collisions of two non-spinning BHs in the following two cases:

• Case A: an equal mass collision with the initial separation of r12 = 3.5M.
• Case B: an asymmetric mass collision with the mass ratio of ν = 0.2 and the initial

separation of r12 = 4.4M.

These system parameters are chosen so that they agree with those employed in
Ref. [83]. In case A, we focus only on (` = 2, m = 0) mode because (` = 2, m = ±2)
modes are just proportional to this mode. Similarly, in case B, we look at only (` = 3, m = 1)
modes because (` = 3, m = −1) differs by only an overall minus sign, and (` = 3, m = ±3)
modes are proportional to that mode; recall Equations (13) and (14).
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Ψh= 0.04 −Ψh= 0.08

Ψh= 0.02 −Ψh= 0.04

Ψh= 0.01 −Ψh= 0.02

Ψh= 0.005 −Ψh= 0.01

Figure 2. Absolute differences between the results with different resolutions, h/M = (0.08, 0.04,
0.02, 0.01, 0.005). For example, Ψh=0.04 −Ψh=0.08 (the blue solid curve) denotes the absolute differ-
ences between (` = 2, m = 0) mode of the Zerilli-Moncrief function for case A in the h/M = 0.08
and 0.04 simulations. The plot demonstrates the second order convergence of our time domain code.
The numerical accuracy with the highest resolution is roughly estimated as 10−7 at the time of the
peak amplitude upeak, and 10−13 in the late time of (u− upeak)/M & 200.

3.4. Code Validation

In our numerical simulations, the initial data given in Section 3.1 with the parameters
shown in Section 3.3 is set on the region of −1000 ≤ r∗/M ≤ 3000 at t = ti = 0, and the
Zerilli equation in Equation (16) is integrated within the future domain of dependence of
the initial surface (the upper triangular domain in the left panel of Figure 1). The produced
gravitational waveform is extracted on v = v f = 3000M as a function of the retarded time
u = t− r∗. We take the resolution as h/M = (0.08, 0.04, 0.02, 0.01, 0.005) with the number
of grid-point N = (50,000, 100,000, 200,000, 400,000, 800,000), respectively. From this point
onward, we may set M = 1.

To check the convergence of our TD code, we consider the absolute differences between
the Zerilli-Moncrief function Ψ (we have omitted the indices (`, m) here) computed with
different resolutions,

∆Ψ =
∣∣Ψh2 −Ψh1

∣∣ , (22)

where h1 and h2 denote adjacent resolutions. The result for the (` = 2, m = 0) Zerilli-
Moncrief function for case A is shown in Figure 2. We can find that the difference becomes
a quarter when the resolution gets a half. This shows the O(h2) convergence of the data, as
expected. The numerical accuracy with the highest resolution, h = 0.005M, is roughly esti-
mated as 10−7 at the time of the peak amplitude. In the late time of (u− upeak)/M & 200,
the numerical accuracy becomes 10−13.

4. Modeling of Ringdown Waveforms

In this section, we introduce waveform models to describe the ringdown data in
our close-limit calculations, as a superposition of QNMs associated with the remnant
Schwarzschild BH. The method to compute QNMs are well developed in literature (see,
e.g., Ref. [103]). We use the accurate numerical data of QNM frequencies of the remnant BH
provided by Berti [103] (for ` = 2) and those generated with the Black Hole Perturbation
Club (B.H.P.C.) code [104] (for ` = 3).
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We should note that the zero-spin remnant BH here is a limitation of our close-limit
approximation to the binary non-spinning BHs. When we treat general binary BH mergers
in the full NR simulations with an astrophysically realistic initial data, the remnant BHs
after merger are Kerr with a non-zero spin in general. For example, a non-spinning equal-
mass binary BH of the quasicircular merger can produce a remnant Kerr BH with the
nondimensional spin ∼0.67 [105].

4.1. Standard Quasinormal-Mode Fitting Formula

We write the ringdown waveforms as a sum of the fundamental tone and overtones
of QNMs decomposed into spin-weighted spherical harmonics with angular indices (`, m)
and spin s = −2, −2Y`m(θ, ϕ):

h = h+ − ih× =
1
r ∑
`,m

h`m
N (t)−2Y`m(θ, ϕ) (t ≥ t0) , (23)

with

h`m
N (t) =

N

∑
n=0

Q`m
n e−iωQNM

`mn (t−t0) , (24)

where we truncate the summation with a finite overtone index of n = N, although there
are infinite overtones. Here, Q`m

n is a complex amplitude, ωQNM
`mn is the Schwarzschild

QNM frequency of the (`, m, n) mode, and t0 is the ’starting time’ before which we do not
include the model to fit our numerical waveforms. As mentioned later, we choose the time
of the peak amplitude of the wave, tpeak, as t0.

