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Abstract: Motivated by experimental measurements indicating deviations from the Standard Model
predictions, we discuss F-theory-inspired models, which, in addition to the three chiral genera-
tions, contain a vector-like complete fermion family. The analysis takes place in the context of
SU(5)×U(1)′ GUT embedded in an E8 covering group, which is associated with the (highest)
geometric singularity of the elliptic fibration. In this context, the U(1)′ is a linear combination of
four abelian factors subjected to the appropriate anomaly cancellation conditions. Furthermore, we
require universal U(1)′ charges for the three chiral families and different ones for the corresponding
fields of the vector-like representations. Under the aforementioned assumptions, we find 192 mod-
els that can be classified into five distinct categories with respect to their specific GUT properties.
We exhibit representative examples for each such class and construct the superpotential couplings
and the fermion mass matrices. We explore the implications of the vector-like states in low-energy
phenomenology, including the predictions regarding the B-meson anomalies. The rôle of R-parity
violating terms appearing in some particular models of the above construction is also discussed.

Keywords: F-theory phenomenology; LHCb anomalies; vector-like particles

1. Introduction

The quest for New Physics (NP) phenomena beyond the Standard Model predictions
is a principal and interesting issue. Numerous extensions of the Standard Model (SM),
including Grand Unified Theories (GUTs) and String Theory-derived effective models,
incorporate novel ingredients in their spectra. The latter could manifest themselves through
exotic interactions and their novel predictions. Amongst the most anticipated ones are
additional neutral gauge bosons, leptoquark states forming couplings with quarks and
leptons, additional neutral states (such as sterile neutrinos) and vector-like families.

Current experimental data of the Large Hadron Collider (LHC) and elsewhere, on
the other hand, provide significant evidence of the existence of possible novel interactions
mediated by such exotic states, although nothing is conclusive yet. Some well-known
persisting LHCb data that are in tension with the SM predictions, for example, are related to
various B-meson decay channels. In particular, measurements of the ratio of the branching
ratios Br(B → Kµ+µ−)/Br(B → Ke+e−) associated with the semi-leptonic transitions
b → sµ+µ−, b → se+e− indicate that lepton flavor universality is violated [1,2]. Possible
explanations of the effect involve leptoquark states, Z′ neutral bosons coupled differently
to the three fermion families and vector-like generations [3–9].

In a previous study [10] (see also [11]), we performed a systematic analysis of a class of
semi-local F-theory models with SU(5)×U(1)′ gauge symmetry obtained from a covering
E8 gauge group through the chain

E8 ⊃ SU(5)× SU(5)′ ⊃ SU(5)×U(1)4 ⊃ SU(5)×U(1)′ , (1)

where U(1)′ stands for any linear combination of the four abelian factors incorporated in
SU(5)′. In this framework, we have derived all possible solutions of the anomaly-free U(1)′
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factors and have shown that many of these cases entail non-universal couplings to the
three chiral families. Next, we considered the case where the spontaneous breaking of the
U(1)′ symmetry occurs at a few TeV scales and examined the implications in low-energy
phenomenology, computing observables of several exotic processes in the effective theory.

Despite the rich structure and the variety of the non-universal U(1)′ factors, strong
lower bounds coming from the K− K̄ system [12] on the mass of the associated Z′ boson far
outweigh any observable effects in B-meson anomalies and the non-universal contributions
to Br(B → Kµ+µ−)/Br(B → Ke+e−) are completely depleted. It was shown that in the
so-derived effective F-theory models, only the existence of additional vector-like families
could interpret the LHCb data [10].

In the present article, we expand on previous work [10,11] on F-theory-inspired SU(5)×U(1)′

models by including vector-like fermion generations in the low-energy spectrum. More
precisely, we are interested in models that allow the existence of a complete family of extra
fermions in addition to the spectrum of the Minimal Supersymmetric Standard Model
(MSSM). To avoid severe constraints for the Kaon system, we look for models where the
regular MSSM fermion matter fields acquire universal charges under the additional U(1)′

symmetry and are chosen to be different from the corresponding states of the vector-like
family. This way the non-universality effects are strictly induced from the considered
vector-like states [13–16].

The paper is organized as follows: in Sections 2 and 3, we describe the origin of the
gauge symmetry of the model, the anomaly cancellation and flux constraints and define
the content in terms of the flux parameters. In Section 3, in particular, all models with one
vector-like family are sorted into five classes distinguished by their U(1)′ properties. The
phenomenological analysis of the models, their superpotential couplings and mass matrices
are presented in Section 4. Section 5 deals with the implications on flavor processes and
particularly B-meson anomalies. A short discussion is devoted to the possible implications
of R-parity violating terms in Section 6. A summary and conclusions are found in Section 7.

2. Flux Constraints for a Spectrum with a Complete Vector-like Family

In this section, we present a short description of the GUT model, focusing mainly
on the basic constraints and characteristics coming from its F-theory embedding. Further
technical details can be found in [10].

The (semi-local) F-theory construction in the present work is assumed to originate
from an E8 singularity under the reduction shown in Equation (1). The Cartan generators
Qk = diag{t1, t2, t3, t4, t5}, k = 1, 2, 3, 4 corresponding to the four U(1) factors in Equation
(1), subjected to the SU(5) tracelessness condition ∑5

i=1 ti = 0, are taken to be

Qa =
1
2

diag(1,−1, 0, 0, 0), Qb =
1

2
√

3
diag(1, 1,−2, 0, 0), (2)

Qψ =
1

2
√

6
diag(1, 1, 1,−3, 0), Qχ =

1
2
√

10
diag(1, 1, 1, 1,−4). (3)

To ensure a tree-level top-quark mass, a Z2 monodromy t1 ↔ t2 is imposed, “breaking”
U(1)a while leaving invariant the remaining three abelian factors. In addition, appropriate
fluxes [17] can be turned on along the remaining U(1)’s in such a way that some linear
combination U(1)′ of the abelian factors remains unbroken at low energies. Thus, the
gauge symmetry of the effective model under consideration is

GS = SU(5)×U(1)′ . (4)

The U(1)′ factor assumed to be left unbroken in the effective model is a linear combi-
nation of the symmetries surviving the monodromy action, namely:

Q′ = c1Qb + c2Qψ + c3Qχ , (5)
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with the coefficients c1, c2, c3 satisfying the normalization condition

c2
1 + c2

2 + c2
3 = 1 . (6)

The latter is also subject to anomaly cancellation conditions, which have been analyzed
in detail elsewhere [10,11]. After imposing the Z2 monodromy, the 10, 10 and 5, 5 represen-
tations accommodating the massless fields reside on four matter curves Σ10j , j = 1, 2, 3, 4
and seven Σ5i , i = 1, 2, . . . , 7, respectively [18].

