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Abstract: In this paper, we construct anisotropic model representing salient features of strange
stars in the framework of massive Brans–Dicke gravity. We formulate the field equations for
Tolman–Kuchowicz ansatz by incorporating the MIT bag model. Junction conditions are applied
on the boundary of the stellar model to evaluate the unknown constants in terms of mass and
radius of the star. The radius of the strange star candidate PSR J1614-2230 is predicted by assuming
maximum anisotropy at the surface of the star for different values of the coupling parameter, mass
of the scalar field and bag constant. We examine various properties as well as the viability and
stability of the anisotropic sphere. We conclude that the astrophysical model agrees with the essential
criteria of a physically realistic model for higher values of the coupling parameter as well as mass of
the scalar field.
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1. Introduction

Self-gravitating systems such as stellar and galactic structures constitute a major part of the visible
universe. The study of the evolution of these systems plays a crucial role in revealing various hidden
aspects (composition, evolution, age) of the cosmos. One of the important evolutionary phases of a star
is the process of gravitational collapse near its death which leads to the formation of dense compact
objects. The neutron star is one of the intriguing outcomes of collapse with a dense core of about
1M⊙ to 3M⊙ (M⊙ is the solar mass). The degeneracy pressure of neutrons resists the strong inward
gravitational pull and halts the process of collapse. Since radiation emitted by neutron stars is less as
compared to other cosmic objects, therefore, they are difficult to detect. Baade and Zwicky [1] predicted
the existence of neutron stars in 1934. However, the first rapidly rotating pulsar was discovered in 1967
which pulsated at a regular interval of 1.37 s [2].

According to the Tolman–Oppenheimer–Volkoff limit, a stable neutron star must have a mass of
at most 3M⊙. If the mass exceeds this limit, it is hypothesized that neutrons lose their individuality
under extreme pressure and breakdown into quarks. Quark matter can exist in the universe in two
scenarios: the transition phase of quark-hadron in the initial era of the cosmos or the evolution of
neutron stars into strange quark stars [3]. A quark star is smaller in size but ultra-dense as compared
to the neutron star. However, increased pressure in its core stops quark stars from collapsing into black
holes. It has been proposed that the amount of energy emitted in extremely luminous supernovae
(observed once in every thousand supernovae) can be explained with the help of stable strange quark
stars [4,5]. Moreover, estimates of radii of some stellar objects (LMC X-4, 4U 1820-30, Her X-1, etc.)
suggest that their structure and characteristics may be similar to that of strange quark stars.

Interactions among tightly packed nuclear matter generate anisotropy in a system with high
density [6]. Bowers and Liang proposed that extreme density at the core of celestial structures
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(like compact stars) makes them highly anisotropic in nature [7]. Anisotropy may be the result of
different physical processes such as the presence of superfluid, phase transition or magnetic field [8–10].
Researchers have investigated salient properties of cosmic objects by introducing anisotropic pressure
in matter source. Herrera and Santos [11] studied different aspects of anisotropic self-gravitating
objects and identified the causes of local anisotropy. Harko and Mak [12] considered the anisotropy
factor to obtain static interior solutions of relativistic objects. Hossein et al. [13] included cosmological
constant to explore the stability of anisotropic systems. Viable solutions were derived for spherical
systems in equilibrium by Paul and Deb [14]. Recently, Maurya et al. [15] presented a class of physically
realistic solutions representing static anisotropic stars by incorporating Buchdahl’s ansatz.

Equation of state (EoS) relating different physical properties of the matter distribution is often
introduced in the modeling of an astrophysical configuration to describe the realistic scenario within
the stellar structure. An agreement on the most suitable EoS representing quark stars has not been
achieved. Witten [3] conjectured that the quark star is composed of strange quark matter (SQM)
containing strange, up and down quarks. The confined hadrons can exist in their true ground state in
a hypothetical quark star [16,17]. As the EoS for neutron star does not accurately describe the compact
objects like SAX J 1808.4-3658, Her X-1, PSR J1614-2230, etc. therefore, the MIT bag model (SQM
EoS) [18] is chosen as the most suitable representative of quark stars. Moreover, recent statistics
obtained from the collision of binary neutron stars (GW170817 [19] and GW190425 [20]) have provided
an estimation of masses of neutron stars as well as strange stars which support the assumption of MIT
bag model as an EoS for quark stars.

