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Abstract: We review some aspects of our longstanding research concerning the analogous Hawking
effect in dispersive dielectric media. We introduce nonlinear contributions in the polarization field in
the relativistically covariant version of the Hopfield model and then, in order to provide a simplified
description aimed at avoiding some subtleties in the quantization of the original model, we discuss
the so-called φψ-model. We show that the nonlinearity allows for introducing in a self-consistent way
the otherwise phenomenological dependence of the susceptibility and of the resonance frequency ω0

on the spacetime variables, and this is a consequence of the linearization of the model around solitonic
solutions representing propagating perturbations of the refractive index, to be then associated with
the Hawking effect.
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1. Introduction

Since its theoretical discovery, the Hawking effect [1] has represented a very important topic
for theoretical physics. First of all, it provided a semantic link to the so far only syntactic analogy
between the laws of thermodynamics and the laws of black hole mechanics. Further on, it gave a
formidable impulse to the studies of quantum field theory in curved spacetime. Notwithstanding,
an evident drawback emerged: any hope of experimental verification for the Hawking effect received a
strong hindrance by the too low temperature which could be associated with astrophysical black holes,
as, e.g., in the case of a Sun-mass black hole the predicted temperature for a distant observer would
amount to a few tenth of nanoKelvins, and, as such, its measurement would be deeply hindered
e.g., by the 2.7 K of the cosmic background radiation. Further possible contributions emerging by
primordial black holes were hardly viable. Still, in 1981, W.G. Unruh [2] realized his deep intuition
about the possibility to reproduce the essentials of Hawking radiation in condensed matter systems.
Instead of a real event horizon, a sufficient condition for obtaining pair-production of particles with a
thermal spectrum consists of creating a kinematical horizon: in a fluid flowing in a waterfall, it would
be the line where the flow velocity v reaches the sound velocity c in the fluid itself, and overcomes
it beyond that line. As a consequence, there is a physical hindrance for the sound waves to move
upstream beyond the aforementioned horizon. As is evident, there is not an absolute hindrance for all
possible particles, but only for phonons. Still, for quantum effects, there is a radiation flux which is
analogous to the Hawking radiation, composed of phonons which are emitted with a thermal spectrum
with a temperature which is proportional to the gradient at the horizon of the velocity field. There
is a huge literature on this subject in the so-called non-dispersive case, where Unruh proved that
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the sound field perturbations can be described in terms of a Klein–Gordon equation on a curved
spacetime background displaying a horizon in the above-mentioned sense. We limit ourselves to quote
a review [3]. A decade later, the picture of the original study was enriched by taking into account
dispersive effects [4,5]. The main point is that condensed matter physics, on one hand, contributes for
the presence of so-called dispersive effects, consisting of an enlarged spectrum of modes with respect
to the standard picture for the Hawking effect, and, on the other hand, it deeply modifies the nature of
the effect itself, presenting e.g., at least a (partial) resolution of the so-called transplanckian problem.
In any case, at least in the limit of weak dispersive effects, the analogous Hawking temperature
maintains the same geometrical behavior as in the nondispersive case. See also [6] for a partial review
and detailed references.

We do not delve into a discussion of the experiments involving various settings. We limit ourselves
to point out also that this research field is going to become a further very relevant chapter in studies
for quantum field theory in condensed matter systems, nowadays more focused on topological effects.

In this brief review, we summarize some aspects of our longstanding studies aimed at providing an
analytical deduction of thermality of the analogue Hawking emission in dielectric media. Among the
methods proposed for the measurement of Hawking radiation in analogous systems, a very interesting
one is represented by analogous black holes in dielectric media. The original idea [7] is to generate a
moving perturbation through an intense laser pulse propagating in the dielectric medium. The Kerr
effect [8,9] occurring in dispersive nonlinear materials is involved in the generation of the perturbation.

In particular, the Hawking effect in nonlinear dielectric media affected by the Kerr effect is
associated with the aforementioned dielectric perturbation propagating in the dielectric medium.
This moving dielectric perturbation amounts to a traveling perturbation of the refractive index,
to which the possibility to generate analogous Hawking radiation is strictly related under suitable
conditions allowing the existence of a black hole/white hole horizon (or both) [7,10–19]. A very
sketchy idea of how this happens is discussed in [12], Section 4 therein, and we sum up the basic steps.
The nonlinear contribution in the Maxwell equation is represented by a polarization field proportional
to the third power of the electric field. An expansion in terms of a strong field plus a weak perturbation
can be suitably reinterpreted as a linear equation for the perturbation where the original susceptibility
is replaced by a non-constant susceptibility including a Kerr-type correction. The aforementioned
linear equation, in the eikonal approximation, is associated with a metric (see also Appendix A).

Our reference model will be the covariant Hopfield model discussed in [20–22], which represents
our basic tool for analyzing the conceptual issues characterizing the physics at hand.
Nevertheless, we will also discuss a simplified model introduced in [16], which is still covariant,
that maintains the main physical characteristics and, in particular, provides the same dispersion
relation, but has a great advantage to not be involved in a constrained quantization procedure.
See also [23]. The ϕψ-model involves only two scalar fields, ϕ and ψ, replacing the (four-potential
of the) electromagnetic and the polarization field respectively. Still, its physical content is nontrivial,
and can allow for a number of very interesting physical situations, which can also be experimentally
tested. It is important to mention that the full Hopfield model can also be solved exactly in the same
physical situations, with the difference that it is much more difficult to be handled.

The main focus is on a self-consistent introduction of a dielectric field perturbation, which
is propagating in the lab frame, and is such that the analogous Hawking effect can take place.
Further steps towards an analytical deduction of the thermality for dielectric black holes in the
simplified model are then sketched.

2. The Covariant Generalization of the Hopfield Model

One of the simplest ways in order to describe the interaction between the electomagnetic field with
matter is the Hopfield model. In such model, the dielectric material is extremely simplified, since one
is interested in the properties of the electromagnetic field and wants to minimize the description of
the medium: it is described by a continuum (or lattice) of dipoles having characteristic frequency ω0,
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linearly interacting with the electromagnetic field through a coupling constant g. In other words, the
dielectric material is described just in terms of a field representing the polarization of the material,
which is coupled to the in the usual way with the electric field so that the system is described by
the Lagrangian

Lem :=
1

8π

(
1
c

Ȧ +∇ϕ

)2
− 1

8π
(∇∧A)2 +

1
2χω2

0

(
Ṗ2 −ω2

0P2
)

− g
2c
(
P · Ȧ + Ȧ · P

)
− g

2
(P · ∇ϕ +∇ϕ · P) , (1)

where ϕ and A are the scalar potential and the vector potential, respectively, related to the electric and
magnetic fields by

E = −1
c

Ȧ−∇ϕ, (2)

B = ∇∧A. (3)

Therefore, the interaction terms in the second line are nothing but

Lint =
g
2
(P · E + E · P), (4)

the usual linear interaction between the electric field and an electric dipole, but with a coupling
constant g. We have written them in a symmetrized form, ready for the quantization. The reason
for leaving g unfixed is that it can be helpfully used to simulate parametrically some perturbations
originated by nonlinear effects. For example, we are interested in describing a perturbation in the
refractive index generated by a fourth order nonlinearity, the so called Kerr effect, moving with constant
velocity in the medium. In [16,20], a generic uniformly traveling perturbation can be described by
assuming χ = χ(x− vt, y, z), ω = ω0(x− vt, y, z), and g = g(x− vt, y, z). This allows for discussing
the phenomenon we are interested in, in a way independent from how it is generated (is it the Kerr
effect or not). A first-principle introduction of the Kerr effect, like e.g., the one obtained by introducing
a fourth power of P requires modifications of the Lagrangian, as discussed in [19] and partially
summarized below.