The U(1) fluxes mentioned above also determine the chiralities of the SU(5) represen-
tations. Their effect on the representations of the various matter curves, Σ10j and Σ5i can be
parametrized in terms of integers Mj and mj as follows:

n10j − n10j
= mj n5i − n5i

= Mi , (7)

while, in order to accommodate the three fermion families, the chirality condition ∑j mj =
−∑i Mi = 3 should be imposed. Furthermore, turning on a hypercharge flux FY, the
SU(5)GUT symmetry is broken down to SU(3)× SU(2)×U(1)Y. Parametrizing the hyper-
charge flux with integers Ni and Nj, the various multiplicities of the SM representations
are given by

10tj =


n(3,2) 1

6

− n(3̄,2)− 1
6

= mj

n(3̄,1)− 2
3

− n(3,1) 2
3

= mj − Nj

n(1,1)+1
− n(1,1)−1

= mj + Nj

; 5ti =

 n(3,1)− 1
3

− n(3̄,1)
+ 1

3

= Mi

n(1,2)
+ 1

2

− n(1,2)− 1
2

= Mi + Ni .
(8)

We start with the flux data and the SM content of each matter curve. For details, we
refer to our previous work [10], and here, we only present the properties of the complete
spectrum, as shown in Table 1. In order to obtain the desired spectrum, the following
constraints were taken into account.

Table 1. Matter curves along with their U(1)′ charges, flux data and the corresponding SM content. Note that the flux
integers satisfy N = N7 + N8 + N9.

Matter Curve Q′ NY M SM Content

Σ101,±t1
10
√

3c1+5
√

6c2+3
√

10c3
60

−N m1 m1Q + (m1 + N)uc + (m1 − N)ec

Σ102,±t3
−20
√

3c1+5
√

6c2+3
√

10c3
60

N7 m2 m2Q + (m2 − N7)uc + (m2 + N7)ec

Σ103,±t4

√
10c3−5

√
6c2

20
N8 m3 m3Q + (m3 − N8)uc + (m3 + N8)ec

Σ104,±t5 −
√

2
5 c3 N9 m4 m4Q + (m4 − N9)uc + (m4 + N9)ec

Σ51,(±2t1)
− c1√

3
− c2√

6
− c3√

10
N M1 M1dc + (M1 + N)L

Σ52,±(t1+t3)
5
√

3c1−5
√

6c2−3
√

10c3
30

−N M2 M2dc + (M2 − N)L
Σ53,±(t1+t4)

− c1

2
√

3
+ c2√

6
− c3√

10
−N M3 M3dc + (M3 − N)L

Σ54,±(t1+t5)
−10
√

3c1−5
√

6c2+9
√

10c3
60

−N M4 M4dc + (M4 − N)L
Σ55,±(t3+t4)

c1√
3
+ c2√

6
− c3√

10
N7 + N8 M5 M5dc + (M5 + N7 + N8)L

Σ56,±(t3+t5)
20
√

3c1−5
√

6c2+9
√

10c3
60

N7 + N9 M6 M6dc + (M6 + N7 + N9)L
Σ57,±(t4+t5)

5
√

6c2+3
√

10c3
20

N8 + N9 M7 M7dc + (M7 + N8 + N9)L

The spectrum of a local F-theory model is determined once a set of the above integers—
respecting the aforementioned constraints—is chosen. Thus, to start with, we proceed by
accommodating the Higgs doublet Hu on the Σ51 matter curve. Choosing the associated
flux integers to be M1 = 0 and N = 1, it can be observed that the Hu remains in the
massless spectrum, and at the same time, the down-type color triplet is eliminated. As
a consequence of this mechanism [17], proton decay is sufficiently suppressed. Next,
focusing on the Σ101 matter curve, we let m1 vary in 0 < m1 < 3. In addition, thanks to
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the Z2 monodromy [18,19] already discussed, at least one diagonal tree-level up-quark
Yukawa coupling, λtop10110151, is effectuated in the superpotentialW . Furthermore, in
order to ensure exactly one extra family of vector-like fermions, in addition to the condition
∑j mj = −∑i Mi = 3, which fixes the number of chiral families to three, we also impose
the following conditions into the various flux integers [10,11]:

4

∑
j=1
|mj| =

7

∑
i=1
|Mi| = 5 , (9)

|m1 + 1|+ |m2 − N7|+ |m3 − N8|+ |m4 − N9| = 5 , (10)

|m1 − 1|+ |m2 + N7|+ |m3 + N8|+ |m4 + N9| = 5 , (11)

1 + |M2 − 1|+ |M3 − 1|+ |M4 − 1|+ |M5 + N7 + N8|+ |M6 + N7 + N9|+ |M7 + N9 + N8| = 7 . (12)

Except for m1, M1 and N = N7 + N8 + N9, which their allowed ranges and values
are subjected to the aforementioned conditions, the remaining flux parameters are limited
as follows:

We restrict the m2,3,4 flux integers characterizing the number of Q, Q states in the spectrum
in the range [−1, 2]. Since the Σ101 matter curve always hosts at least two uc’s (due to
conditions M1 = 0, N = 1, 0 < m1 < 3), we bound the other uc multiplicities (mj − Nk
with j = 2, 3, 4 and k = 7, 8, 9) to be in the range [−1, 1]. Similarly, for the multiplicities of
the ec and ēc states, we impose −1 ≤ (mj + Nk) ≤ 3 for j = 2, 3, 4 and k = 7, 8, 9.
In the same way, for the dcs, we set the values of the corresponding multiplicities of Mis
(i = 2, 3, 4, 5, 6, 7) to vary in the range [−3, 1], while for the multiplicities of Ls (see Table 1),
the relations are set to vary in the range [−2, 1]. We note here that for the latter, in general,
we could allow for values in the range [−3, 1], but this leads to mixing the vector-like
states with the MSSM ones, something that is against our intention to look for models with
vector-like U(1)′ charges different than the MSSM ones.
Implementing all the restrictions described above, we receive 1728 flux solutions with one
vector-like family in addition to the three standard chiral families of quarks and leptons.

3. Classification of the Models

In order to determine the ci coefficients and consequently the U(1)′ charges for each
model described by the above set of fluxes, we impose anomaly cancellation conditions. In
particular, we impose only the mixed MSSM-U(1)′ anomalies: A331, A221, AYY1 and AY11.
The pure U(1)′ cubic anomaly (A111) and gravitational anomalies (AG) can be fixed later
by taking into account the dynamics of the singlet fields that typically appear in F-theory
models. Furthermore, in the quest for phenomenologically interesting constructions, we
shall confine our search in cases where the three MSSM families have universal U(1)′

charges, and only the charges of the vector-like fields will differ. This way, from the
resulting 1728 models, only 192 of them appear with this property. These 192 models fall
into five classes with respect to their SU(5)×U(1)′ properties. Each class contains models
that carry the same charges under the extra U(1)′, and they only differ in how the SM
states are distributed among the various matter curves. We present one model for each
class in Tables 2 and 3.
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Table 2. Representative flux solutions along with the corresponding cis for the five class of models: A, B, C, D and E.

Model m1 m2 m3 m4 M1 M2 M3 M4 M5 M6 M7 N7 N8 N9 c1 c2 c3

A 1 2 1 −1 0 −1 0 0 −1 −2 1 1 0 0 0
√

15
4 − 1

4
B 1 2 −1 1 0 0 0 0 −1 −3 1 1 0 0 0 − 1

2

√
15
34
− 11

2
√

34

C 2 1 1 −1 0 0 0 1 −3 −1 0 0 1 0
√

3
2 − 1

4

√
3
2

1
4

√
5
2

D 2 −1 1 1 0 −1 0 1 −1 −2 0 0 0 1 − 1
2

√
5
6 − 5

8

√
5
3

3
8

E 1 −1 2 1 0 0 1 0 0 −1 −3 0 1 0 2
√

10
93 −

√
5

93
4√
31

Table 3. The particle content of models A, B, C, D and E using the data from Table 2.