With an appropriate choice of the initial phase, our numerical waveforms of the head-
on collisions are given as purely real functions of the retarded time, u. Therefore, instead
of the complex representation of the waveform in Equation (24), we adopt the following
real expression for the Zerilli-Moncrief function in practice, making use of the relation in
Equation (15),

Ψ`m
N (u) =

N

∑
n=0

[
C`m

2n φ`m
2n (u) + C`m

2n+1 φ`m
2n+1(u)

]
, (25)

with

φ`m
2n (u) =

√
4(ω2

`mnτ2
`mn + 1)

ω2
`mnτ3

`mn
e−(u−u0)/τ`mn sin[ω`mn(u− u0)] , (26)

φ`m
2n+1(u) =

√
4(ω2

`mnτ2
`mn + 1)

(ω2
`mnτ2

`mn + 2)τ`mn
e−(u−u0)/τ`mn cos[ω`mn(u− u0)] , (27)

where C`m
k (k = 0, · · · , 2N + 1) are real constants, u0 is the starting time in terms of the

retarded time, and ω`mn and τ`mn are derived from the real and imaginary parts of the
QNM frequency, respectively,

ω`mn = <(ωQNM
`mn ) , (28)

τ`mn = − 1

=(ωQNM
`mn )

. (29)

The prefactor in the mode functions φ`m
k (u) of Equations (26) and (27) is chosen so

that they are certainly normalized (see the next subsection). We note that the model in
Equation (25) is a linear function with respect to the fitting coefficients C`m

k . This means
that one can obtain the best fit values of C`m

k through linear least squares.
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4.2. Modified Quasinormal-Mode Fitting Formula with an Orthonormal Set of Mode Functions

The mode functions φ`m
k (u) defined in the previous subsection are linearly indepen-

dent but not orthogonal each other. For convenience of our analysis, we introduce an
‘orthonormal set’ of mode functions by using the Gram-Schmidt procedure. For this pur-
pose, we first define the inner product between two real functions of f (u) and g(u) given
in u ≥ u0

( f , g) ≡
∫ ∞

u0

f (u)g(u) du . (30)

For this definition, we can find that φ`m
k in Equations (26) and (27) is normalized as

(φ`m
k , φ`m

k ) = 1.
Using the inner product in Equation (30) and the standard Gram–Schmidt procedure,

we obtain the orthonormal set of mode functions φ̃`m
k . Their explicit listing is:

φ̃`m
0 ≡ φ`m

0 , (31)

φ̃`m
1 ≡ 1√

1− (φ̃`m
0 , φ`m

1 )2

[
φ`m

1 − (φ̃`m
0 , φ`m

1 ) φ̃`m
0

]
, (32)

φ̃`m
2 ≡ 1√

1− (φ̃`m
1 , φ`m

2 )2 − (φ̃`m
0 , φ`m

1 )2

×
[
φ`m

2 − (φ̃`m
1 , φ`m

2 ) φ̃`m
1 − (φ̃`m

0 , φ`m
2 ) φ̃`m

0

]
, (33)

φ̃`m
3 ≡ 1√

1− (φ̃`m
2 , φ`m

3 )2 − (φ̃`m
1 , φ`m

3 )2 − (φ̃`m
0 , φ`m

3 )2

×
[
φ`m

3 − (φ̃`m
2 , φ`m

3 ) φ̃`m
2 − (φ̃`m

1 , φ`m
3 ) φ̃`m

1 − (φ̃`m
0 , φ`m

3 ) φ̃`m
0

]
, (34)

...

φ̃`m
k ≡

[
1−

k−1

∑
p=0

(φ̃`m
p , φ`m

k )2

]−1/2[
φ`m

k −
k−1

∑
p=0

(φ̃`m
p , φ`m

k ) φ̃`m
p

]
. (35)

However, we note that a direct numerical implementation of above construction
does not work well because of the accumulation of round-off errors. In practice, we use
the modified Gram-Schmidt algorithm [106] to obtain accurately the orthonormal set of
mode functions.