The reason why we need to introduce such a traveling perturbation in the refractive index is to
simulate black holes in the dielectric. The idea is quite simple and intuitively as follows. For simplicity,
let us think about fiber optics, with a symmetry axis in the direction x, along which a bell shaped
(always in the direction x) intense pulse is moving along the direction x with constant speed. We can
forget the transverse direction to catch the idea. If the fiber optics is made of Kerr material, the intense
pulse will generate a proportional modification of the refractive index, δn(x − vt) = κ I(x − vt),
where κ is a constant and I ∝ E2 the pulse intensity. Suppose now that a photon is sent toward
the pulse, chasing it. It will move with velocity c/n, where c is the speed of light in vacuum and n
the refractive index of the material. Let us assume that the pulse is moving with a velocity v < c/n.
Then, the photon will reach it approaching it from the back. At this point, the refractive index seen
by the photon increases as n + δn, so it slows down to c/(n + δn). If the maximum of the bell shaped
δn is such that c/(n + δnmax) < v, it is clear that there will be a point before this maximum where
c/(n + δn) = v so the photon and the pulse have the same velocity. The photon cannot cross that
point, which is then a barrier for it to enter the pulse. This point behaves exactly as a white hole
horizon. By symmetry, in front of the pulse, there will be an analogous point satisfying the same
condition c/(n + δn) = v. This is a point from which a photon cannot escape forward, so it represents
a black hole horizon. A further point is that, in describing the motion of photons in the limit of
geometric optics, using a frame where the pulse is at rest (so it is an inertial frame moving with speed
v), one gets that the trajectories of the photons are just geodetics in a spacetime metric which has event
horizons at the positions described above, and this makes the intuitive analogy, just described, working
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also at a quantitative level. See the appendix for more details. However, such an oversimplified
description does not include the nontrivial dispersion relation that makes an important difference
between Hawking emission by analogue horizons in dielectrics and the one in astrophysical black
holes. Thus, we need a more fundamental description of such a system, as the Hopfield moves, but we
also need to make it relativistically covariant1 since we need to move easily from the lab frame to the
one comoving with the pulse.

Thus, we have to bring the Hopfield model in a covariant form. For what concerns the pure
electromagnetic part, this is of course immediate, but we need to tackle the problem of finding a
covariant form for the polarization part of the Hopfield Lagrangian, which is not such a trivial task.
To this aim, we first notice that, if we want to interpret P as the spatial components of a spacetime
vector Pµ, then, in a rest frame for the dielectric, we must have P = (0, P). This is equivalent to say

Pµvµ = 0, (5)

where vµ = δ
µ
0 is the four-velocity of the dielectric in the rest frame. This allows us to define the

polarization field in a covariant frame, simply assuming that it is a four-vector valued field satisfying
the (covariant) constraint Pµvµ = 0. We remark that vµ is the 4-velocity of the bulk dielectric medium
that is the velocity of the dielectric sample, not to be confused with the velocity of the dielectric
perturbation. Finally, remembering that the dipole couples with the electric field in the rest frame,
which is Eν = vµFµν as seen by an arbitrary inertial observer, we can finally rewrite the above
Lagrangian density in the covariant form2

L =− 1
16π

FµνFµν − 1
2χω2

0
(vρ∂ρPµ)(vσ∂σPµ)

+
1

2χ
PµPµ − g

2
(vµPν − vνPµ)Fµν + B∂µ Aµ +

ξ

2
B2. (6)

This is the relativistic Hopfield model with a single polarization field with resonance frequency ω0,
as presented in [20]. Here, we have also added the auxiliary scalar field B, to keep under control
the gauge invariance, as usual. This model can be quantized exactly, either in the canonical or in
the path integral formulation. In both cases, the quantization is ensured by the invertibility of the
wave operator, which is granted once the gauge is fixed (this explaining the insertion of the field
B), together with a prescription cutting out the zero modes (on-shell modes) of the wave operator.
The latter are the classical solutions of the equations of motion, which indeed exist if suitable dispersion
relations are satisfied. A careful analysis of these has been done in [22]. We limit ourselves to report
here that when the parameters χ, ω0, and g are constant, then the physical modes are subjected to the
dispersion relation in the lab frame

ω2 −~k2 =
g2χ2

0ω2ω2
0

ω2 −ω2
0

. (7)

This is nice since it reproduces the Sellmeier dispersion relation with a single resonance, usually
adopted in phenomenological description of transparent dielectrics. More realistic Sellmeier dispersion
relations, with more than one characteristic resonance, can be obtained by including more polarization
fields, one for each resonance. To keep the exposition as simple as possible, we will keep just one
polarization field.

1 Notice that we cannot expect for the model to be relativistically invariant, since Poincaré invariance is broken by the field P,
which selects a preferential class of frames: the ones where the dielectric is at rest.

2 For the Minkowski metric ηµν the standard signature (+,−,−,−) used for quantum field theory is chosen.
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We want to stress again the price we paid in order to get a covariant version of the Hopfield model.
Covariance of the Lagrangian forced us to introduce a zeroth component of the polarization field,
which now appears to be a four-vector. This component P0 is absent in the rest frame and appears to
have no physical meaning. In a general frame, this is equivalent to impose the constraint (5), so that
in general the new component is not an independent one, but is a function of the spatial components.
It is worth mentioning that this condition is the correct one for our harmonic oscillator field P coupled
to the electromagnetic field, regardless of its specific nature of polarization field.

Finally, we want to keep into account the nonlinear Kerr effect by adding a nonlinear self
interaction in the polarization field (Kerr nonlinearity) [19]:

LKerr =−
1

16π
FµνFµν − 1

2χω2
0
(vρ∂ρPµ)(vσ∂σPµ) +

1
2χ

PµPµ − g
2
(vµPν − vνPµ)Fµν + B∂µ Aµ

+
ξ

2
B2 − σµνσρPµPνPσPρ. (8)

A fourth order term in nonlinear optical media is not novel, see e.g., [24], where a fourth order
term in the displacement field can be introduced in the case of an optical fiber. Even if we refer to our
fourth order term as associated with Kerr nonlinearity, our approach does not represent the standard
way to approach the Kerr effect (see also [25,26]). Still, we shall show that our toy-model with a
fourth order term in the polarization field eventually can be related to the Kerr effect. This brings an
important simplification of the equations of motion that allows us to get explicit exact solutions of the
nonlinear equations of motion.