Model A Model B Model C Model D Model E
√

10Q′ SM
√

85Q′ SM Q′ SM
√

10Q′ SM
√

310Q′ SM

1/2 Q + 2uc −2 Q + 2uc 1/4 2Q + 3uc + ec −3/4 2Q + 3uc + ec 9/2 Q + 2uc

1/2 2Q + uc + 3ec −2 2Q + uc + 3ec −1/2 Q + uc + ec −1/2 Q + uc + ec 11/2 Q + uc + ec

−2 Q + uc + ec −1/2 Q + uc + ec 1/4 Q + 2ec 7/4 Q + uc + ec 9/2 2Q + uc + 3ec

−1/2 Q + uc + ec 11/2 Q + uc + ec 1/4 Q + uc + ec −3/4 Q + 2ec −8 Q + uc + ec

−1 Hu 4 Hu −1/2 Hu 3/2 Hu −9 Hu
1 dc + 2L −4 L −1/4 L −1/4 dc + 2L −1 L
−3/2 L −3/2 L 1/2 L 1 L −9 dc

1 L 7/2 L 0 dc 3/2 dc −7/2 L
−3/2 dc −3/2 dc −1/4 3dc + 2L 9/4 dc + L 1 L

1 2dc + L 7/2 3dc + 2L −3/4 dc + L −1/4 2dc + L −27/2 dc + L
3/2 dc + L −6 dc + L 0 L −1 L −7/2 3dc + 2L

Table 2 presents the flux data along with the respective solution1 for the coefficients
ci of each model. The corresponding U(1)′ charges and the spectrum for each model
are presented in Table 3. Note that models B and C coincide with the models 5 and 7,
respectively, derived in [11]. In addition to the fields presented in Table 3, there are also
singlet fields with weights (ti − tj) that appear in the present F-theory construction2. In
the analysis that follows, we will denote these singlet fields as θti−tj = θij.

4. Analysis of the Models

In the previous section, we generated five classes of models that all share a common
characteristic. The U(1)′ charges of the vector-like states differ from the universal U(1)′

charges of the SM chiral families. Models with this feature can explain the observed
B-meson anomalies, provided there is substantial mixing of the SM fermions with the
vector-like exotics. At the same time, lepton universality is preserved among the three
chiral families, and severe bounds coming from the Kaon system and other flavor-violating
processes are not violated. In the following, we will analyze the models of Table 3 and
derive the mass matrices for each model.

4.1. Model A

For this case, we have chosen the following set of fluxes:

m1 = m3 = −m4 = 1 , m2 = 2 , M1 = M3 = M4 = 0 , M2 = M6 = −2 , M7 = −M5 = 1 .

The corresponding U(1)′ charges for the various representations are:

101 :
1
2

, 102 :
1
2

, 103 : −2 , 104 : −1
2

,

51 : −1 , 52 : −1 , 53 :
3
2

, 54 : −1 , 55 :
3
2

, 56 : −1 , 57 : −3
2

,
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while the 10, 5 representations come with the opposite U(1)′ charge. We distribute the
fermion generations and Higgs fields into matter curves as follows:

101 −→ Q3 + uc
2,3 , 102 −→ Q1,2 + uc

1 + ec
1,2,3 , 103 −→ Q4 + uc

4 + ec
4 , 104 −→ Q4 + uc

4 + ec
4 ,

51 −→ Hu, 52 −→ dc
3 + L2,3, 53 −→ L4, 54 −→ Hd, 55 −→ dc

4, 56 −→ dc
1,2 + L1, 57 −→ dc

4 + L4 .

Now we can write down the superpotential and, in particular, the various terms
contributing to the fermion mass matrices.

We start with the up-quark sector. The dominant contributions to the up-type quark
masses descend from the following superpotential terms:

W ⊃ yt10110151 +
y1

Λ
10110251θ13 +

y2

Λ2 10210251θ2
13 +

y3

Λ
10310151θ14 +

y4

Λ2 10310251θ13θ14

+
y5

Λ2 10310351θ2
14 + y6102104θ53 + y7101 ¯104θ51 + y8103104θ54 +

y9

Λ
10410454θ51 ,

(13)

where yis are coupling constant coefficients, and Λ is a characteristic high-energy scale of
the theory. The operators yield the following mass texture:

Mu =


y2ϑ2

13vu y2ϑ2
13vu y1ϑ13vu y4ϑ13ϑ14vu y6θ43

y1ϑ13vu y1ϑ13vu εytvu y3ϑ14vu y7θ51
y1ϑ13vu y1ϑ13vu ytvu y3ϑ14vu y7θ51

y4ϑ13ϑ14vu y4ϑ13ϑ14vu y3ϑ14vu y5ϑ2
14vu y8θ54

y6θ53 y6θ53 y7θ51 y8θ54 y9ϑ51vd

 , (14)

where vu = 〈Hu〉, vd = 〈Hd〉, θij = 〈θij〉, ϑij = 〈θij〉/Λ and ε � 1 is a suppression
factor introduced here to capture the local effects of Yukawa couplings descending from a
common operator [20,21].

Next, we analyze the couplings of the down-quark and charged lepton sectors. In
the vector-like part of the model, up and down quark sectors share some common super-
potential operators. These are given in Equation (13) with couplings y6, y7 and y8. The
remaining dominant terms contributing to the down-type quarks are:

W ⊃ κ0

Λ
1015254θ41 +

κ1

Λ
1015654θ45 +

κ2

Λ
1025254θ43 +

κ3

Λ2 1025654θ13θ45 +
κ4

Λ2 1025654θ43θ15

+ κ51035254 +
κ6

Λ
1035654θ15 + κ71015554 +

κ8

Λ
1025554θ13 +

κ9

Λ
1035554θ14

+
κ10

Λ
5752θ41θ53 +

κ11

Λ
5752θ51θ43 + κ125756θ43 + κ135755θ53 +

κ14

Λ
1045751θ53,

(15)

with κi being coupling constant coefficients.
As regards the charged lepton sector, we start with the common operators between

the bottom quark and charged leptons, which are given in Equation (15) with couplings κ2,
κ3, κ4, κ5 and κ6. There are also common operators between the up quark and the charged
lepton sector, which are given in Equation (13) with couplings y6 and y8. All the other
contributions for the charged lepton mass matrix descend from the operators

λ1102535̄4 +
λ2

Λ
1035354θ34 + λ35756θ43 +

λ4

Λ
5752θ41θ53 +

λ5

Λ
5752θ51θ43 + λ65753θ51 +

λ7

Λ
1045751θ53 . (16)

where λi denotes coupling constant coefficients.
When the various singlet fields θij acquire vacuum expectation values (VEV), 〈θij〉 6= 0,

they generate hierarchical non-zero entries in the mass matrices of quarks and charged
leptons. These VEVs, however, are subject to phenomenological requirements. Such an
important constraint comes from the µ-term, which, in principle, can be materialized
through the coupling θ155154. Clearly, to avoid decoupling of the Higgs doublets from the
light spectrum, we must require 〈θ15〉 ≈ 0. Consequently, the mass terms involving θ15 of
the down and charged leptons can be ignored.
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We obtain the following down quark mass matrix:

Md =


κ3ϑ13ϑ45vd κ3ϑ13ϑ45vd κ1ϑ45vd 0 κ12θ43
κ3ϑ13ϑ45vd κ3ϑ13ϑ45vd κ1ϑ45vd 0 κ12θ43

κ2ϑ43vd κ2ϑ43vd κ0ϑ41vd κ5vd κ10θ41ϑ53 + κ11θ51ϑ43
κ8ϑ13vd κ8ϑ13vd κ7vd κ9ϑ14vd κ13θ53

y6θ53 y6θ53 y7θ51 y8θ54 κ14ϑ53vu

 . (17)

The mass texture for the charged leptons has the following form:

Me =


κ3ϑ13ϑ45vd κ2ϑ43vd κ2ϑ43vd λ1vd y6θ53
κ3ϑ13ϑ45vd κ2ϑ43vd κ2ϑ43vd λ1vd y6θ53
κ3ϑ13ϑ45vd κ2ϑ43vd κ2ϑ43vd λ1vd y6θ53

0 κ5vd κ5vd λ2ϑ34vd y8θ54
λ3θ43 λ4θ41θ53 + λ5θ51θ43 λ4θ41θ53 + λ5θ51θ43 λ6θ51 λ7ϑ53vu

 (18)

4.2. Model B

The second model is obtained using the following set of flux parameters:

m1 = −m3 = m4 = 1 , m2 = 2 , M1 = M2 = M3 = M4 = 0 , M7 = −M5 = 1 , M6 = −3 .

The corresponding U(1)′ for the various matter curves are:

101 : −2 , 102 : −2 , 103 : −1
2

, 104 :
11
2

,

51 : 4 , 52 : 4 , 53 :
3
2

, 54 : −7
2

, 55 :
3
2

, 56 : −7
2

, 57 : 6 .

A workable distribution of the fermion generations and Higgs fields into matter curves
is as follows:

101 −→ Q3 + uc
2,3 , 102 −→ Q1,2 + uc

1 + ec
1,2,3 , ¯103 −→ Q4 + uc

4 + ec
4 , 104 −→ Q4 + uc

4 + ec
4 ,

51 −→ Hu, 5̄2 −→ Hd, 5̄3 −→ L4, 5̄4 −→ L3, 5̄5 −→ dc
4, 5̄6 −→ dc

1,2,3 + L1,2, 57 −→ dc
4 + L4 .

The µ-term here is realized through the coupling θ135152, so we require that 〈θ13〉
is very small compared to the other singlet VEVs. This restriction obligates us to take
high order terms into account for some couplings. We write down the various terms that
construct the fermion mass matrices starting from the up-quark sector.

The dominant contributions to the up-type quarks descend from the following super-
potential terms:

W ⊃ yt10110151 +
y1

Λ2 10110251θ14θ43 +
y2

Λ4 10210251θ2
14θ2

43 +
y3

Λ
10110451θ15 +

y4

Λ2 10210451θ13θ15

+
y5

Λ2 10410451θ2
15 + y6101103θ41 + y7102103θ43 + y8104103θ45 +

y9

Λ2 10310352θ41θ43 .
(19)

The operators yield the following mass texture:

Mu =


y2ϑ2

14ϑ2
43vu y2ϑ2

14ϑ2
43vu y1ϑ14ϑ43vu 0 y7θ53

y1ϑ14ϑ43vu y1ϑ14ϑ43vu εytvu y3ϑ15vu y6θ41
y1ϑ14ϑ43vu y1ϑ14ϑ43vu ytvu y3ϑ15vu y6θ41

0 0 y3ϑ15vu y5ϑ15vu y8θ45
y7θ43 y7θ43 y6θ41 y8θ45 y9ϑ41ϑ43vb

 (20)

We continue with the bottom sector of the model. There are common operators
between the top and bottom sectors, which are given in Equation (19) with couplings y6, y7
and y8. The remaining dominant terms contributing to the down-type quarks are:
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W ⊃ κ0

Λ
1015652θ43 +

κ1

Λ3 1025652θ14θ2
43 +

κ2

Λ
1015552θ53 +

κ3

Λ4 1025552θ14θ2
43θ54 +

κ4

Λ2 1045552θ14θ34

+
κ5

Λ2 1045652θ43θ15 + κ65756θ43 + κ75755θ53 +
κ8

Λ
1035751θ43 .

(21)

From these operators, we obtain the following mass matrix describing the down
quark sector:

Md =


κ1ϑ14ϑ2

43vd κ1ϑ14ϑ2
43vd ε2κ0vd κ5ϑ43ϑ15 κ6θ43

κ1ϑ14ϑ2
43vd κ1ϑ14ϑ2

43vd εκ0vd κ5ϑ43ϑ15 κ6θ43
κ1ϑ14ϑ2

43vd κ1ϑ14ϑ2
43vd κ0vd κ5ϑ43ϑ15 κ6θ43

κ3ϑ14ϑ2
43ϑ54vd κ3ϑ14ϑ2

43ϑ54vd κ2ϑ53vd κ4ϑ14ϑ34vd κ7θ53
y7θ43 y7θ43 y6θ41 y8θ45 κ8ϑ43vu

 . (22)

Regarding the charged lepton sector, the common operators between the bottom sector
and charged leptons are those in Equation (21) with couplings κ1, κ5, κ6 and κ7. We also
have common operators between the top and charged lepton sector, which are given in
Equation (19) with couplings y7 and y8. Pure charged lepton contributions descend from
the operators

λ1

Λ
1025452θ43 +

λ2

Λ
1045452θ45 +

λ3

Λ
1025352θ53 + λ41045352 + λ55754θ41 + λ65753θ51 +

λ7

Λ
1035751θ43 . (23)

Collectively, all the contributions lead to the following mass matrix:

Me =


κ1ϑ14ϑ2

43vd κ1ϑ14ϑ2
43vd λ1ϑ43vd λ3ϑ53vd y7θ43

κ1ϑ14ϑ2
43vd κ1ϑ14ϑ2

43vd λ1ϑ43vd λ3ϑ53vd y7θ43
κ1ϑ14ϑ2

43vd κ1ϑ14ϑ2
43vd λ1ϑ43vd λ3ϑ53vd y7θ43

κ5ϑ13ϑ45vd + κ6ϑ43ϑ15vd κ5ϑ13ϑ45vd + κ6ϑ43ϑ15vd λ2ϑ45vd λ4vd y8θ45
κ7θ43 κ7θ43 λ5θ41 λ6θ51 λ7ϑ43vu

 . (24)

4.3. Model C

Next, a representative model of the class C is analyzed. The flux integers along with
the corresponding ci coefficients are given in Table 2. The resulting U(1)′ charges for the
various matter curves are

101 :
1
4

, 102 : −1
2

, 103 :
1
4

, 104 : −1
4

,

51 : −1
2

, 52 :
1
4

, 53 : −1
2

, 54 : 0 , 55 :
1
4

, 56 :
3
4

, 57 : 0 .

and we assume the following distribution of the various fermion and Higgs fields into
matter curves

101 −→ Q2,3 + uc
1,2,3 + ec

3 , 102 −→ Q4 + uc
4 + ec

4 , 103 −→ Q1 + ec
1,2 , 104 −→ Q4 + uc

4 + ec
4 ,

51 −→ Hu, 52 −→ L1, 53 −→ Hd, 54 −→ dc
4, 55 −→ dc

1,2,3 + L2,3, 56 −→ dc
4 + L4, 57 −→ L4 .