From the above orthonormal set of mode functions φ̃`m
k , we can extract the fitting

coefficients easily by
C̃`m

k = (φ̃`m
k , Ψ`m

num) , (36)

from the numerically generated Zerilli-Moncrief function Ψ`m
num and construct the modified

model waveform as

Ψ̃`m
N (u) =

2N+1

∑
k=0

C̃`m
k φ̃`m

k (u) , (37)

up to a finite overtone index of n = N.

5. Results

We now present the demonstration of the QNM fits including overtones given in
Equations (25) and (37) with the close-limit TD waveform for head-on collisions explained
in Section 3.

5.1. Quasinormal-Mode Fitting and Residuals

Figure 3 shows the QNM fit including overtones in Equation (37) to the (` = 2, m = 0)
mode of the Zerilli-Moncrief function Ψ`m in case A (top). Similarly, in case B, we show
the QNM fits to the (` = 2, m = 0) mode (bottom-left) and to the (` = 3, m = 1) mode
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(bottom-right), respectively. In each panel, the QNM overtone in the model waveform is
truncated at N = 7, and the time of the peak amplitude, upeak, is chosen as the starting
time, u0.

Figure 4 provides the QNM fit residuals of Figure 3 (the blue solid lines). We find
that the residuals are all larger than our numerical uncertainty (the green dotted lines),
and shows the power-law behavior in the late time (u− upeak > 100M, the orange dashed
lines). This corresponds to the late-time tail in the evolution of a perturbation of the
gravitational field around a remnant Schwarzschild BH, studied in various literature; see,
e.g., Refs. [107–109], for the Schwarzschild background spacetime, and, e.g., Refs. [110,111],
for the Kerr background spacetime. The power-law tail in a sufficiently late time is also
investigated using a sophisticated numerical method with compactification along hyper-
boloidal surfaces [112]. Each of QNM fit residuals deviates from the power-law line when
u becomes larger because the null infinity approximation v� u is broken (see Section IV
in Ref. [113]).

40 20 0 20 40 60 80 100
retarded time  u− upeak

0.04

0.02

0.00

0.02

Ψ
(u

)

Case A:  (`,m) = (2, 0)

TD data
fit

40 20 0 20 40 60 80 100
retarded time  u− upeak

0.06

0.04

0.02

0.00

0.02

0.04

Ψ
(u

)

Case B:  (`,m) = (2, 0)

TD data
fit

40 20 0 20 40 60 80 100
retarded time  u− upeak

0.010

0.005

0.000

0.005

0.010

Ψ
(u

)

Case B:  (`,m) = (3, 1)

TD data
fit

Figure 3. TD data of the Zerilli-Moncrief functions Ψ`m with the 2PN close-limit initial data for the head-on collision (the
blue solid lines) and QNM fitting with N = 7 in Equation (37) (the orange dashed lines). The TD data is extracted as a
function of the retarded time, u, on the v = v f = 3000M surface. The (top panel) shows the (` = 2, m = 0) mode computed
for case A. The (bottom two panel) shows the (` = 2, m = 0) mode (left) and the (` = 3, m = 1) mode (right) computed for
case B.
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Figure 4. Fit residuals (the blue solid lines) between the Zerilli-Moncrief TD data Ψ`m
num and the QNM fit including overtones

with N = 7. The grouping of panels are the same as for Figure 3. For reference, we plot ∆Ψ in Equation (22) with h1 = 0.01M
and h2 = 0.005M (the green dotted lines) to roughly estimates the numerical error in the data. We also show the lines
proportional to (u− upeak)

−3 in the (top) and (bottom-left panel) and to (u− upeak)
−4 in the (bottom-right panel) in order

to see the late-time behavior (the orange dashed lines).

In Figure 4, we also find that the QNM fit residuals in the early-time (u− upeak . 100M)
do not improve even if one includes more overtones into the model waveform in
Equation (37). Although we do not have a mathematically rigorous proof, we specu-
late that this limitation may arise from the QNM fit including overtones (that describes the
exponential decay of the perturbation) to the power-law tail component of the perturbation,
based on a simple numerical experiment detailed below.

First, we prepare a mock data of the tail component of the perturbation as

Ψ`m
tail(u) = D`W(u)

(u− upeak

M

)−`−1
, (38)

where D` is an arbitrary constant, and we define a window function by

W(u) =


0 (u < u1) ,
(u− u1)

2(2u + u1 − 3u2)

(u1 − u2)3 (u1 ≤ u ≤ u2) ,

1 (u2 < u) ,

(39)

with upeak < u1 < u2. The window function is introduced to remove the divergent
behavior of the late-time tail at u = upeak.
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Next, we fit this mock data using the QNM model including overtones in Equation (37)
in the same manner as we do for the TD data. Figure 5 shows the QNM fit including
overtones to the mock tail data and corresponding fit residuals. We see that the residuals in
the early-time ((u− upeak)/M . 100) show the similar behaviour in Figure 4. This result
supports our expectation about the early-time residual in the TD data.