We have introduced the totally symmetric rank-four tensor σσσ. The contraction of any of its indexes
with vvv produces a vanishing result. We can assume homogeneity and isotropy of the tensor, and then
it is constant and invariant under the action of the little group Gvvv (the subset of the Lorentz group)
leaving vvv invariant. Gvvv is a compact group isomorphic to SO(3). Then, the space of rank four tensors
invariant under Gvvv is a three-dimensional vector space of the form

σµνσρ = σ1dµνdσρ + σ2dµσdνρ + σ3dµρdνσ, (9)

where

dµν = vµvν − ηµν. (10)

Indeed, any index must transform in the 333 or SO(3). The tensor belongs in the representation 333⊗4,
which decomposes as

333⊗4 = 1113 ⊕ 3336 ⊕ 5556 ⊕ 7773 ⊕ 999, (11)

which shows that the space of invariant tensors is three-dimensional. (9) easily follows from the fact
that (10) is indeed invariant and orthogonal to vµ.

Since σσσ is totally symmetric, invariance under permutations requires σ1 = σ2 = σ3 =: σ/4!.
Hence, taking into account the constraint vµPµ = 0, we get

σµνσρPµPνPσPρ =
σ

8
(P2)2, (12)

where P2 := PPP · PPP = PµPµ.
The equations of motion then take the form
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1
4π

(ηµν�− ∂µ∂ν)Aν + g(ηµνvρ∂ρ − vµ∂ν)Pν − ∂µB = 0, (13)

g(ηµνvρ∂ρ − vν∂µ)Aν − 1
χω2

0
(ω2

0 + (vρ∂ρ)
2)Pµ +

σ

2
P2Pµ = 0, (14)

∂µ Aµ + ξB = 0, (15)

which have to be considered together with the defining constraint vµPµ = 0.

2.1. Linearized Quantum Theory

In order to understand the Hawking effect in the dielectric medium, it is not necessary to quantize
the whole nonlinear model. For this reason, we focus our attention on the equations of motion for
the fluctuations on a given background solution of the Hopfield–Kerr equations of motion, by means
of a linearization of the Lagrangian [19]. Let us define the quantum fluctuations of the fields w.r.t. a
background solution (AAA0, PPP0, B0 = 0), of the whole nonlinear system, to be ÂAA, P̂PP and B̂, so that

AAA = AAA0 + ÂAA, PPP = PPP0 + P̂PP, B = B̂. (16)

The Lagrangian density LKerr appearing in (8), as a consequence of the linearization above, can be
re-written as

Llin−Kerr :=− 1
16π

F̂µν F̂µν − 1
2χω2

0
(vρ∂ρ P̂µ)(vσ∂σ P̂µ) +

1
2χ

P̂µ P̂µ − g
2
(vµ P̂ν − vν P̂µ)F̂µν + B̂∂µ Âµ

+
ξ

2
B̂2 − σ

4
(PPP2

0P̂PP
2
+ 2(PPP0 · P̂PP)2)− σ

2
P̂PP

2
(P̂PP · PPP0)−

σ

8
P̂PP

2
P̂PP

2
. (17)

We also define ζζζ such that

ζζζ :=

(
0
~ζ

)
, ~v ·~ζ = 0, ~ζ2 = 1, (18)

and consider background solutions which, for the polarization field, take the form

PPP0(xxx) = ζζζP0(xxx). (19)

The linearization is undertaken by dropping out the last two terms in Llin−Kerr:

Llin =− 1
16π

F̂µν F̂µν − 1
2χω2

0
(vρ∂ρ P̂µ)(vσ∂σ P̂µ) +

1
2χ

P̂µ P̂µ − g
2
(vµ P̂ν − vν P̂µ)F̂µν + B̂∂µ Âµ

+
ξ

2
B̂2 +

σ

4
P2

0

(
P̂PP

2 − 2(ζζζ · P̂PP)2
)

. (20)

As to polarizations for P̂PP, one is parallel and two are perpendicular to ζζζ. We have

(
P̂PP

2 − 2(ζζζ · P̂PP)2
)
=

{
3P̂PP

2
, if P̂PP ‖ ζζζ

P̂PP
2
, if P̂PP ⊥ ζζζ

. (21)

This allows us to infer that passing from the linear Hopfield Lagrangian to the Hopfield–Kerr
linearized Lagrangian amounts to the following modification:

1
χ
7−→ 1

χ
+ δη(xxx), (22)

with χω2
0 fixed, and where we have defined δη(xxx) which depends on the polarization:
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δη(xxx) :=

{
3
2 σP2

0 , if P̂PP ‖ ζζζ
1
2 σP2

0 , if P̂PP ⊥ ζζζ
. (23)

We note that δη(xxx) is positive, independently from the specific solution.
As in [19], by introducing a modified space-dependent3 susceptibility and resonant frequency,

we obtain:

χ̆(xxx) :=
χ

1 + χδη(xxx)
, (24)

ω̆2
0(xxx) := ω2

0(1 + χδη(xxx)). (25)

Now, we are interested in understanding how the refractive index changes due to the propagating
perturbation. For the transverse modes, the dispersion relation in the lab frame, where ω = k0

(see Figure 1) is, with respect to the homogeneous case (7)

~k2 = ω2

(
1−

4πg2χω2
0

ω2 − ω̆2
0

)
, (26)

which can be obtained in the WKB approximation as in [19], or simply by considering the shift rules
(24) and (25). In the homogeneous case, the phase and group velocity in the lab frame are [19]

ν f = |~ν f | =

√
ω2 −ω2

0
ω2 − ω̄2 , (27)

νg = |~νg| =

√
1− 4πg2χω2

0
ω2−ω2

0

1 + 4πg2χω4
0

(ω2−ω2
0)

2

=
|ω2 −ω2

0 |
√
(ω̄2 −ω2)(ω2

0 −ω2)

ω4 − 2ω2
0ω2 + ω̄2ω2

0
, (28)

where we have defined ω̄ = ω0
√

1 + 4πg2χ.

As a consequence, the phase refractive index is

n f =
1
ν f

=

√
1−

4πg2χω2
0

ω2 −ω2
0

. (29)

Taking into account the shift rules (24) and (25), we thus get that in the presence of a background
solution the new index becomes

n̆ f =

√
1−

4πg2χ̆ω̆2
0

ω2 − ω̆2
0

=

√
1−

4πg2χω2
0

ω2 −ω2
0(1 + χδη(xxx))

. (30)

From here, we see that δn f = n̆ f − n f is negative for both ω < ω0 and ω > ω̄, i.e., the perturbation
induces a decrease in the phase refractive index on both branches (see the following discussion).

For the group velocity, with ng = 1/νg, an analogous result holds [19]. This means that the
relativistic linearized Hopfield–Kerr model realizes a negative Kerr effect4 on both branches of the
transverse spectrum, for both the phase refractive index and the group refractive index. This is not an
unphysical result, since there exist materials, called metamaterials, realizing this kind of nonlinearity.

3 Henceforth, as in [19], we will use the accent ˘ to denote a spacetime dependence on the given parameter.
4 By negative Kerr effect, we indicate a decrease in the refractive index of the medium in response to the passage of an

electromagnetic pulse.
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In addition, from the point of view of understanding the Hawking effect, it is irrelevant since the result
is just of reversing the order of black and white horizons.