The difference between the energy density of true and false vacuums is incorporated in the MIT
bag EoS through a bag constant (B). The bag constant lies within the range 58.9–91.5 MeV/fm3 [21] for
massless strange quarks whereas the range of B for massive quarks is of 56–78 MeV/fm3 [22]. However,
researchers have also considered larger values of B. Xu et al. [23] found that the cosmic body LMXB
EXO 0748-676 can serve as a strange star candidate for two values of B. Further, the experimental
data of RHIC and CERN-SPS also allow higher values of the bag constant [24,25]. The MIT bag model
has been employed in literature to discuss the structure and characteristics of quark stars [26–28].
Rahaman et al. [29] calculated the mass of a star of radius 9.9 km using MIT bag model. Bhar [30]
employed Krori and Barura ansatz to study a hybrid star made of quark matter. Anisotropic quark
star models have been constructed in the presence of charge as well [31–33]. Deb et al. [34] examined
different physical properties of strange stars for B = 83 MeV/fm3, 100 MeV/fm3, 120 MeV/fm3.
Bhar [35] investigated the viability as well as the stability of quark models through the condition of
embedding class-one.

Dirac’s hypothesis in 1937 suggested that the gravitational constant (G) varies with respect
to cosmic time [36,37]. In 1961, Brans and Dicke [38] incorporated the dynamical gravitational
constant in terms of a massless scalar field (φ) and modified general relativity (GR). Brans–Dicke
(BD) theory, a scalar-tensor theory, is based on the Machian principle. The matter distribution is
coupled to the dynamical scalar field through a tunable coupling parameter (ωBD) in Jordan frame.
The weak-field tests put a lower limit on the coupling parameter as ωBD > 40,000 [39]. However, as
higher values of scalar field support rapid expansion of the cosmos, the inflationary era is explained
for small values of the coupling parameter [40]. The issue is resolved through a potential function that
allows a massive scalar field (Ψ). Thus, the BD gravity is modified to Massive BD (MBD) theory in
which the mass of scalar field (mΨ) provides a finite range of the scalar field in terms of its compton
wavelength (λΨ). The constraints on the coupling parameter due to solar system observations vanish
for mΨ & 2× 10−25 GeV and ωBD > − 3

2 [41].
Various astrophysical phenomena have been discussed in scalar-tensor gravity. Sotani [42]

discussed deviations from GR while studying neutron stars in the presence of a massless scalar field.
Silva et al. [43] analyzed the inertia of anisotropic neutron stars. The effects of a massive scalar field
on rapidly rotating neutron stars were studied by Doneva and Yazadjiev [44] and it was verified that
deviations from GR increase for larger inertia. This work was extended by employing a self-interacting
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potential to examine the structure of slowly rotating neutron stars [45]. Researchers have constructed
different models for quark stars in modified theories of gravity as well [46–49]. Recently, we have used
the condition of embedding class-one to generate anisotropic model for quark stars in the background
of MBD gravity [50].

In this paper, we formulate anisotropic model obeying MIT bag model with Tolman–Kuchowicz
(TK) ansatz in the context of MBD theory. We further check the viability and stability of the resulting
stellar model. The matter variables obeying the MIT bag model are obtained from MBD field equations
in Section 2. The necessary matching conditions on the boundary of the model are applied in Section 3.
In Section 4, we examine various physical features, viability and stability of the anisotropic solution.
The results are summarized in the last section.

2. Massive Brans–Dicke Theory and Matter Variables

The action of MBD gravity in Jordan frame with G0 = 1 is defined as

S =
∫ √

−g(RΨ− ωBD
Ψ
∇γ∇γΨ−V(Ψ) + Lm)d4x, (1)

where g = |gγδ|,R is the Ricci scalar and Lm represents the matter lagrangian. The MBD gravity can
also be discussed in Einstein frame of reference. The conformal transformations ĝγδ = A−2(Ψ)gγδ

and Ψ = A−2(Ψ̂) yield metric (ĝγδ) and scalar field (Ψ̂) for Einstein frame. The field and evolution
equations are respectively, given as

Gγδ = 1
Ψ [T(m)

γδ + TΨ
γδ] =

1
Ψ [T(m)

γδ + Ψ,γ;δ − gγδ�Ψ + ωBD
Ψ (Ψ,γΨ,δ

− gγδΨ,µΨ,µ

2 )− V(Ψ)gµν

2 ],
(2)

�Ψ = T(m)

3+2ωBD
+ 1

3+2ωBD
(Ψ dV(Ψ)

dΨ − 2V(Ψ)), (3)

where the matter source is described by the energy-momentum tensor T(m)
γδ and T(m) = Tγ(m)

γ .
Moreover, � indicates the d’Alembertian operator.