The µ-term here comes through the coupling θ145153, and so, we require 〈θ14〉 ≈ 0.
Once again, we will consider high order terms for some couplings. Next, we write down
the various superpotential terms, leading to the the mass matrices for the up, bottom and
charged lepton sectors.

The dominant contributions to the up-type quarks descend from the following super-
potential terms:
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W ⊃ yt10110151 +
y1

Λ2 10110351θ13θ34 +
y2

Λ
10110251θ13 +

y3

Λ2 10310251θ13θ14 +
y4

Λ2 10210251θ2
13

+ y5101104θ51 + y6102104θ53 + y7103104θ54 +
y8

Λ2 10410453θ51θ54 ,
(25)

which yield the following mass texture:

Mu =


y1ϑ13ϑ34vu η3ytvu η2ytvu y2ϑ13vu y5θ51
y1ϑ13ϑ34vu η2ytvu ηytvu y2ϑ13vu y5θ51
y1ϑ13ϑ34vu ηytvu ytvu y2ϑ13vu y5θ51

0 y2ϑ13vu y2ϑ13vu y4ϑ2
13vu y6θ53

y7θ54 y5θ51 y5θ51 y6θ53 y8ϑ51ϑ54vb

 , (26)

where η is a small constant parameter describing local Yukawa effects.
There are common operators between the top and bottom sectors. These are given in

Equation (25) with couplings y5, y6 and y7. The remaining operators contributing to the
down-type quarks are:

W ⊃ k
Λ

1015553θ54 +
k0

Λ3 1035553θ13θ34θ54 + k11015653 +
k2

Λ
103565̄3θ14 +

k3

Λ
5455θ14θ53

+
k4

Λ2 1025553θ14θ53 +
k7

Λ2 1045451θ14θ53 +
k9

Λ
1025653θ13 + k105456θ13.

. (27)

Combining all the terms, we obtain the following mass matrix describing the down
quark sector:

Md =


k0ϑ13ϑ34ϑ54vd kε3ϑ54vd kε2ϑ54vd 0 0
k0ϑ13ϑ34ϑ54vd kε2ϑ54vd kεϑ54vd 0 0
k0ϑ13ϑ34ϑ54vd kεϑ54vd kϑ54vd 0 0

0 k1ξvd k1vd k9ϑ13vd k10θ13
y7θ54 y5ξθ51 y5θ51 y6θ53 k7ϑ14ϑ53vu

 , (28)

where ε and ξ are small constant parameters describing local Yukawa effects.
In the charged lepton sector, we have some contributions descending from terms

in Equation (27). These are the operators with couplings k, k0, k1, k2, k4 and k9. We also
have common operators between the top and charged lepton sectors, which are given in
Equation (25) with couplings y5, y6 and y7. All the other leptonic contributions descend
from the following operators

W ⊃λ1

Λ
1035̄25̄3θ54 +

λ2

Λ
1015̄25̄3θ51 +

λ3

Λ
1025̄25̄3θ53

+
λ4

Λ
575̄2θ41θ53 + λ5575̄5θ53 + λ6575̄6θ43 +

λ7

Λ
1̄045751θ53 .

(29)

Hence, the mass texture for the charged leptons has the following form:

Me =


λ1ϑ54vd k0ϑ13ϑ34ϑ54vd k0ϑ13ϑ34ϑ54vd 0 y7θ54
λ1ϑ54vd k0ϑ13ϑ34ϑ54vd k0ϑ13ϑ34ϑ54vd 0 y7θ54
λ2ϑ51vd kϑ54vd kϑ54vd k1vd y5θ51
λ3ϑ53vd 0 0 k9ϑ13vd y6θ53
λ4ϑ41θ53 λ5θ53 λ5θ53 λ6θ43 λ7ϑ53vu

 . (30)
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4.4. Model D

We now pick out a model belonging to the fourth class. The U(1)′ charges for the
various matter curves are:

101 : −3
4

, 102 : −1
2

, 103 :
7
4

, 104 : −3
4

,

51 :
3
2

, 52 :
1
4

, 53 : −1 , 54 : −3
2

, 55 : −9
4

, 56 :
1
4

, 57 : 1 .

A promising distribution of the fermion generations and Higgs fields into the various
matter curves is as follows:

101 −→ Q2,3 + uc
1,2,3 + ec

3 , ¯102 −→ Q4 + uc
4 + ec

4 , 103 −→ Q4 + uc
4 + ec

4 , 104 −→ Q1 + ec
1,2 ,

51 −→ Hu, 5̄2 −→ dc
1 + L1,2, 5̄3 −→ Hd, 54 −→ dc

4, 5̄5 −→ dc
4 + L4, 5̄6 −→ dc

2,3 + L3, 57 −→ L4 .

In this case, the µ-term is realized through the coupling θ145153, and therefore, as in
the previous models, we require that the singlet VEV is negligibly small: 〈θ14〉 ≈ 0.

Now, we write down the various superpotential terms of the model that lead to the
mass matrices for the top and bottom sectors.

The dominant contributions to the up-type quarks descend from the following super-
potential operators:

W ⊃ yt10110151 +
y1

Λ
10110451θ15 +

y2

Λ2 10310151θ13θ34 +
y3

Λ2 10310451θ14θ15 +
y4

Λ4 10310351θ2
13θ2

34

+ y5101102θ31 + y6104102θ35 + y7103102θ34 +
y8

Λ2 10210253θ31θ34 .
(31)

These operators yield the following mass texture:

Mu =


y1ϑ15vu ε3ytvu ε2ytvu y2ϑ13ϑ34vu y5θ31
y1ϑ15vu ε2ytvu εytvu y2ϑ13ϑ34vu y5θ31
y1ϑ15vu εytvu ytvu y2ϑ13ϑ34vu y5θ31

0 y2ϑ13ϑ34vu y2ϑ13ϑ34vu y4ϑ2
13ϑ2

34vu y7θ34
y6θ35 y5θ31 y5θ31 y7θ34 y8ϑ31ϑ34vb

 . (32)

In close analogy with the previous cases, the operators with couplings y5, y6 and
y7 in Equation (31) also contribute to the bottom sector. The remaining dominant terms
contributing to the down-type quarks are:

W ⊃ yb1015653 +
κ1

Λ
1015253θ51 +

κ2

Λ
1045653θ15 + κ3104525̄3 +

κ4

Λ2 1035653θ13θ34

+
κ5

Λ
1035253θ54 +

κ6

Λ
1015553θ54 +

κ7

Λ
1045553θ13 +

κ8

Λ3 1035553θ13θ34θ54 + κ95452θ53

+ κ105456θ13 +
κ11

Λ
5455θ13θ54 +

κ12

Λ2 1025451θ13θ34.