101 102 103

u− upeak

10 9

10 8

10 7

10 6

10 5

10 4

tail (`= 2)

QNMfit of tail
residual

101 102 103

u− upeak

10 12

10 11

10 10

10 9

10 8

10 7

10 6

10 5

tail (`= 3)

QNMfit of tail
residual

Figure 5. Analysis of mock data of the tail component in Equation (38) (the orange dashed lines). We plot the (` = 2) and
(` = 3) modes in the (left) and (right) panels, respectively. The green dotted lines show the QNM fit including overtones
with N = 7, and the blue solid lines are the fit residuals. Here, we choose Dl = 1, u1 = upeak + 10M and u2 = upeak + 30M
in Equation (38) with Equation (39).

5.2. Convergence of the Fitting Coefficients

Because the model waveform in Equations (25) and (37) involves many overtones k
(or N), it is instructive to check their convergence in terms of fitting coefficients on k, to ask
how higher overtones should be included in practice when we wish to model the TD data
from the peak time at u = upeak.

In the left panel of Figure 6, where the TD data is for the (` = 2, m = 0) mode in
case A, we show the fitting coefficients for the original QNM basis C`m

k (the orange filled
triangles) and those for the orthonormal set of mode functions C̃`m

k (the blue filled circles)
as a function of overtones up to k ≤ 21 (i.e., N = 10). It is found that |C̃`m

k | decreases
roughly in power law of k, while |C`m

k | does not.
Due to the benefit of the orthonormalization of mode functions in Equation (37), it can

be conveniently used to assess the fraction of power in each mode:

ρ2 ≡ (Ψ̃`m
N , Ψ̃`m

N ) =
2N+1

∑
k=0
|C̃`m

k |
2 . (40)

Based on the fact that one more mode is added to the orthonormal set when k increases
by two, we introduce an estimator to characterize the match (or overlap) between the TD
data and the QNM fit model including overtones at a given n:

∆n ≡

√
|C̃`m

2n |2 + |C̃`m
2n+1|2

ρ
. (41)

The right panel of Figure 6 shows ∆n as a function of mode n. We see that the inclusion
of the first overtone (n = 1) can improve the match by 10%, and that the QNM fits up to
n = 5 will suppress the mismatch less than 0.1%.
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Figure 6. (Left) the absolute values of the fitting coefficients, C̃`m
k (the blue filled circles) and C`m

k (the orange filled triangles)
for the (` = 2, m = 0) mode in case A, as a function of mode k. C̃`m

k is calculated by Equation (36), while C`m
k is obtained by

the least square fit of the TD data to the model in Equation (25). (Right) the estimator ∆n in Equation (41) as a function of
overtones n.

In the top and bottom panels of Figure 7, we show the same figures as for Figure 6
but with the (` = 2, m = 0) and (` = 3, m = 1) modes in case B, respectively. We see
the similar convergent behavior in C̃`m

k here, and again find that (n ≥ 5) higher overtones
contributes to the match only at the level of less than 0.1%. These results highlight the
potential benefit to use the orthonormal set of mode functions in the data analysis of
ringdown GWs.
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Figure 7. The same figure as for Figure 6, but using the (` = 2, m = 0) mode (top) and (` = 3, m = 1) mode (bottom) in
case B.
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6. Summary and Discussion

Widely recognized now is the importance of having a ringdown waveform model
including higher overtones of QNMs (see, e.g., Ref. [47]). With the overtones, one can set
the starting time of the ringdown GWs at the time of the peak amplitude much earlier than
a time (∼10–20M after the peak time) to obtain unbiased remnant BH parameters (see, e.g.,
Figure 5 for GW150914 in Ref. [40]). This allows the increased SNR of observed ringdown
signals, as well as better parameter estimation of the remnant BH.