We consider a static sphere represented by the following line element

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 θdφ2). (4)

The relativistic motion of particles in compact objects leads to a random distribution throughout
the interior region. Consequently, compact stellar structures are characterized by variable energy
density and anisotropic pressure. Therefore, we employ the energy-momentum tensor specifying
the anisotropic interior in terms of density (ρ), radial (pr) and tangential (p⊥) pressures as follows

T(m)
γδ = (ρ + p⊥)UγUδ − p⊥gγδ + (pr − p⊥)SγSδ, (5)

where Uγ = (e
ν
2 , 0, 0, 0) is the 4-velocity and Sγ = (0,−e

λ
2 , 0, 0). Using Equations (2)–(5), the field

equations are obtained as



Universe 2020, 6, 124 4 of 16

1
r2 −

(
1
r2 −

λ′

r

)
e−λ =

1
Ψ
(ρ + e−λ(Ψ′′ + (

2
r
− λ′

2
)Ψ′ +

ωBD
2Ψ

× Ψ′2 − eλ V(Ψ)

2
)), (6)

− 1
r2 + e−λ

(
1
r2 +

ν′

r

)
=

1
Ψ
(pr − e−λ(

(
2
r
+

ν′

2

)
Ψ′ − ωBD

2Ψ
Ψ′2

− eλ V(Ψ)

2
)), (7)

e−λ

4

(
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

)
=

1
Ψ
(p⊥ − e−λ(Ψ′′ +

(
1
r
− λ′

2
+

ν′

2

)
Ψ′

+
ωBD
2Ψ

Ψ′2 − eλ V(Ψ)

2
)), (8)

where ′ denotes differentiation with respect to r. The evolution Equation (3) becomes

�Ψ = −e−λ
[(

2
r −

λ′
2 + ν′

2

)
Ψ′(r) + Ψ′′(r)

]
,

= 1
3+2ωBD

[
gγδTγδ +

(
Ψ dV(Ψ)

dΨ − 2V(Ψ)
)]

.
(9)

Extreme temperature and pressure at the core of a neutron star may transform it into a quark
star composed of up strange (s) , up (u) and down (d) flavors. We assume that the MIT bag model
governs the state determinants (density and pressure) of these relativistic stars. It is further assumed
that non-interacting and massless quarks occupy the interior of the configuration. The MIT bag model
defines the individual quark pressure (p f ) as

pr = ∑
f

p f −B, f = u, d, s. (10)

The total external bag pressure (or bag constant) balances the individual pressure. The deconfined
quarks within the bag model have the following energy density

ρ = ∑
f

ρ f + B, (11)

where the density of a flavor (ρ f ) is related to the corresponding pressure as ρ f

3 = p f . Thus,
Equations (10) and (11) are combined to formulate the following EoS of MIT bag model

pr =
1
3
(ρ− 4B). (12)

The metric potentials ν(r) = Br2 + 2 ln F and λ(r) = ln(1+ ar2 + br4) (a, b, B and F are constants)
define the Tolman–Kuchowicz (TK) spacetime [51,52]. Salient features of compact objects have been
investigated by employing the TK metric in GR as well as modified theories of gravity [53–55]. The field
Equations (6)–(8) are rewritten in terms of TK metric functions as
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ρ =
1

2rΨ (ar2 + br4 + 1)2

(
2Ψ2

(
a2r3 + ar

(
2br4 + 3

)
+ br3

(
br4 + 5

))
+ rΨV(Ψ)

(
ar2 + br4 + 1

)2
− rωBD

(
ar2 + br4 + 1

)
Ψ′2 − 2Ψ

(
r
(

ar2

+ br4 + 1
)

Ψ′′(r) +
(

ar2 + 2
)

Ψ′
))

, (13)

pr =
1

4Ψ (ar2 + br4 + 1)2

(
Ψ
(

rΨ′
(

aBr2 + a + bBr4 + 2br2 + B
)
−
(

ar2

+ br4 + 1
)

Ψ′′
)
+ 2Ψ2

(
aBr2 + a + bBr4 + 2br2 + B

)
−ωBD

(
ar2

+ br4 + 1
)