(33)

Collecting all the terms, we obtain the following mass matrix for the down-quark
sector of the model:

Md =


κ3vd κ1ϑ51vd κ1ϑ51vd κ5ϑ54vd κ9θ53

κ2ϑ15vd ε2ybvd εybvd κ4ϑ13ϑ34vd κ10θ13
κ2ϑ15vd εybvd ybvd κ4ϑ13ϑ34vd κ10θ13
κ7ϑ13vd κ6ϑ54vd κ6ϑ54vd κ8ϑ13ϑ34ϑ54vd κ11θ13θ54

y6θ35 y5θ31 y5θ31 y7θ34 κ12ϑ13ϑ34vu

 . (34)

We turn now to the charged lepton sector of the model. The operators with couplings
κ1, κ2, κ3, κ4, κ5, κ6, κ7 and κ8 in Equation (33) also contribute to the charged lepton mass
matrix. We also have common operators between the top and charged lepton sectors, which
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are given in Equation (31) with couplings y5, y6 and y7. Additional contributions descend
from the operators:

λ15752θ41θ53 + λ25752θ51θ43 + λ35756θ43 + λ45755θ53 + λ51025751 . (35)

Combining all the contributions, we receive the following mass matrix for the charged
leptons of the model

Me =


κ3vd κ3vd κ2ϑ15vd κ7ϑ13vd y6θ35
κ3vd κ3vd κ2ϑ15vd κ7ϑ13vd y6θ35

κ1ϑ51vd κ1ϑ51vd yτvd κ6ϑ54vd y5θ31
κ5ϑ54vd κ5ϑ54vd κ4ϑ14vd κ8ϑ13ϑ34ϑ54vd y7θ34

λ1θ41θ53 + λ2θ51θ43 λ1θ41θ53 + λ2θ51θ43 λ3θ43 λ4θ53 λ5vu

 . (36)

4.5. Model E

For the fifth and final model, we have the following U(1)′ charges for the various
matter curves:

101 :
9
2

, 102 :
11
2

, 103 :
9
2

, 104 : −8 ,

51 : −9 , 52 : 1 , 53 : 9 , 54 :
7
2

, 55 : −1 , 56 :
27
2

, 57 :
7
2

.

In order to receive realistic mass hierarchies, we choose the following distribution of
the fermion generations and Higgs fields into matter curves:

101 −→ Q3 + uc
2,3 , ¯102 −→ Q4 + uc

4 + ec
4 , 103 −→ Q1,2 + uc

1 + ec
1,2,3 , 104 −→ Q4 + uc

4 + ec
4 ,

51 −→ Hu, 5̄2 −→ Hd, 53 −→ dc
4, 5̄4 −→ L3, 55 −→ L4, 5̄6 −→ dc

4 + L4, 5̄7 −→ dc
1,2,3 + L1,2 .

With this choice, the µ-term is realized through the coupling θ13515̄2, which implies
that 〈θ13〉 ≈ 0. With this constraint, we write down the various operators for the top and
bottom quark sectors.

We start again with dominant contributions to the up-type quarks. These are

W ⊃ yt10110151 +
y1

Λ
10110351θ14 +

y2

Λ2 10310351θ2
14 +

y3

Λ2 10310451θ14θ15 +
y4

Λ
10110451θ15

+
y5

Λ2 10410451θ2
15 + y6103102θ34 + y7101102θ31 + y8104102θ35 +

y9

Λ2 10210252θ2
31

(37)

and generate the following mass texture:

Mu =


y2ϑ2

14vu y2ϑ2
14vu y1ϑ14vu y3ϑ14ϑ15vu y6θ34

y1ϑ14vu y1ϑ14vu εytvu y4ϑ15vu y7θ31
y1ϑ14vu y1ϑ14vu ytvu y4ϑ15vu y7θ31

y3ϑ14ϑ15vu y4ϑ15vu y4ϑ15vu y5ϑ2
15vu y8θ35

y6θ34 y6θ34 y7θ31 y8θ35 y9ϑ2
31vb

 . (38)

The operators in Equation (37) with couplings y6, y7 and y8 also contribute to the
bottom sector of the model. In addition, we have the following superpotential terms for
the bottom sector:

W ⊃ yb1015752 +
κ1

Λ
1035752θ14 +

κ2

Λ
1045752θ15 +

κ3

Λ
1035652θ13 +

κ4

Λ
1015652θ43

+ κ55753θ15 +
κ6

Λ
5653θ13θ45 +

κ7

Λ
1025351θ15 +

κ8

Λ2 1045652θ13θ45 .
(39)
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Collectively, we obtain the following down quark mass matrix:

Md =


κ1ϑ14vd κ1ϑ14vd ε2ybvd κ2ϑ15vd κ5θ15
κ1ϑ14vd κ1ϑ14vd εybvd κ2ϑ15vd κ5θ15
κ1ϑ14vd κ1ϑ14vd ybvd κ2ϑ15vd κ5θ15
κ3ϑ13vd κ3ϑ13vd κ4ϑ43vd κ8ϑ43ϑ15vd κ6ϑ13θ45

y6θ34 y6θ34 y7θ31 y8θ35 κ7ϑ15vu

 (40)

The bottom sector shares common operators between with the charged lepton sector
of the model. These are given in Equation (39) with couplings κ1 ,κ2 and κ8. We also
have common operators between top and charged lepton sectors, which are given in
Equation (37) with couplings y6 and y8. All the other contributions descend from the
operators:

W ⊃ yτ1035452 +
λ1

Λ
1045452θ45 +

λ2

Λ
1035652θ13 + λ35557θ35 +

λ4

Λ
5554θ45θ31

+ λ55556θ45 +
λ6

Λ
1025551θ35 .

(41)

Combining the various contributions described so far, we end up with the following
mass matrix for the charged lepton sector of the model:

Me =


κ1ϑ14vd κ1ϑ14vd ε2yτvd λ2ϑ13 y6θ34
κ1ϑ14vd κ1ϑ14vd εyτvd λ2ϑ13 y6θ34
κ1ϑ14vd κ1ϑ14vd yτvd λ2ϑ13 y6θ34
κ2ϑ15vd κ2ϑ15vd λ1ϑ45vd κ8ϑ15ϑ43 y8θ35
λ3θ35 λ3θ35 λ4θ31θ45 λ5θ45 λ6ϑ35vu

 . (42)

5. Flavor Violation Observables

Since the Z′ gauge boson couples differently with the vector-like fields, new flavor
violation phenomena might emerge, and other rare processes could be amplified provided
there is sufficient mixing of the vector-like fields with the SM matter ones [13,14] . In order
to examine whether the present models can account for the observed LHCb-anomalies, we
need to determine the unitary transformations that diagonalize the mass matrices of the
models described in the previous section.

Due to the complicated form of the various matrices, we diagonalize them pertur-
batively around some small mixing parameter. We perform this procedure for model A,
while the analysis for the rest of the models is very similar. A detailed phenomenological
investigation will follow in a future publication.

5.1. Some Phenomenological Predictions of Model A

To proceed with the analysis and discuss some phenomenological implications, first,
we work out the mass matrices and the mixing for quarks and leptons.