In this paper, we examined in detail the ringdown GWs of binary BHs with QNM fits
including overtones in Equations (25) and (37), using the accurate close-limit waveform
in the BH perturbation theory as a test bed. Our analysis is restricted to the narrow case
of head-on collisions of two non-spinning BHs (based on the 2PN initial data and linear
BH perturbation theory), but it suffices to highlight some of the key features of the full
problem, and we found three main results: (i) we reconfirm the importance of QNMs
overtones to fit the ringdown waveforms after the time of the peak amplitude. This agrees
with the previous findings in literature [47,72]; (ii) the small contributions of late-time tail
exist in the fit residuals at the level of O(10−5) or below (see Figure 4); and (iii) the fitting
coefficients decay with overtones when one uses the orthonormal set of mode functions in
Equation (36) (see Figures 6 and 7).

A natural next step of our study is to assess the merit of the orthonormal set of
mode functions in the context of GW data analysis, accounting for the detector’s noise. A
standard technique for the analysis of ringdown GWs is the frequency-domain approach
(see, e.g., Ref. [114] for various methods to extract the ringdown GWs), and we can directly
apply the orthonormal set of mode function presented in Section 4.2 with the (so-named)
noise-weighted inner product in the matched filtering method (see, e.g., Ref. [115]). The
implementation of this method to the GW data analysis and the analysis of real data from
GW detectors will be a future work.

Another interesting future work would be to add BH’s spin to our close-limit wave-
form. Although it is known for any field points that the 2.5PN near-zone metric with
spin effects [95,96], the numerical computation of either metric or curvature perturbations
in Kerr spacetime is particularly challenging in the time domain [116–118] and would
need much coding efforts. It is probably more viable, instead, to perturbatively include
the spin effect into our non-spinning close-limit waveform (e.g., [119]). It may be also
possible to calculate the close-limit waveform in Kerr case making use of the standard
frequency-domain technique (and taking the extreme mass-ratio limit). Because, in either
case, the extension is involved, we leave them for future work.

From the theoretical point of view, it will be useful to include information on excitation
coefficients and factors for the fundamental tone and overtones of QNMs derived from
the BH perturbation approach (see, e.g., Refs. [120–123]). In addition, although we focused
only on the (` = 2, m = 0) and (` = 3, m = 1) modes in the bulk of this paper (and
will focus only on the (` = 2, m = 2) mode in Appendix A), the inclusion of the other
subdominant (higher harmonic) modes will be beneficial. In particular, the (` = 4, m = 4)
mode of NR waveforms for binary BHs is especially interesting because this mode includes
the second order modes composed by the non-linear, self-coupling of first-order (` = 2,
m = 2)× (` = 2, m = 2) mode, and it has already been found in NR simulations [73].

Nevertheless, astute readers may ask what extent the results based on the close-limit
approximation (to the head-on collisions of two non-spinning BHs) are consistent with the
full NR waveforms in more astrophysically relevant scenarios (e.g., coalescences observed
by LIGO/Virgo). We conclude our paper to briefly answer this question, analyzing the
NR waveform of SXS:BBH:0305 in the Simulating eXtreme Spacetimes (SXS) catalogue [66]
with the same approach that we took in Section 5; Appendices A and B also provide
supplemented examples of the analysis for NR waveforms.

Figure 8 shows the (` = 2, m = 2) spheroidal mode of the waveform
SXS:BBH:0305 [66,124,125] (see Equation (A1) for the construction of the spheroidal modes
from the spherical ones). Here, we set the time of the peak amplitude as the starting time
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of the QNM fit (see the orange dashed line in the left panel of Figure 8), and we use the
QNM fitting formula introduced in Equation (37). Unlike the TD data generated within
the close-limit approximation and the BH perturbation approach, we cannot confirm the
power-law tail certainty due to some constant fit residuals of ∼10−5 after t− tpeak & 80M;
recall that the tail contribution in Figure 4 is at the level of . O(10−5), which is as large as
the remaining residual in the NR waveform. We expect that future NR simulation with
higher numerical accuracy (or, e.g., the close-limit approximation to bound-orbit BBH
mergers) will provide a more robust answers of the need of the tail contribution in the
ringdown waveform modeling, and eventually in the measurement of remnant properties
of BHs.