Ψ′2
)
−B, (14)

p⊥ =
1

4rΨ (ar2 + br4 + 1)2

(
2rΨ2

(
2a2r2 + a

(
4br4 + 2B2r4 − Br2 + 1

)
+ 2b2r6 + 2B2

(
br6 + r2

)
− 3bBr4 + B

)
+ Ψ

(
Ψ′
(

ar2
(

Br2 − 7
)

+ bBr6 − 10br4 + Br2 − 4
)
− r

(
ar2 + br4 + 1

) (
4B
(

ar2 + br4 + 1
)

− 3Ψ′′
))

+ 3rωBD

(
ar2 + br4 + 1

)
Ψ′2
)

. (15)

In this study, we choose V(Ψ) = 1
2 m2

ΨΨ2, where mΨ denotes the mass of the scalar field. This
form of potential function has been used to study neutron stars [44,56].

Junction Conditions

The constants (a, b, B, F) completely specify the solution in Equations (13)–(15) In order to
evaluate these constants, we apply constraints at the hypersurface (Σ : r = R) which ensure a smooth
junction between interior and exterior geometries. The Schwarzschild spacetime describes the external
vacuum as

ds2 = (1− 2M
r

)dt2 − 1
(1− 2M

r )
dr2 − r2(dθ2 + sin2 θdφ2), (16)

where M is the mass. Using the procedure in [57], the scalar field associated with the external
Schwarzschild metric is obtained as Ψ = e(1−

2M
r ). The matching at the boundary surface (h = r− R = 0)

is continuous when the following conditions are satisfied

(ds2
−)Σ = (ds2

+)Σ, (Kij−)Σ = (Kij+)Σ, (17)

(Ψ(r)−)Σ = (Ψ(r)+)Σ, (Ψ′(r)−)Σ = (Ψ′(r)+)Σ. (18)

Here Kij is curvature whereas interior and exterior spacetimes are represented by subscripts −
and +, respectively. The metric defining the hypersurface is written as

ds2 = dT2 − R2(dθ2 + sin2 θdφ2), (19)

where T represents the proper time on Σ. The curvature is given by

K±ij = −
∂2zγ
±

∂ηiη j n±γ − Γγ
δµ

∂zδ
±

∂ηi
∂zµ
±

∂η j n±γ ,

where ηi are the coordinates defined on Σ. The normal (n±γ ) to the boundary is defined as

n±γ = ± dh
dzγ
|gδµ dh

dzδ

dh
dzµ |

−1
2 ,
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with nγnγ = 1. Here zγ
± are the coordinates of internal/external regions. The unit normal vectors turn

out to be
n−γ = (0, e

λ
2 , 0, 0), n+

γ = (0, (
r− 2M

r
)
−1
2 , 0, 0). (20)

Comparing the spacetimes defined by metrics (4) and (16) with (19), it follows that

(
dt
dτ

)Σ = (e
−ν
2 )Σ = ((1− 2M

r
)
−1
2 )Σ, (r)Σ = R.

Moreover, the non-zero components of curvature are evaluated as

K−00 = [
−ν′e−

λ
2

2
]Σ, K−22 = sin−2(θ)K−33 = [e−

λ
2 r]Σ,

K+
00 = [−(1− 2M

r
)
−1
2

M
r2 ]Σ, K+

22 = sin−2(θ)K+
33 = [(1− 2M

r
)

1
2 r]Σ.

Employing the matching conditions on the hypersurface yields

eν(R) =
−2M + R

R
, e−λ(R) =

−2M + R
R

, ν′(R) =
2M

(−2M + R)R
. (21)

The O’Brien and Synge [58] junction conditions (equivalent to the continuity of the second
fundamental form) are given as (Gγδrδ)Σ = 0, where rγ is a unit radial vector. Using this condition in
the field equations implies zero radial pressure at the hypersurface. The constants appearing in the TK
metric are determined in terms of mass and radius through Equation (21) and pr(R) = 0 as

a =
24M3 −M2R(ωBD + 34)− 4R5B

√
1− 2M

R + 12MR2

R2(R− 2M)2(2R− 3M)
, (22)

b =
−12M3 + M2R(ωBD + 20) + 4R5B

√
1− 2M

R − 8MR2

R4(R− 2M)2(2R− 3M)
, (23)

B =
M

R2(R− 2M)
, (24)

F = e
(2M−R) ln( R−2M

R )+M
4M−2R . (25)