Quarks: We start with the quark sector of model A and the matrix for the down
quarks. In order to simplify the down quark mass matrix from Equation (17), we assume
that some terms are very small and that approximately vanish. In particular, we consider
that κ5 = κ10 = κ11 = κ12 = κ14 = y6 = y7 ≈ 0. We make the following simplifications

κ0ϑ41vd = κ1ϑ45vd = m , κ2ϑ43vd = αm , κ3ϑ13ϑ45vd = θm , κ9ϑ14vd = cµ , κ8θ13vd = bm ,

κ13θ53 ' y8θ54 = M,

where the mass parameter M characterizes the mass scale of the extra vector-like states,
whilst m ∼ vd is related to the electroweak scale. We have also assumed that the small
Yukawa parameters are identical (ε ≈ ξ). With the above assumptions, the matrix receives
the simplified form
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Md =


θmξ4 θmξ mξ4 0 0
θmξ θm mξ2 0 0
αmξ2 αm m 0 0

bm bmξ 0 cµ M
0 0 0 M 0

 . (43)

In summary, m, M and µ represent mass parameters, while α, θ, c, b and ξ are
dimensionless coefficients. Keeping terms up to first order in ξ, the mass matrix Md MT

d
can be written as

Md MT
d ≈


0 θ2m2ξ αθm2ξ 0 0

θ2m2ξ θ2m2 αθm2 2bθm2ξ 0
αθm2ξ αθm2 α2m2 + m2 αbm2ξ 0

0 2bθm2ξ αbm2ξ b2m2 + c2µ2 + M2 cµM
0 0 0 cµM M2

 . (44)

We observe that Equation (44) can be cast in the form M2
d ≈ A + ξ B where:

A =


0 0 0 0 0
0 θ2m2 αθm2 0 0
0 αθm2 α2m2 + m2 0 0
0 0 0 b2m2 + c2µ2 + M2 cµM
0 0 0 cµM M2

 , B =


0 θ2m2 αθm2 0 0

θ2m2 0 0 2bθm2 0
αθm2 0 0 αbm2 0

0 2bθm2 αbm2 0 0
0 0 0 0 0

 . (45)

The local Yukawa parameter ξ couples the electroweak sector with the heavy vector-
like part and can be used as a parturbative mixing parameter. The block-diagonal matrix,
A, is the leading order part of the matrix and can be diagonalized by a unitary matrix V0

bL
as

V0
bL

AV0T
bL

. For small values of the parameter α, the eigenvalues of this matrix are written as

x1 = 0, x2 ≈ θ2
(

m2 − α2m2
)

, x3 ≈ α2θ2m2 + α2m2 + m2, x4 ≈ M2, x5 ≈ b2m2 + M2 . (46)

We observe here that the eigenvalues appear with the desired hierarchy. The corre-
sponding unitary matrix, which diagonalizes the matrix A and returns the eigenvalues in
Equation (46), is

V0
bL

=


1 0 0 0 0
0 α2θ2

2 − 1 αθ 0 0
0 αθ 1− α2θ2

2 0 0
0 0 0 − cµM

b2m2 1
0 0 0 1 cµM

b2m2

 . (47)

The columns of this matrix are the unperturbed eigenvectors v0
bi

of the initial matrix.
Now we focus on the corrections to the eigenvectors due to the perturbative part ξB,

which are given by the relation:

vbi
≈ v0

bi
+ ξ

5

∑
j 6=i

(V0
bL

BV0†
bL
)ji

xi − xj
v0

bj
, (48)

where the second term displays the O(ξ) corrections to the basic eigenvectors of the lead-
ing order matrix A. The corrected diagonalizing matrices schematically receive the form
VbL = V0

bL
+ ξV1

bL
and similarly for the up quarks and leptons. This way, the mixing param-

eter ξ enters in the expressions associated with the various flavor violation observables.
Computing the eigenvectors using Equation (48), the O(ξ) corrected unitary matrix is:
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VbL ≈



1 −ξ 0 0 0

−ξ α2θ2

2 − 1 αθ 2bθm2ξ
M2 − 2bcθµm2ξ

M3

αθξ αθ 1− α2θ2

2 − αbm2ξ
M2 − αbcµm2ξ

M3

0 − 2cθµξ
bM

αcµξ
bM − cµM

b2m2 1

0 2bθm2ξ
M2

αbm2ξ
M2 1 cµM

b2m2


. (49)

We assume here that the mixing in the top sector is small and that the main mixing
descends from the bottom quark sector.

Charged Leptons: We turn now to the charged lepton mass matrix in Equation (18).
We notice that some parameters from the top and bottom sectors also contribute here, so
the same assumptions for these parameters will be considered here too. Additionally, we
assume that λ1 = λ3 = λ4 = λ5 = λ7 ≈ 0, and we make the following simplifications

λ2ϑ34vd = c µ , λ5ϑ51ϑ43 = qm , λ6θ51 ≈ y8θ54 = M ,

where the mass parameter M characterizes the vector-like scale, and q, c are dimensionless
parameters.

With these approximations, the matrix receives the following form:

Me ≈


θm αmξ4 αmξ4 0 0

θmξ3 αmξ αmξ2 0 0
θmξ αmξ2 αm 0 0

0 0 0 cµ M
0 mq mξq M 0

 . (50)

We proceed by perturbatively diagonalizing the lepton square mass matrix Me MT
e

(M2
e for short) using ξ as the expansion parameter. Keeping up to O(ξ) terms, we write the

mass square matrix in the form M2
e ≈ A + ξ B, where:

A =


θ2m2 0 0 0 0

0 0 0 0 0
0 0 α2m2 0 0
0 0 0 c2µ2 + M2 cµM
0 0 0 cµM m2q2 + M2

 , (51)

B =


0 0 θ2m2ξ 0 0
0 0 0 0 αm2ξq

θ2m2ξ 0 0 0 αm2ξq
0 0 0 0 0
0 αm2ξq αm2ξq 0 0

 . (52)

The eigenvalues of the dominant part are:

x1 = 0, x2 = α2m2, x3 = θ2m2, x4 = M2, x5 = M2 + m2q2 (53)

and the unitary matrix V0
eL

, which diagonalizes the dominant matrix A, is:

V0
eL

=


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 −1 cµM

m2q2

0 0 0 cµM
m2q2 1

 . (54)
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The O(ξ) corrections to the eigenvectors due to the perturbative part ξB can be found
by applying the relation in Equation (48). Then, for the final unitary matrix, we obtain

VeL ≈



0 1 0 αcµm2ξq
M3 α

(
− c2µ2ξ

m2q3 −
m2ξq
M2

)
− ξ(α2+θ2)

θ2 0 1 αcµm2ξq
M3 − αm2ξq

M2

1 0 ξ 0 0
0 αcµξ

Mq
αcµξ
Mq −1 cµM

m2q2

0 αm2ξq
M2

αm2ξq
M2

cµM
m2q2 1


(55)

where, in order to simplify the final result, we have assumed the series expansions for
small α, θ and c, keeping only the dominant terms.