Figure 9 displays the fitting coefficients for the original QNM basis C`m
k and those

for the orthonormalized QNM basis C̃`m
k introduced in Equation (36), again focusing on

the the (` = 2, m = 2) spheroidal mode of SXS:BBH:0305. We see that the trend of C`m
k

and C̃`m
k are similar to that of the close-limit, TD data displayed in Figures 6 and 7 (also

see Appendix B). Namely, C̃`m
k converges as increasing the overtone k, while C`m

k (from
the least square fit by using Equation (25)) does not. The convergence property of C̃`m

k
supports the argument that the dominant (` = 2, m = 2) mode of NR waveforms after
the time of the peak amplitude can be described only by the QNMs in the linearized BH
perturbation (see Section 1 for the other confirmations).
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Figure 8. (Left) the (` = 2, m = 2) spheroidal harmonic mode of the NR waveform SXS:BBH:0305 (the blue solid line) and
the QNM fit including overtone with orthonormalized mode functions introduced in Equation (37) (the orange dashed line).
(Right) the NR data (the blue solid line) and the fit residuals (the orange dashed line).
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Figure 9. Fitting coefficients of the (` = 2, m = 2) spheroidal harmonic mode of SXS:BBH:0305. The (left panel) displays
the absolute values of the fitting coefficients for C̃`m

k (the blue filled circles) and C`m
k (the orange filled triangles). The plots

in the (right column) show ∆n in Equation (41).
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Appendix A. Analysis of Some Numerical-Relativity Waveforms in Time Domain

In this appendix and Appendix B, we focus on the (` = 2, m = 2) (spheroidal
harmonic) mode of the ringdown signal (after the time of the peak amplitude) provided
by NR waveforms for non-precessing, spinning binary BH mergers, and we analyze them
following the same approach as in Section 5. Our goal here is to examine if we find (i) the
late-time, power-law tail (this appendix) and (ii) the convergence of the orthonormalized
QNM fits (Appendix B) in more astrophysically relevant NR waveforms. We note that
there are also various works on the mismatch and parameter estimation errors based on the
ringdown portion of the NR waveforms and their QNM fits with overtones [47,51–54,57],
memory (mainly the m = 0 mode) [55] and mirror (negative m) modes [56,58].

Table A1. Masses and spins of remnant BHs from NR simulations of binary BHs examined in this
Appendix. Mrem/M and χrem are the nondimensional mass ans spin parameters, respectively. The
‘SXS’ data is presented in the Simulating eXtreme Spacetimes (SXS) catalogue [66], while the ‘RIT’
data is imported from the CCRG@RIT Catalog of Numerical Simulations [67]. Each reference in
the table is cited from the corresponding metadata file. SXS:BBH:0305 is used in Section 6, and the
remaining NR data are studied in Appendices A and B.

ID Mass (Mrem/M) Spin (χrem) Reference

SXS:BBH:0305 0.952032939704 0.6920851868180025 [66,124,125]

SXS:BBH:1936 0.9851822160611967 0.021659378750190413 [66,125,126]
SXS:BBH:0260 0.9810057011067479 0.12447236057508855 [66,125,127]
SXS:BBH:1501 0.93633431069 0.8085731624240002 [66,125,128]
SXS:BBH:1477 0.911077401717 0.907542632208 [66,125,128]
SXS:BBH:0178 0.8866898235070239 0.9499311295284206 [66,125,129]
SXS:BBH:1124 0.8827804590335694 0.9506671398803149 [66,125]

RIT:BBH:0062 0.9520211506 0.6919694604 [130–132]
RIT:BBH:0604 0.9361520656 0.8101416903 [130–132]
RIT:BBH:0558 0.9108618514 0.9077062488 [130–132]
RIT:BBH:0767 0.9057246958 0.9462438132 [130–132]

In our analysis of the NR waveforms, we fix the values of remnant BH mass Mrem/M
and spin χrem provided by the NR simulations (see Table A1) and calculate the QNM
frequencies by assuming a Kerr geometry with these remnant properties. We also mean the
(` = 2, m = 2) mode as that in terms of the spin-weighted spheroidal harmonics. Because
the NR waveforms rather adopt the spherical basis, we have to account for the mixing of
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spheroidal and spherical bases here. The GW strain is decomposed in terms of the spherical
and spheroidal harmonics as

h =
1
r ∑
`, m

h`m(t)−2P`m(θ)
eimϕ

√
2π

=
1
r ∑
`′ , m

h̃`
′m(t)−2Saω

`′m(θ)
eimϕ

√
2π

, (A1)

where −2P`m(θ) and −2Saω
`m(θ) are the spin-weighted associated Legendre function and the

spin-weighted spheroidal harmonics, respectively. When calculating the (` = 2, m = 2)
spheroidal harmonic mode, we take into account the mixing of 2 ≤ ` ≤ 8 (for the SXS data)
and 2 ≤ ` ≤ 4 (for the RIT data) spherical harmonic modes by using the relation as