ω0

ω̄

k0 = ω

k

k′0

k′

ω1

ω2

Figure 1. This picture is the same as in [19]. The thick black lines represent the dispersion relations as
seen in the lab frame, shown for positive frequencies and wave-numbers. The grey lines represent the
axes of a frame boosted with velocity vvv. There are two positive branches for the transverse dispersion
relation (curved thick lines): 0 ≤ ω < ω0 and ω̄ ≤ ω < ∞. From the expression of the group velocity
we see that for any given value of νg, there are always two corresponding positive values ω1 and
ω2, one for each positive branch. These points determine the superluminal and subluminal regions,
w.r.t. the given group velocity.

One might correct the aforementioned behaviour by assuming σ < 0, which would restore the
expected positive Kerr effect. However, of course, this could represent a serious problem because the
energy for σ < 0 would be unbounded from below. Nevertheless, as discussed in [19], also a sixth
order perturbation with the positive sign could be added in order to obtain again an energy bounded
from below. Indeed, this would be sufficient in order to restore the presence of a finite lower bound
for the energy, and then for ensuring the presence of a ground state. Of course, one should also
provide that the further sixth order term can actually be neglected, at least as far as the Kerr effect in
itself is concerned. In this sense, this is substantially the same idea as for the classical anharmonic
model for centrosymmetric media, where the potential energy associated with the restoring force
acting on an electron involves a negative quartic term, which would be responsible for an energy
unbounded from below. In that case, one assumes that the electronic displacement is small in such
a way that higher order terms (which are implicitly assumed) are safely negligible [25]. It is then
legitimate to consider our ansatz for a quartic polarization term as the lowest order correction to the
polarization field.

As a final note of this subsection, we stress that we called this phenomenon a Kerr effect, even if
for small δη(xxx) the variation of the refractive index is proportional to PPP2

0 rather than to the intensity I
of the electromagnetic signal. Still, for the solitonic solution we are going to discuss in Equation (46),
we find that PPP2

0 ∝ ~B2 and then we can call it ‘Kerr effect’ in a proper way, as then one finds PPP2
0 ∝ I.

Cf (44) below.

2.2. Exact Solitonic Solutions

The next step is to look for explicit solutions of the whole nonlinear system of the equations of
motion, in order to fix the background solution. As we said above, our solution is expected to move
with constant velocity with respect to the lab system, with a polarization ζµ transversal to the velocity
of the solution itself. In addition, the profile of the dielectric perturbation is expected to evolve very
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slowly (adiabatically) with respect to the Hawking process. Therefore, it is convenient to work in the
comoving frame, where such a kind of solution is static. In this frame, we do the ansatz

Pµ = ζµ f (~α ·~x), (31)

where~α is a constant vector and ζζζ is as in Equation (18). We also set B = 0, so that ∂µ Aµ = 0, and set
z :=~α ·~x, so that the equations of motion take the form

1
4π

�Aµ + gζµ ~v ·~α f ′(z)− gvµ~α ·~ζ f ′(z) = 0, (32)

gvρ∂ρ Aµ −
1
χ

ζµ f (z)− 1
χω2

0
(~α ·~v)2ζµ f ′′(z) +

σ

2
ζ2ζµ f 3(z) = 0. (33)

Before looking for a solution, a remark is in order. In the ansatz for Pµ, we used for ζµ the same
symbol we proposed for the polarization field in the rest frame. The reason is that the conditions (18)
imply that ζµ is invariant under boosts in the ~v direction.

The second equation above, as described in [19], suggests that the electromagnetic potential
should also be proportional to ζµ, so that we put Aµ = ζµh(z). The condition B = 0 then implies
~α ·~ζ = 0, which simplifies the first equation so that we have

− 1
4π

~α2h′′(z) + g ~v ·~α f ′(z) = 0, (34)

g ~v ·~α h′(z)− 1
χ

f (z)− 1
χω2

0
(~α ·~v)2 f ′′(z) +

σ

2
ζ2 f 3(z) = 0. (35)

A compatible choice for ~α is ~α = α~v, so that, from the first equation (setting the integration
constant to zero), one gets

h′(z) = 4π
g
α

f (z). (36)

Then, it is easy to obtain for the second equation

4πg2~v2χ f (z)− f (z)− α2

ω2
0
(~v2)2 f ′′(z) +

σ

2
χζ2 f 3(z) = 0, (37)

which can be written in the form

α~v2 f ′(z)√
(4πg2~v2χ− 1) f 2(z) + σ

4 χζ2 f 4(z)− K
= ±ω0, (38)

with K an integration constant.
In order to keep the solutions as simple as possible, we set K = 0. Moreover, we assume

4πg2~v2χ > 1. (39)

Therefore, we get

α~v2√
4πg2~v2χ− 1

f ′(z)/ f 2(z)√
1

f 2(z) −
σχ|ζ2|

4(4πg2~v2χ−1)

= ±ω0, (40)

whose integration provides us the solution
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f (z) = 2

√
4πg2~v2χ− 1

σχ|ζ2| sech
[

ω0

α~v2

√
4πg2~v2χ− 1 (z− z0)

]
. (41)

This is one of the key-results we obtained in [19]: the Hopfield–Kerr model admits an exact
solitonic solution, which, in the comoving frame and for the polarization field, becomes

PPP(xxx) = 2ζζζ

√
4πg2~v2χ− 1

σχ
sech

[
ω0

~v2

√
4πg2~v2χ− 1 ~v · (~x−~x0)

]
, (42)

where ζζζ is as defined in Equation (18).
Now, a few remarks are in order: first, we have imposed the condition (39). This does not

mean that, if not imposed, then exact solutions do not exist, but just that we would get a periodic
solution with the substitution sech 7→ sec in (42). It would also be a singular solution since sec is.
This would not be what we were looking for. In addition, we have set two integration constants
to zero. In principle, it would be possible to solve the equations exactly for any values of such
integration constants, after reducing the above system to a Weierstrass equation. However, using
general properties of the Weierstrass function, it is not difficult to prove that all solutions found this
way are periodic with just an exceptional degenerating (from the point of view of Weierstrass functions)
case, which is exactly the one we have determined in an elementary way.