5.2. B-Meson Anomalies at LHCb

In the presence of a fourth generation, where the U(1)′ charge assignments of its
constituents differ from those of the SM families, many interesting rear flavor processes
are expected to be enhanced, and a detailed consideration will appear in a forthcoming
publication. Here, we shall focus only on the B-meson anomaly associated with the b→ s``
decay and, in particular, the ratio RK(∗) = BR(B → K(∗)µµ)/BR(K(∗)ee). Due to the non-
universal coupling of the Z′ gauge boson with the vector-like fermions, the Cµµ

9 Wilson
coefficient, which contributes to the flavor violation transition b→ sll, is given by:

Cµµ
9 = −

√
2

4GF

16π2

e2

(
g′

MZ′

)2 (Q′dL
)23(Q′eL

)22

VtbV∗ts
, (56)

where the matrices Q′dL
and Q′eL

are defined as [22]

Q′fL
≡ VfL q′fL

V†
fL

, (57)

with q′fL
being 5× 5 diagonal matrices of U(1)′ charges3.

The elements (Q′dL
)23 and (Q′eL

)22 participating in the Cµµ
9 coefficient can be obtained

from Equation (57) using the diagonalization matrices VfL computed above. We have that

(Q′dL
)23 ≈ − 1

2 αθξ2 and (Q′eL
)22 ≈ −1− ξ2. (58)

Finally, using the set of values GF ≈ 11.66 TeV−2, e ≈ 0.303, Vtb ≈ 0.99 and
Vts ≈ 0.0404, we estimate that :

Cµµ
9 ≈ −652.5 αθξ2

(
g′

MZ′

)2

+ 5220 αb2θξ2
(

g′

MZ′

)2( m
M

)4
(59)

where the mass parameters m, M and MZ′ are displayed in TeV units.
Using an indicative set of values α → 0.06, θ → 0.27, ξ → 0.5, m → 0.1, b →

0.1, M→ 1.2 in Equation (59), we obtain

Cµµ
9 ≈ −2.64

(
g′

MZ′

)2

. (60)

According to the most recent global fits [24], an explanation of the current experimental
data requires Cµµ

9 ≈ −0.82, so in this model, the Z′ gauge coupling-mass ratio should be

of the order g′

(MZ′/TeV)
≈ 1

2 in order for the model to explain the observed RK anomalies.

This implies a rather small Z′ mass [25], unless g′ is associated with some strong coupling
regime. Of course, the computation of Cµµ

9 is very sensitive to the mass and mixing details
of the representative model chosen in this example, and a comprehensive analysis of the



Universe 2021, 7, 356 16 of 18

whole set of models will determine whether sufficient mixing effects can predict the various
deviations observed in B-meson decays; however, this analysis is beyond the goal of the
present work.

6. R-parity Violation Terms

A remarkable observation is that particular R-parity violating (RPV) terms, such as
λ′ijkLiQjdc

k, could explain the anomalies related to the b→ s`` flavor-violating process [26–29].
In this section, we look for possible R-parity violating terms (RPV) in the tree-level

superpotential (dubbed here WRPV
tree ) for the models A, B, C, D, E presented in Table 3 and

briefly discuss their consequences. We distinguish the RPV terms in those which couple
only the MSSM fields and those which share Yukawa couplings with extra vector-like
families. If the former are present in WRPV

tree , they lead to hard violations of baryon and/or
lepton numbers and must be suppressed. In F-theory constructions, such terms can be
eliminated either by judicious flux restrictions piercing the various matter curves [30]
or by additional (discrete) symmetries emanating from the background geometry of the
theory [31–34]. In Section 4 of [32], there are examples of how this R-parity can be built. On
the other hand, provided certain restrictions and conditions are fulfilled [26], such couplings
may contribute to the B-meson anomalies and other interesting effects, such as the (g− 2)µ

anomaly [35,36], without exceeding baryon and/or lepton number violating bounds.
Below, for each one of the five classes of models, among all possible superpotential

couplings, we single out the RPV terms. Taking into account that in all the models presented
so far, the up-Higgs doublet is isolated at the 51 matter curve, the possible RPV operators
of the 10× 5× 5 form are:

101(5257 + 5356 + 5455), 1025354, 1035254, 1045253 . (61)

Next, we discuss each model separately.
Model A. Using Table 3 and taking into account Equation (61), we find that the only

RPV term of the model is:

1015356 −→ L4Q3dc
1,2 . (62)

We observe that R-parity violation occurs with terms that involve the vector-like
family, and there are no terms that have only the three quark and lepton families of the
MSSM. However, as recently shown in [28,29], the coupling L4Q3dc

2 can have significant
contributions to the b→ sµµ process through photonic penguin diagrams.

Model B. Following the same procedure, we found that this model contains the
following RPV terms:

WRPV
tree ⊃ 1015455 + 1025354 −→ L3Q3dc

4 + L3L4ec
1,2,3 . (63)

The first operator here does not contribute to the b→ sll process due to the absence of
the second generation quark in the coupling. On the other hand, the term L3L4ec

2, which
descends from the second operator, leads to non-negligible contributions to the anomalous
magnetic moment of the muon [35]. Combining this with non-zero Z′ contributions may
lead to a sufficient explanation of the (g− 2)µ anomaly.

Model C, D and E. There are no renormalizable RPV terms in these models. Therefore,
in this case, an explanation of the observed experimental discrepancies is expected from Z′

interactions and through the mixing of SM fermions with the extra vector-like states.

7. Conclusions

In this article, we have expanded our previous work on F-theory-motivated models
by performing a scan of all the possible SU(5)×U(1)′ semi-local constructions, predicting
a complete family of vector-like exotics. We use U(1)′ hypercharge flux to obtain the
symmetry breaking of the non-abelian part and a Z2 monodromy to guarantee a tree-
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level top Yukawa coupling. Moroever, we have imposed phenomenological restrictions
on the various flux parameters in order to obtain exactly three chiral generations and
one vector-like complete family of quarks and leptons. In addition, demanding anomaly
cancellation, we have found that there exist 192 models with universal U(1)′ charges for
the MSSM families and non-universal for the vector-like states. These 192 models fall into
five distinct classes with respect to their SU(5)×U(1)′ properties, classified as A, B, C, D
and E in the analysis. We have presented one illustrative model for each class, exploring
the basic properties, computing the superpotential terms and constructing the fermion
mass matrices. For the models derived in the context of class A, in particular, we have
exemplified how these types of models can explain the observed RK anomalies through
the mixing with the vector-like states without violating other flavor violation observables
by virtue of the universal nature of the three SM families. We also discussed the presence
of RPV couplings in these type of models and their possible contribution in the observed
experimental deviations from the SM predictions. It is worth emphasizing that due to the
flux restrictions and the symmetries of the theory, only a restricted number of the possible
RPV terms appear in the models. This way, with a careful choice of the flux parameters,
it is possible to interpret such deviation effects while avoiding significant contributions
to dangerous proton decay effects. A detailed account of such new physics phenomena is
beyond the present work and is left for a future publication.
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Notes
1 Note that a ‘mirror’ solution subject to ci → −ci also exists.
2 For a detailed definition of the singlet spectrum of the theory, see [10].
3 For a discussion on the effects of complex valued contributions to the Wilson coefficients due to large CP-violation effects,

see [23].
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