h̃`
′m(t) =

∫ π

0
dθ sin θ ∑

`

h`m(t)−2P`m(θ)−2Saω
`′m(θ) . (A2)
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Figure A1. Real part of the (` = 2, m = 2) spheroidal harmonic mode <(h̃22) of SXS NR waveforms listed in Table A1 and
their QNM fit residuals. Each plot corresponds to that in the right panel of Figure 8 in case of SXS:BBH:0305.
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Figure A2. Real part of the (` = 2, m = 2) spheroidal harmonic mode <(h̃22) of RIT NR waveforms
listed in Table A1 and their QNM fit residuals.
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Figure A1 shows the QNM fit residuals of the (` = 2, m = 2) SXS ringdown
waveforms: SXS:BBH:1936 (almost non-spinning remnant BH, χrem ∼0.02) [66,125,126],
SXS:BBH:0260 (slowly rotating remnant BH, χrem ∼0.12) [66,125,127], SXS:BBH:1501 (spin-
ning remnant BH, χrem ∼0.81) [66,125,128], SXS:BBH:1477 (spinning remnant BH, χrem
∼0.91) [66,125,128], SXS:BBH:0178 (highly spinning remnant BH, χrem ∼0.95) [66,125,129],
and SXS:BBH:1124 (highly spinning remnant BH, χrem ∼0.95) [66,125]. Here, we use only
<(h̃`m) from Equation (A2) of the NR waveforms and apply the real expression for the
QNM fit model in Equation (37) with overtones up to N = 7 (by replacing Ψ`m with <(h̃`m)
and accounting for the orthonormalization of QNM basis in Section 4.2).

We find that all the SXS waveform data in the late time have the same constant residue
of O(10−5) as for SXS:BBH:0305, except for BBH:1477 that has the shorter time stretch
between the peak and the end of data including the original data than other data set. We
cannot identify the late-time tails in the QNM fit residuals (at least) in these NR waveforms,
and some improvement in accuracy of NR simulation may be needed in order to reveal
the tails.

We also find the slower damping fit residuals than the (` = 2, m = 2) mode itself
in the late-time part of SXS:BBH:0178 and SXS:BBH:1124 (with highly spinning remnant
BHs, χrem∼0.95). This is rather unexpected result because any QNMs (even including the
second and higher order perturbations) have a faster damping time than the fundamental
tone (` = 2, m = 2, n = 0) in the high-spin range; see Figure A5 in Appendix C.

To have additional evidence for the above slower damping fit residuals, we exam-
ine another NR waveform set produced by RIT team [130–132], including RIT:BBH:0062
(spinning remnant BH, χrem ∼0.69), RIT:BBH:0604 (spinning remnant BH, χrem ∼0.81),
RIT:BBH:0558 (spinning remnant BH, χrem ∼0.91), and RIT:BBH:0767 (highly spinning
remnant BH, χrem ∼0.95), and display their QNM fit residuals in Figure A2. RIT:BBH:0767
(bottom-right) has the remnant spin as high as that of SXS:BBH:0178 and SXS:BBH:1124,
but we cannot confidently identify the similar slow-damping residuals due to the larger
numerical error at ∼10−4. The source of this slower damping residuals remains unclear to
us, and more systematic investigation awaits future work.

Before concluding this appendix, we should note the possible second-order contribu-
tion, i.e., the self-coupling of the two first-order QNMs computed from the linear perturba-
tion theory, to our analysis. For example, the second-order, (` = 2, m = 2)× (` = 2, m = 2)
mode is found in NR simulations [73]. This mode is corresponding to the second order
(` = 4, m = 4) mode, and we did not consider it here. In addition, in principle, the (` = 2,
m = 2) mode include the second-order contribution, such as (` = 2, m = 1)× (` = 2,
m = 1) mode, but we cannot find these second-order contributions in our analysis. This is
consistent with the previous work in Ref. [73].