Second, we notice that the form Aµ = ζµ f (z) for the gauge four-potential immediately implies that
the electric field vanishes in the comoving frame, independently from the exact form of h, since both
A0 and ∂t Aµ = 0 (in the comoving frame z is just a spatial coordinate). Therefore, our exact solutions
(included the periodic ones) are purely magnetic in the comoving frame. It is not clear if there is
a deep physical reason below or not, since, in any case, we made a number of ansätze to simplify
the equations. We can only notice that it seems that a crucial ingredient has been the requirement
of staticity. This requires a vanishing Poynting vector field and may be the origin of the vanishing of
the electric field. A more general solution would probably require a longitudinal component ζ

µ

‖ ∝ vµ

for the 4-potential (but not for the polarization field of course).
As for the magnetic field, in the comoving frame, one obtains another key-result of [19]:

~B(~x) = 8πg

√
4πg2~v2χ− 1

σχ
sech

[
ω0

~v2

√
4πg2~v2χ− 1 ~v · (~x−~x0)

]
~ζ×~v

= 4πg~P×~v. (43)

As outlined at the end of the previous subsection, this confirms that our interpretation of the
refractive index modification induced by this solitonic solution as a Kerr effect is indeed correct.
Indeed, the pulse intensity is

I =
~B2

8π
= 2πg2~P2

0 , (44)

where we included a 0 subscript to recall that we are considering a background solution.
Let us further investigate the condition (39). We start by noting that, for standard transparent

materials, the Sellmeier coefficient 4πg2χ is typically smaller than 1. This means that the solitonic
solution displayed in (42) is acceptable only as long as |~v| is large enough. If we define ~ν to be the
velocity of the comoving frame, i.e., ~v2 = γ2~ν2, we obtain

|~ν| > νc :=
1√

1 + 4πg2χ
(45)

as a condition for the existence of the solitonic solution, which is not obvious. We limit ourselves
to note that, as the phase refractive index in the lab frame, in the present setting and, as the
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refractive index for ω → 0 is n f =
√

1 + 4πg2χ, this condition implies that the perturbation must
be superluminal, i.e., it must exceed the velocity of light in the medium (in the limit of negligible
optical dispersion). Of course, this feature of our analytic solution does not necessarily imply that
any dielectric perturbation must implement this condition, as we can only assert that this feature
occurs for our particular solution of the nonlinear equations we discussed above. One must point
out that standard solitonic solutions for the nonlinear Schrödinger equation in nonlinear optics are
not involved with this kind of limitation (see, e.g., [26]). Still, we think that our result is robust, as is
confirmed also by the simplified model discussed in the following section.

In concluding this review of our results [19], we wish to consider positive velocities parallel
to e.g., the x-axis, with the aim of mimicking experimental settings, in particular, we choose vvv =

(γ,−γv, 0, 0), where v is the absolute value of the chosen frame’s velocity. As a consequence, the
background solution depends on the spatial variable x, and we obtain for it the form

PPP0(x) := ζζζτ sech(βx), (46)

where we have defined

τ := 2

√
4πg2γ2v2χ− 1

σχ
, (47)

β :=
ω0

γv

√
4πg2γ2v2χ− 1. (48)

τ corresponds to the amplitude of the soliton and β is inversely proportional to the width of the
solitonic envelope. In the limit ν→ ν+c , the solitonic solution can be seen to flatten on the real line and
fade away.

In the following section, we take into account a simplified model which allows us to avoid many
subtleties associated with the full Hopfield model with nonlinear contributions in the polarization we
have just summarized above. Again, with particular reference to the problem of solitonic background
solutions, we discuss a model which preserves many relevant physical properties of the Hopfield
model but without subtleties mainly associated with gauge invariance.

3. The ϕψ-Model

The electromagnetic Lagrangian for the full Hopfield model is quite involved. It is not
much manageable for testing quantum effects, so, in order to gain insights into the real situation
and carry out analytical calculations as far as possible, we now introduce a simplified model
where the electromagnetic field and the polarization field are simulated by a pair of scalar fields,
ϕ, and ψ, respectively. Obviously, we are interested in constructing a model in such a way to maintain
exactly the same dispersion relation and to simulate the same coupling as in the full case. Our model
is related to the two-dimensional reduction of the Hopfield model adopted in [15]. We introduce
also a fourth-order contribution for the polarization field, aimed at simulating the Kerr effect also in
this simplified version of the actual electromagnetic model. For completeness, we also restore c in
our equations.

Let us introduce

Lϕψ =
1
2
(∂µ ϕ)(∂µ ϕ) +

1
2χω2

0

[
(vα∂αψ)2 −ω2

0ψ2
]
− g

c
(vα∂αψ)ϕ− λ

4!
ψ4, (49)

where χ plays the role of the dielectric susceptibility, vµ is the usual four-velocity vector of the dielectric,
ω0 is the proper frequency of the medium, and g is the coupling constant between the fields. The latter
constant is henceforth put equal to one, as its original motivation (see [16]) can be relaxed without
problems in a more advanced discussion (cf. also [27]). Instead of working with a phenomenological
model where we can leave room for a spacetime dependence of the microscopic parameters χ, ω0,
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the nonlinear contribution in the polarization field allows for obtaining such a dependence as a
consequence of a linearization of the field equations around a soliton-like static solution aimed to
represent the effects of a strong laser impulse in the dielectric medium: a dielectric perturbation
which corresponds to a static solution of the full nonlinear equations in the comoving frame, and a
perturbation travelling with constant velocity in the lab frame (where the dielectric medium is at rest).
We are also allowed to extending the model in such a way to also include N > 1 polarization fields ψi,
each one with its own resonance frequency ω0i, susceptibility χi.

Omitting spacetime arguments, the equations of motion are

�ϕ +
1
c
(vα∂αψ) =0, (50)

1
χω2

0
(vα∂α)

2ψ +
1
χ

ψ− 1
c

vα∂α ϕ− λ

6
ψ3 =0. (51)

We look for static solutions (in the comoving frame, with vα = γ(c, v)):

−∂2
x ϕ(x) +

1
c

γv∂xψ(x) =0, (52)

γ2v2

χω2
0

∂2
xψ(x)− 1

c
γv∂x ϕ(x) +

1
χ

ψ(x) +
λ

6
ψ3(x) =0. (53)

From the first equation, we select the solution

∂x ϕ(x) =
1
c

γvψ(x), (54)

which, substituted into the second equation above, provides us with the following nonlinear equation:

γ2v2

χω2
0

∂2
xψ(x) +

(
1
χ
− 1

c2 γ2v2
)

ψ(x) +
λ

6
ψ3(x) = 0. (55)

If we multiply by ∂xψ(x) each term of this equation, we easily obtain

∂x

(
γ2v2

2χω2
0
(∂xψ(x))2 +

1
2

(
1
χ
− 1

c2 γ2v2
)

ψ2(x) +
λ

24
ψ4(x)

)
= 0. (56)

As a consequence, by choosing a further integration constant as equal to zero, we get the
following equation:

a
1

ψ2(x)
∂xψ(x)

1√
1

ψ2(x) − b
= ±1, (57)

with

a :=
γv√
χω0

1
d

, (58)

b :=
λ

12
1
d2 , (59)

d2 :=− 1
χ
+

1
c2 γ2v2. (60)

The condition to be implemented, in order to get real solutions, is to put d2 > 0. By taking
into account that the refractive index n is related to the susceptibility χ by the well-known formula
n =
√

1 + χ (limit of negligible dispersion), it is easy to infer that d2 > 0 amounts to
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n >
c
v

, (61)

i.e., a solution of the given equation exists only if it represents a soliton which moves in the lab at a
velocity greater than the light velocity in the medium. Notice that this is even more stringent than the
vectorial model, since now subluminal solutions are not allowed at all. Notice that now the staticity is
essentially the only requirement we made, so we may infer that this is the reason for the condition, even
for the original Hopfield model. In addition, we have to mention that, even if subluminal solutions are
allowed for the vectorial case, the energy of such solutions is infinite.