3. Physical Features of Compact Stars

In this section, we analyze the influence of the massive scalar field on the physical structure of
strange stars through viability and stability constraints. In the present work, the numerical solutions
have been obtained by considering B = 60 MeV/fm3, 83 MeV/fm3. These values are within the allowed
limits [29]. Moreover, as per the results of Gravity Probe B experiment, all values of mΨ > 10−4

(in dimensionless units) are admissible [41,44]. Thus, we solve the wave equation numerically for
mΨ = 0.001, 0.3 and ωBD = 5, 8, 10 by imposing the initial conditions Ψ(0) = Ψc = constant
and Ψ′(0) = 0. The constant Ψc corresponding to the chosen values of the parameters B, ωBD
and mΨ are presented in Tables 1 and 2. The quantities with subscripts s and c are derived at
the surface and center of the star, respectively. The results are displayed graphically for PSR J1614-2230
(M = 1.97± 0.04M⊙) [59].
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Table 1. Physical properties of PSR J1614-2230 (M = 1.97± 0.04M⊙) with mΨ = 0.001.

B = 60 MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

5 0.1 8.8024+0.1815
−0.1813 2.3051× 1016 7.2604× 1014 3.9692× 1036

8 0.125 11.5653+0.243
−0.2426 9.0518× 1015 4.0282× 1014 1.4958× 1036

10 0.15 13.4483+0.2878
−0.2869 6.8805× 1015 3.6403× 1014 1.1523× 1036

B = 83 MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

5 0.1 8.828+0.1832
−0.1829 2.5432× 1016 6.0511× 1014 4.3768× 1036

8 0.18 11.6418+0.2482
−0.2478 1.2336× 1016 5.2002× 1014 2.1006× 1036

10 0.25 13.5868+0.2975
−0.296 9.0211× 1015 4.3507× 1014 1.5319× 1036

Table 2. Physical properties of PSR J1614-2230 (M = 1.97± 0.04M⊙) with mΨ = 0.3.

B = 60 MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

5 0.1 8.8024+0.1815
−0.1813 1.5412× 1016 1.2272× 1015 2.4962× 1036

8 0.125 11.5653+0.243
−0.2426 9.3622× 1015 8.3976× 1014 1.509× 1036

10 0.15 13.4483+0.2878
−0.2869 6.4885× 1015 9.9402× 1014 9.4198× 1035

B = 83 MeV/fm3

ωBD Ψc Predicted ρc (gm/cm3) ρs (gm/cm3) pc (dyne/cm2)
Radius (km)

5 0.1 8.828+0.1832
−0.1829 2.5687× 1016 9.3087× 1014 4.4261× 1036

8 0.18 11.6418+0.2482
−0.2478 1.3305× 1016 1.3258× 1015 2.1018× 1036

10 0.25 13.5868+0.2975
−0.296 9.7515× 1015 1.0625× 1015 1.5094× 1036

Literature survey reveals that anisotropy vanishes at r = 0 and then increases to attain a maximum
value at the surface of the compact star [12,13,60]. Deb et al. [34] evaluated the extremum of anisotropy
at the boundary and showed that for a viable and stable spherical structure anisotropy must be
maximum at r = R. Adopting the procedure in [34], we predict radius of the strange star candidate
PSR J1614-2230 by maximizing anisotropy at the boundary. The metric potentials must be well-behaved
and positive throughout the interior region to ensure a singularity-free geometry [61]. As shown in
Figure 1, the TK metric functions are monotonically increasing as well as regular functions of the radial
coordinate. Energy density and pressure play a dominant role in determining the behavior of extremely
dense strange stars. The matter variables must be positive and decrease monotonically towards the
surface of the star. Figures 2 and 3 show that the state determinants are maximum at the center and
decrease away from it for the considered values of mΨ, coupling parameter and bag constant.

The presence of radial/transverse pressure leads to anisotropy (∆ = p⊥ − pr) within the system.
The anisotropy is negative when pr > p⊥ and positive otherwise. Moreover, particles are tightly
packed together in dense celestial objects which limits the particles’ movement in the radial direction.
Consequently, the radial force or pressure is less than the tangential force leading to positive anisotropy.
Thus, the positive anisotropy generates an outward repulsive force increasing the stability and
compactness of the star. The anisotropy of the current setup, displayed in Figure 4, is calculated
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through Equations (14), (15) and (22)–(25). The anisotropy is positive throughout the stellar region for
the considered values of mΨ, ωBD and B.
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Figure 1. Metric potentials for massive scalar field versus radial (in km).
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Figure 2. Matter variables (in km−2) as functions of r (in km) with mΨ = 0.001.
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Figure 3. Matter variables (in km−2) as functions of r (in km) with mΨ = 0.3.
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Figure 4. Effective anisotropy (in km−2) as a function of r (in km).