Appendix B. Analysis of the Fitting Coefficients of Some Numerical-Relativity Data

As a by-product of the analysis in Appendix A, we obtain the fitting coefficients (in
terms of the original QNM basis and the orthonormal set of mode functions) for the NR data
listed in Table A1, and can check the convergence in the same manner as shown in Figure 9.
We summarize the results in Figure A3 for the SXS data and Figure A4 for the RIT data.
From these results, we expect that the contribution from the overtones to the ringdown
waveform becomes more significant with larger remnant spins. The further study will be
required to clarify the relation between the parameters of binary BHs and the significance
of the overtones (A comprehensive study of the dependence of the mode excitations on the
source parameters has been done in the extreme mass-ratio limit [122,123]).
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Figure A3. The waveforms and fitting coefficients of samples of SXS data listed in Table A1. The plots in the (left column)
show the real part of (` = 2, m = 2) spheroidal harmonic mode (the blue solid line) and the QNM fit to the model with
the orthonormal set given in Equation (37) (the orange dashed line). The plots in the (center column) present the absolute
values of the fitting coefficients for C̃`m

k (the blue filled circles) and C`m
k (the orange filled triangles). The plots in the (right

column) show ∆n in Equation (41).
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Figure A4. The waveforms and fitting coefficients of samples of RIT data listed in Table A1. The plots in the (left column)
show the real part of the (` = 2, m = 2) spheroidal harmonic mode (the blue solid line) and the QNM fit to the model with
the orthonormal set given in Equation (37) (the orange dashed line). The plots in the (center column) present the absolute
values of the fitting coefficients for C̃`m

k (the blue filled circles) and C`m
k (the orange filled triangles). The plots in the (right

column) show ∆n in Equation (41).

Appendix C. Frequencies of Kerr Quasinormal Modes

Although many plots for Kerr QNM frequencies are available in literature, e.g., in
Refs. [8,133,134], we reproduce a QNM figure here for m = ` modes using publicly available
data provided in “Ringdown” by Berti [103] (also see “Kerr Quasinormal Modes: s = −2,
n = 0–7” by Cook [135]). They give the lowest damping rate in each ` mode and help to
check the presence of the second order perturbation in our analysis. Below, the indices
(`, m) refer to the spin-weighted spheroidal basis with s = −2.

Figure A5 shows the Kerr QNM frequencies (the fundamental tone and overtones
up to n = 7) for the nondimensional spin 0 ≤ χ ≤ 0.999, but it suffices to consider the
QNM frequencies up to the filled circles (χ = 0.95) because the NR simulations used
for our study have the remnant BH spin χ . 0.95 after merger. In particular, we see
that the (` = 2, m = 2, n = 0) mode has the lowest damping rate (recall Equation (29)).
Importantly, the first order (` = 2, m = 2, n = 0) mode remains to be the longest-lived
mode even when considering the second and higher order QNMs as we establish below.
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Figure A5. Fundamental tone and overtones of Kerr QNMs for m = ` modes. Here, ωR and ωI mean the real and imaginary
parts of the QNM frequency, respectively. We plot the values for 2 ≤ ` ≤ 7 in the range of the nondimensional spin of
0 ≤ χ ≤ 0.999. The filled circles show the QNM values at χ = 0.95. For χ ≤ 0.95, the n = 0 mode always has the highest
real frequency and the slowest damping time. There is an interesting feature in the fifth overtone (n = 5) of the m = ` = 2
mode. To make these plots, we use the QNM data provided in Ref. [103].
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Suppose an expansion of the metric of the form,

gµν = g(0)µν + h(1)µν + h(2)µν + (higher-order terms) , (A3)

where g(0)µν is a background (Kerr) spacetime, and h(1)µν is the first order perturbation here.

The second order perturbation h(2)µν formally satisfies the linearized Einstein equation

G(1)
µν [h(2)] = −G(2)

µν [h(1), h(1)] , (A4)

where G(1)
µν is the linearized Einstein tensor (in a given gauge), and G(2)

µν [h(1), h(1)] is the
term quadratic in h(1) in the expansion of the Einstein tensor. Although the real part
of second-order QNM frequencies of h(2)µν can take various values due to the self-mode

coupling of h(1)µν through G(2)
µν , Figure A5 indicates that, for χ . 0.95, the imaginary part of

any second-order QNM frequencies ω
(2)
I is bounded at [74,75]∣∣∣ω(2)

I

∣∣∣ ≥ 2
∣∣∣ω(1)

I, 220

∣∣∣ , (A5)

where ω
(1)
I, 220 is the imaginary part of the first order (` = 2, m = 2, n = 0) QNM frequency.

This in turn implies that the damping time of any second order QNMs satisfies

τ(2) ≤ 1
2

τ220 . (A6)

Therefore, the first order (` = 2, m = 2, n = 0) QNM has the slowest damping time,
at least to the second order in the expansion of the metric and for 0 ≤ χ ≤ 0.95 of the
remnant BH (whose imaginary part of the first order QNMs is not too close to zero).
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