The solution is

ψ0(x) =
1√
b

sech(
x
a
), (62)

where we have put without loss of generality the maximum of the solution at x = 0. We can also obtain

φ0(x) =
2aγv√

bc
arctan(tanh(

x
2a

)). (63)

We linearize around a solitonic solution ψ0(x) of the exact equations of motion inherited from the
above action. As a consequence, we obtain the linearized equations of motion

�φ +
1
c

vµ∂µψ = 0, (64)

1
χω2

0
(vµ∂µ)

2ψ− 1
c

vµ∂µφ +
1
χ

ψ +
λ

2
ψ2

0ψ = 0. (65)

We observe that, as in the original Hopfield model discussed in the previous section, this amounts
to the following shifts in χ and in ω2

0 with respect to the linear case λ = 0:

1
χ
7→ 1

χ
+

λ

2
ψ2

0(x), (66)

ω2
0 7→ ω2

0(1 + χ
λ

2
ψ2

0(x)), (67)

in such a way that χω2
0 remains invariant: χω2

0 7→ χω2
0.

3.1. Current Conservation and Inner Product

In order to quantize the theory, it is necessary to introduce a scalar product on the space of
classical solutions. This can be obtained in different ways, for example by complexification of the
Poisson structure. As described in [16], a practical way is to use Noether’s theorem in order to
determine the conserved current associated with invariance of the redefinition of the phases of the
fields (after complexification of the fields). One easily finds

Jµ =
i
2

[
ϕ∗∂µ ϕ− (∂µ ϕ∗)ϕ +

1
χω2

0
vµψ∗vα∂αψ− 1

χω2
0

vµψvα∂αψ∗ − 1
c

vµ(ψ∗ϕ− ψϕ∗)

]
, (68)

which is conserved along the equation of motion: ∂µ Jµ = 0. This provides the conserved charge∫
Σt

dxJ0, (69)

which is what we need in order to define a conserved scalar product. In particular, we obtain



Universe 2020, 6, 127 14 of 23

((ϕ ψ)|(ϕ̃ ψ̃)) =
i
2

∫
Σt

[
ϕ∗∂0 ϕ̃− (∂0 ϕ∗)ϕ̃ +

1
χω2

0
v0ψ∗vα∂αψ̃

− 1
χω2

0
v0ψ̃vα∂αψ∗ − 1

c
v0(ψ∗ ϕ̃− ψ̃ϕ∗)

]
, (70)

which will obviously play a particularly important role in the definition of the quantum states for the
model at hand.

3.2. Quantization of the Fields

In this subsection and in the following one, we adopt the following convention for frequencies and
wave vectors: ωlab, klab will be relative to the lab frame, ω, k will be associated with the comoving frame
(moving with the dielectric perturbation). The conserved scalar product induces the norm of the states
as follows:

||(ϕ ψ)||2 := ((ϕ ψ)|(ϕ ψ)). (71)

This is not positive definite, but in quantum field theory, particle states correspond to positive
norm states, whereas negative norm states correspond to antiparticles. This can be exemplified in the
homogeneous case, i.e., in absence of the perturbation. For plane wave solutions, one finds that

||(ϕ ψ)||2 ∝ ωlab, (72)

so that sign||(ϕ ψ)||2 = signωlab; we stress that this corresponds to what happens in the
electromagnetic case. In particular, particles in the lab frame are defined by the condition ωlab > 0.
Correspondingly, in the comoving frame, the particle states are defined by the condition ω > −vk.
These conditions represent a good indication for particle and antiparticle states also for the full problem,
as asymptotically, under suitable conditions, the situation is homogeneous.

This discussion corroborates the common use of the asymptotic dispersion relation in order
to identify particle and antiparticle states. We will refer to these as (DR)-asymptotic in the
following; Figure 2 is an example. When working at low frequencies, we can then use the so called
Cauchy approximation that means

n(ωlab) = n(0) + Bω2
lab + δn(x− vt), (73)

where n(0) is n(ωlab = 0), B is a constant, and the Kerr effect induces the right-moving
perturbation δn(x− vt). In the comoving frame, one obtains a space-dependent refractive index n(x).
Analytical solutions of the equations of motion reveal that there is a turning point xtp which
corresponds to the condition

n(xtp) =
c
v

, (74)

and we can shift such a turning point at x = 0 without loss of generality. Such a turning point behaves
as a horizon, with a black hole region occurring where n(x) > c/v. One may also note that the above
turning point equation coincides with the horizon condition one may deduce in the nondispersive case
(see, e.g., the Appendix for more details). We also introduce the notion of ingoing and outgoing states,
where ‘outgoing’ is relative to states going to infinity, whereas ‘ingoing’ is used for states traveling
towards the horizon x = 0. There are six propagating states, and we are going to discuss their nature,
focusing in particular on the ones directly involved in the Hawking process. For simplicity, we consider
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the Cauchy approximation, and the comoving frame, where the two branches of the dispersion relation
are given by

G± := γ(ω + vp)(Bγ2(ω + vp)2 + n(x))± c
v

(
γ(ω + vp)− ω

γ

)
= 0. (75)

G+ = 0 corresponds to the monotone branch, whereas G− = 0 is the branch involved in the Hawking
effect. The (DR)-asymptotic displays in the external region three states on the same branch G− defined
by Equation (75), all having the same ω in the comoving frame: the positive group velocity particle
state (outgoing), which we call H state, the negative group velocity particle state (ingoing), which we
call the P state, and a negative group velocity antiparticle state N (ingoing).

kkk

ωωω

PPP

HHHBBB

NNN

G+G+G+ G−G−G−

Figure 2. Asymptotic dispersion relation in the external region for the Cauchy case in the comoving
frame. The monotone branch is G+, the non-monotone one is G−. The line at ω = const is also drawn,
and relevant states introduced in the text are explicitly indicated.

In the black hole case, P, N, B are early time scattering states, and H is the emergent one
(the Hawking state [18,19]). There are two further states living in the internal region (black hole),
one is the Hawking partner H, and the other is a mode D, both outgoing. The states N, H have
negative norm.

The quantization of the fields, with respect to the full electromagnetic case, presents the important
simplification deriving by the absence of constraints, which makes the whole treatment much easier
and standard. In particular, in the static comoving frame, we have (see e.g., [16])

Ψ(t, x) =
∫ dω

2π

dk
(2π)3

1
NΨ

δ(DR)
(

a(ω, k)U(ω, k; t, x) + a†(ω, k)V(ω, k; t, x)
)

, (76)

where NΨ is a normalization factor, δ(DR) indicates that we are considering “on shell” solutions, and U
and V are positive norm solutions and negative norm solutions of the field equations, respectively. As in
the standard S-matrix approach, initial states, if one considers as IN-modes, the ones moving towards
the turning point (horizon) and as OUT-modes the ones moving towards infinity (i.e., x → ±∞),
one may write

ΦOUT = SΦIN (77)
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with

ΦIN :=

 ΨB
ΨP
ΨN

 , (78)

and

ΦOUT :=

 ΨH
ΨD
ΨH

 , (79)

where the labels B, P, N, H, D, H refer to the above-mentioned states inside and outside the black hole
region, and where by means of Ψ we indicate solutions of the equations of motion (for the ϕ, ψ fields
introduced above). See [27] for more details of the calculations.