3.1. Energy Conditions

The anisotropic configuration is physically viable if it complies with four constraints, i.e., null
(NEC), weak (WEC), strong (SEC) and dominant (DEC). In the background of MBD gravity,
these conditions are stated in terms of following inequalities [62].

NEC: ρ ≥ 0,
WEC: ρ + pr ≥ 0, ρ + p⊥ ≥ 0,
SEC: ρ + pr + 2p⊥ ≥ 0,
DEC: ρ− pr ≥ 0, ρ− p⊥ ≥ 0.

The positive trend of state determinants presented in Figures 2 and 3 readily satisfies the first
three inequalities. The plots of DEC in Figure 5 show that DEC is violated near the boundary of the
surface for mΨ = 0.001. However, the setup corresponding to mΨ = 0.3 satisfies the DEC except for
ωBD = 5 as shown in Figure 6. The critical values of mΨ for which the stellar model becomes viable
are mentioned in Table 3.

Table 3. Critical values of mΨ for different values of B and ωBD corresponding to PSR J1614-2230
(M = 1.97± 0.04M⊙).

B = 60 MeV/fm3 B = 83 MeV/fm3

ωBD mΨ ωBD mΨ

5 0.7 5 0.65

8 0.3 8 0.25

10 0.2 10 0.15

3.2. Effective Mass, Compactness and Redshift

Gravitational mass (m) is one of the key features that determine the structure and compactness of
stellar objects. The mass of a spherical celestial object (measured using Kepler’s law when a satellite
orbits the star) is evaluated as

m =
1
2

∫ r

0
ρr2dr. (26)
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Figure 5. DEC (with ρ, pr, p⊥ in km−2) against the radial coordinate (in km) for mΨ = 0.001.
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Figure 6. DEC (with ρ, pr, p⊥ in km−2) against the radial coordinate mΨ = 0.3.

The mass of the anisotropic stellar model is obtained by numerically solving the above equation
along with the wave equation under the condition m(0) = 0. The size and mass of a cosmic body
provide a measure of its compactness (µ(r) = m

r ). Buchdal [63] proposed that a compact object is
stable if µ(r) < 4

9 . The value of the compactness function at the surface of the star is shown in Table 4
for mΨ = 0.001 and mΨ = 0.3. In both cases, the compactness parameter increases corresponding to
an increase in mΨ, ωBD or B. Moreover, it attains values less than 4

9 . Under the influence of a star’s
gravitational field, the electromagnetic radiation loses some of the energy resulting in an increase in
its wavelength, i.e., the radiation is redshifted. The effect of the gravitational force is measured through
a redshift parameter defined as

Z =
1√

1− 2u(r)
− 1.

For an anisotropic source, the redshift must not exceed the value 5.211 [64]. The redshift parameter
obeys the limit proposed in [64] (refer to Table 4).
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Table 4. Values of µs and Zs for different values of mΨ, B and ωBD corresponding to PSR J1614-2230
(M = 1.97± 0.04M⊙).

mΨ = 0.001

B = 60 MeV/fm3 B = 83 MeV/fm3

ωBD µs Zs µs Zs

5 0.0291 0.0303 0.0326 0.0338

8 0.0311 0.0326 0.0441 0.0468

10 0.0386 0.0406 0.0522 0.0571

mΨ = 0.3

B = 60 MeV/fm3 B = 83 MeV/fm3

ωBD µs Zs µs Zs

5 0.0354 0.0370 0.0360 0.0381

8 0.0387 0.0412 0.0613 0.0667

10 0.0474 0.0514 0.0976 0.1146

3.3. Stability of Anisotropic Stellar Model

In this section, the anisotropic model is checked for stability via three approaches: causality
condition [65], Herrera’s cracking approach [66] and adiabatic index. Causality condition enforces
the relation between cause and effect within the stellar region. The condition holds when sound
waves travel at a speed less than that of light, i.e., 0 < v2

r < 1 and 0 < v2
⊥ < 1, where v2

r = dpr
dρ

and v2
⊥ = dp⊥

dρ are the radial and tangential components of sound speed, respectively. On the other
hand, the cracking approach provides a criterion for potentially stable systems. The phenomenon
of internal perturbations changing the sign of the radial forces is known as cracking. According to
this approach, the condition for a region free from cracking is 0 < |v2