The on shell quantization described above, in a two-dimensional model, can give rise both to
an ω-representation, where only the integration in dω is left, or also to a k-representation, where the
dispersion relation is used to leave only the integral in dk.

3.3. Amplitudes and Thermality

In order to compute amplitudes for pair-creation, let us expand in plane waves both the H
state and the P, N, B states involved in the scattering process. As e.g., in [18], in terms of
creation-annihilation operators, one may write

aH
ω = αωaP

ω + βωaN
ω

†
+ ηωaB

ω (80)

where the various amplitudes are obtained as follows: the ratio giving the particle-creation rate is

|βω |2 :=
|JN

x |
|JH

x |
, (81)

where Jx represents the conserved current (68), while the indexes N, H indicate the N-particle states
and the H-particle states, respectively, and

|αω |2 :=
|JP

x |
|JH

x |
, (82)

|ηω |2 :=
|JB

x |
|JH

x |
, (83)

can also be introduced. Current conservation (unitarity) leads to

1− |αω |2 − |ηω |2 + |βω |2 = 0. (84)

In particular, of utmost relevance is the ratio

|βω |2
|αω |2

=
|JN

x |
|JP

x |
, (85)

as thermality corresponds just to finding

|βω |2
|αω |2

= e−βω, (86)

where
β =

2πc
γ2v2κ

(87)
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is the inverse of the expected Hawking temperature. It can be shown that it coincides with the
temperature which can be associated with the black hole metric in the nondispersive case. See the
Appendix herein. Such a result can be reached through different schemes of approximation [16,18,19],
still sharing this same temperature, and we refer in particular to [27] for details. For completeness,
we still sketch how analytical calculations are developed. The model-calculation was provided by
Corley in [28]. See also [29,30]. There are fundamentally two steps:

• A WKB analysis is produced, which holds in the asymptotic region and also in part of the so
called linear region, except for a neighborhood of the horizon x = 0. WKB wave functions are
obtained [28].

• A near horizon approximation is developed [28]. Saddle point techniques and contour integrals
around branch cut(s) are common tools in this calculation.

Matching of the states obtained in the near horizon approximation and asymptotic states in the
asymptotic DR is then considered. This allows for obtaining the S-matrix for the complete scattering
process. Again, thermality can be identified by studying the number of negative norm states identified
in the process, as discussed above.

3.4. More on the Linearized Equation

In place of showing explicitly the usual calculation leading to the thermal regime, here we
propose another possible strategy to tackle the linearized system (64) and (65). After taking the
Fourier transform, they become

−k2φ̃(kkk) + i
ω

c
ψ̃(kkk) = 0, (88)

(ω2
0 −ω2)ψ̃(kkk)− iχ

ω2
0

c
ωφ̃(kkk) + 6πγ2v2

∫
R

ds
kz − s

sinh
[

πγvc(kz−s)
2ω0
√

χv2γ2−c2

] ψ̃(kkks) = 0, (89)

where

kkk ≡ (k0, kx, ky, kz), (90)

kkks ≡ (k0, kx, ky, s), (91)

and

ω = uµkµ. (92)

Here, uuu is the four-velocity, with

u0 = γc, ~u = γ~v, v2 = ~v ·~v. (93)

From this system, we obtain the integral equation(
ω2

0 −ω2 + χ
ω2

0ω2

c2k2

)
ψ̃(kkk) + 6πγ2v2

∫
R

ds
kz − s

sinh
[

πγvc(kz−s)
2ω0
√

χv2γ2−c2

] ψ̃(kkks) = 0. (94)

Notice that it is independent from the coupling λ. This proves the non perturbative nature of
the background solitonic solution. It is also worth noticing that the linear convolution operator M
defined by
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f 7−→ M[ f ], M[ f ](kkk) = 6πγ2v2
∫
R

ds
kz − s

sinh
[

πγvc(kz−s)
2ω0
√

χv2γ2−c2

] f (kkks) (95)

is a strictly positive bounded, injective, selfadjoint operator over L2(R4, dµ), dµ being the Lebesgue
measure. It has a continuum spectrum [0, ‖M‖], where the norm of the operator is

‖M‖ = 24πω2
0

(
χγ2 v2

c2 − 1
)

. (96)

The boundedness of the operator M[ f ], to be compared with the unboundedness of the
unperturbed part of Equation (94), suggests that one can try to solve (94) in a recursive way: let us
introduce a parameter ε, to be put equal to 1 at the end of the calculation, and let us consider M[ f ] as
an O(ε) contribution, to be compared with the O(1) contribution of the unperturbed part, and let us
also put

ψ̃(kkk) = ψ̃0(kkk) +
∞

∑
n=1

εnψ̃n(kkk). (97)

By inserting in Equation (94) and solving order by order in ε, we obtain(
ω2

0 −ω2 + χ
ω2

0ω2

c2k2

)
ψ̃0(kkk) = 0, (98)

and, for all n ≥ 1,(
ω2

0 −ω2 + χ
ω2

0ω2

c2k2

)
ψ̃n(kkk) + 6πγ2v2

∫
R

ds
kz − s

sinh
[

πγvc(kz−s)
2ω0
√

χv2γ2−c2

] ψ̃n−1(kkks) = 0. (99)

The above method is essentially the Adomian Decomposition Method for integral equations [31].
In order to simplify a little bit the expressions, we now proceed assuming just one dimension.
The solution of Equation (98) is the unperturbed usual one:

ψ̃0(kkk) = δ(ω2
0 −ω2 + χ

ω2
0ω2

c2k2 ), (100)

and then for the first order correction we get

ψ̃1(kkk) = −
6πγ2v2

ω2
0 −ω2 + χ

ω2
0 ω2

c2k2

∫
R

ds
kz − s

sinh
[

πγvc(kz−s)
2ω0
√

χv2γ2−c2

] δ(ω2
0 − γ2(ck0 − vs)2 + χγ2 ω2

0(ck0 − vs)2

c2(k02 − s2)
), (101)

which is to be computed. If we set

σ = ω + γv(kz − s), (102)

we can rewrite it as

ψ̃1(kkk) = −
6π

ω2
0 −ω2 + χ

ω2
0ω2

c2k2

∫
R

dσ
ω− σ

sinh
[

πc(ω−σ)

2ω0
√

χv2γ2−c2

] δ(ω2
0 − σ2 +

χ

c2
γ2ω2

0v2σ

2k0γv− σ
). (103)
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This expression requires a prescription since it has poles on the zeros of the first denominator.
The right ε-prescription preserving causality has been explored in [23] and gives rise to the
correct solution

ψ̃1(kkk) = −
6π

ω2
0 −ω2 + χ

ω2
0ω2

c2(k2+iε) − ic2ε

∫
R

dσ
ω− σ

sinh
[

πc(ω−σ)

2ω0
√

χv2γ2−c2

] δ(ω2
0 − σ2 +

χ

c2
γ2ω2

0v2σ

2k0γv− σ
). (104)

The integral can be done explicitly, noticing that the zeros of the argument of the delta distribution
are the solutions of the equation

σ3 − 2k0γvσ2 + σω2
0(χγ2 v2

c2 − 1) + 2ω2
0k0vγ = 0, (105)

which could be solved by means of Cardano’s formula. However, the explicit solution is
quite cumbersome, we limit ourselves to commenting that the number of real zeros is just one for k0

large enough, but it may become three for small values of k0. The Fourier anti transform of ψ̃1(kkk) gives
the first approximation to the solution of the linearized equations around the soliton. It defines the
vacuum state on such a background and could be used to compute the Bogoliubov coefficients relating
it to the vacuum in the absence of the soliton. It could be interesting to be able to do it analytically in
some approximation, since it could provide a description of particle production in a region far from
the limit of weak dispersion. We shall consider a full analysis in future works. For further aspects
concerning solitonic solutions in a Sellmeier dielectric, see also [32].