⊥ − v2
r | < 1. Figure 7 indicates

that the system corresponding to mΨ = 0.001 is unstable as tangential velocity becomes negative near
the stellar surface. However, the system is compatible with Herrera’s cracking approach for higher
vales of the coupling parameter. The plots in Figure 8 adhere to the criteria of causality and cracking
approaches. Thus, a stable structure is obtained for mΨ = 0.3.

If an increase in density results in an effective increase in pressure, the system obeys a stiff EoS.
A structure associated with a stiff EoS is harder to compress and more stable as compared to a setup
with a soft EoS. The stiffness of EoS is measured through adiabatic index given as

Γ =
pr + ρ

pr

dpr

dρ
=

pr + ρ

pr
v2

r .

The lower limit of adiabatic index for a stable anisotropic distribution is 4
3 [67]. The adiabatic

index for different values of mΨ, ωBD and B is displayed in Figure 9. The anisotropic configuration is
stable according to this criterion when

• mΨ = 0.001, ωBD = 5, 8, B = 60 MeV/fm3.
• mΨ = 0.001, ωBD = 8, 10, B = 83 MeV/fm3.
• mΨ = 0.3, ωBD = 8, B = 60 MeV/fm3.
• mΨ = 0.3, ωBD = 8, 10, B = 83 MeV/fm3.
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4. Concluding Remarks

Astrophysicists have studied the dynamics of stellar structures and their remnants to gain insight
into the mechanism of the universe. One of the hypothesized remnants are the quark stars that emerge
from the collapse of neutron stars. The interaction among constituent quarks (up, down and strange)
of these dense celestial structures is represented by the MIT bag model. In this paper, we have
investigated the existence and stability of quark stars in the framework of MBD gravity. For this
purpose, we have constructed field equations using well-behaved TK metric potentials and MIT bag
model. The unknown constants appearing in the anisotropic model have been specified by matching
the interior TK spacetime to exterior Schwarzschild spacetime. The solution has been determined by
choosing the potential function as V(Ψ) = 1

2 m2
ΨΨ2. Moreover, the wave equation has been solved

numerically for mΨ = 0.001, 0.3, ωBD = 5, 8, 10 and B = 60 MeV/fm3, 83 MeV/fm3. Finally, we have
explored the behavior of matter variables as well as viability and stability of the resulting model in
the presence of a massive scalar field.

The observed mass of the strange star candidate PSR J1614-2230 has been used to maximize
the anisotropy at r = R and predict the radius of the stellar structure. The predicted radius presented
in Tables 1 and 2 increases with an increase in the values of the bag constant and coupling parameter.
The behavior of matter variables shows that the cosmic object becomes denser as the value of the bag
constant increases. Moreover, these variables attain a maximum value at the center and decrease
towards the surface. The anisotropy increases with an increase in the values of the bag constant.
However, an increase in mΨ or ωBD reduces the anisotropic pressure within the star. Three energy
conditions (NEC, WEC, SEC) are readily satisfied for all values of the involved parameters. The model
violates the DEC near the boundary for mΨ = 0.001. On the other hand, the anisotropic structure
becomes viable for mΨ = 0.3 except for ωBD = 5.

We have also analyzed the effective mass, compactness and redshift parameter of the constructed
model. An increase in the mass of scalar field and value of the bag constant leads to massive and more
compact structures with higher redshift parameter (refer to Table 4). It is worth mentioning here
that compactness and redshift parameters obey their respective upper bounds [63,64]. The stability
of the stellar model has been investigated through three criteria. The tangential velocity becomes
negative at the surface of the star when mΨ = 0.001 for the chosen values of the bag constant
and coupling parameter. However, the model is stable according to causality and cracking criteria for
mΨ = 0.3. Finally, the plots in Figure 9 indicate that the adiabatic index is less than 4

3 for some values
of the parameters. It is concluded that viable and stable solutions have been obtained in MBD theory
for mΨ = 0.3 when

• ωBD = 8 and B = 60 MeV/fm3.
• ωBD = 8, 10 and B = 83 MeV/fm3.

It is worthwhile to mention here that all our results reduce to GR for ωBD → ∞.
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