4. Conclusions

We reviewed and discussed nonlinear contributions in the polarization field in the relativistically
covariant version of the Hopfield model and its simplified version represented by the φψ-model.
Instead of starting from a model where there is a phenomenological dependence of the susceptibility
and of the resonance frequency ω0 on the spacetime variables, we have obtained such a dependence
by means of the introduction of nonlinear contributions in the polarization field. The aforementioned
dependence naturally arises after a linearization around solitonic solutions is performed. The aim of
this analysis was twofold: on the one hand, a less phenomenological modelization of the dielectric
perturbation traveling in a dielectric medium because of the Kerr effect was obtained. On the
other hand, explicit solitonic solutions were provided. The presented framework is associated with the
analogue Hawking effect in dielectric media, the bases of which were sketched. Possible developments
of our present discussion are represented on a more extensive analysis of our Equation (94) of
Section 3.4, which is providing a new possible way of understanding the analogue Hawking spectrum
far from the weak dispersion region, together with a better comprehension of the quantization around
solitonic solutions. Furthermore, a modeling of the fiber optic case would be also of great interest,
again also in relation with the Hawking effect and its experimental verification [33]. In this respect,
it would be interesting to further improve the modeling of the Kerr effect, for example, by starting from
a microscopic model. In addition, a more deep analysis in the multiresonance case of dielectric media
should be in order. A further observation is that the highly nonlinear dispersion relation combined with
the unitarity condition (the Kramers–Kronig relations) is expected to provide a non-trivial contribution
to the absorption. All these topics need to be fully investigated in order to provide a detailed control of
an experimental setup.
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Appendix A. Black Hole Metric for the Nondispersive Case

We describe herein the metric associated with a dielectric perturbation traveling in a
dielectric medium, which can be related also to the solitonic solutions described above. We refer
to the simplest case, and refer to [6,10,12,34] for more discussions and details. In order to avoid
unnecessary technical complications and keep all the analysis as simple as possible, it is convenient to
replace the electric field with a scalar field Φ, which, then, must satisfy the wave equation

1
c2 n2(x− vt)∂2

t Φ− ∂2
xΦ− ∂2

yΦ− ∂2
zΦ = 0, (A1)

where (t, x, y, z) are inertial coordinates in the laboratory frame. We are thinking the refractive index
n2(x − vt) to be obtained by means of an intense laser pulse in a nonlinear dielectric medium via
Kerr effect. The dielectric perturbation does not depend on the transverse coordinates, so that it is
infinitely extended in the transverse dimensions. In an actual experiment, one could restrict to a
finite geometry, for example by considering a dielectric in fibre optics, but this would not change the
substance of the Hawking effect, thus the approximation is well justified and facilitates the comparison
with the geometrical description of the effect, beyond simplifying all calculations, including the
quantum field theoretical treatment. We assume

n(x) = n0 + δn(x) = n0 + η Ī(x), (A2)

where η is positive, η � 1 representing the smallness of the Kerr index, and Ī denotes the normalized
intensity of the pulse, a smooth rapidly decaying function a single maximum at x = 0, of height 1.
A scheme of the dielectric perturbation is shown in Figure A1.

x−x−x− x+x+x+ xxx

n0n0n0

η Īη Īη Ī

Figure A1. Example of the dielectric perturbation geometry. x+ and x− indicate the black hole and
white hole horizon positions, respectively.

The relation with spacetime geometry arises by observing that Equation (A1) can be obtained
from the Klein–Gordon equation for a scalar field in the metric background

ds2 =
c2

n2(x− vt)
dt2 − dx2 − dy2 − dz2, (A3)

assuming the eikonal approximation. By means of the boost,
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t′ =γ(t− vx), (A4)

x′ =γ(x− vt), (A5)

y′ =y, (A6)

z′ =z, (A7)

where

γ =
1√

1− v2

c2

(A8)

is the usual relativistic gamma factor, we get the metric in the comoving frame

ds2 =γ2 c2

n2 (1 + n
v
c
)(1− n

v
c
)dt′2 + 2γ2 v

n2 (1− n2)dt′dx′

− γ2(1 +
v
nc

)(1− v
nc

)dx′2 − dy′2 − dz′2. (A9)

This form of the metric is manifestly stationary. We however know that in this case the Frobenius
theorem is satisfied, hence it exists a coordinate transformation that brings the metric in an explicit
static form. Indeed, consider the change of time coordinate

dt′ = dτ − α(x′)dx′, (A10)

where

α(x′) =
g01(x′)
g00(x′)

. (A11)

The metric becomes

ds2 =
c2

n2(x′)
gττ(x′)dτ2 − 1

gττ(x′)
dx′2 − dy′2 − dz′2, (A12)

which is manifestly static (w.r.t. the time τ), where

gττ(x′) := γ2
(

1 + n(x′)
v
c

) (
1− n(x)

v
c

)
. (A13)

This form of the metric is immediately comparable with the Schwarzschild one. If we look at the
τ− x′-part, we see that the more relevant different represented by the factor 1

n2 in front of the temporal
component of the metric. The horizons are determined by the condition gττ = 0:

1− n(x)
v
c
= 0, (A14)

or, equivalently,

n0 + η Ī(x) = c/v. (A15)

When
1

n0 + η
≤ v

c
<

1
n0

, (A16)

there will be two horizons: a black hole horizon in p+, described by the (hyper)plane of equation x′+,
located on the rising edge of the dielectric perturbation (i.e., dn/dx|x′+ < 0) and a white hole horizon
in p−, described by the (hyper)plane of equation X′ = x′−, on the falling edge (i.e., dn/dx|x′− > 0).
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As we have a static metric with an horizon, we can, as usual, predict that the dielectric black hole
horizon will emit particles with a temperature proportional to the “surface gravity” κ+ at the black
hole horizon:

κ2
+ := −c4 1

2
gabgcd(∇aξc)(∇bξd)|x=x+ = − c4

2

[
−2γ4

n4

(
dn
dx

)2
]

x=x+

, (A17)

which gives

κ+ = γ2v2
∣∣∣∣dn
dx

(x+)
∣∣∣∣ . (A18)

One can deduce formula (A18) in several ways. Then, the temperature is given by the now
familiar formula

T+ =
κ+ h̄

2πkbc
= γ2v2 h̄

2πkbc

∣∣∣∣dn
dx

(x+)
∣∣∣∣ , (A19)

where we restore h̄, c and kb.
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