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Abstract: A new perspective on the Cosmological Constant Problem (CCP) is proposed and discussed
within the multiverse approach of Quantum Cosmology. It is assumed that each member of the
ensemble of universes has a characteristic scale a that can be used as integration variable in the
partition function. An averaged characteristic scale of the ensemble is estimated by using only
members that satisfy the Einstein field equations. The averaged characteristic scale is compatible
with the Planck length when considering an ensemble of solutions to the Einstein field equations
with an effective cosmological constant. The multiverse ensemble is split in Planck-seed universes
with vacuum energy density of order one; thus, Λ̃ ≈ 8π in Planck units and a-derivable universes.
For a-derivable universe with a characteristic scale of the order of the observed Universe a ≈ 8× 1060,
the cosmological constant Λ = Λ̃/a2 is in the range 10−121–10−122, which is close in magnitude to the
observed value 10−123. We point out that the smallness of Λ can be viewed to be natural if its value is
associated with the entropy of the Universe. This approach to the CCP reconciles the Planck-scale
huge vacuum energy–density predicted by QFT considerations, as valid for Planck-seed universes,
with the observed small value of the cosmological constant as relevant to an a-derivable universe
as observed.
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1. Introduction

Constructing a theory that unites successfully the ideas behind general relativity and quantum
mechanics is expected to yield a new understanding of physical reality. Currently, there are conceptual
and technical problems that one is forced to face when thinking of such fusion. However, progress in
observational cosmology seems to provide new puzzles along with the necessary guidance for the
development and verification of the relevant physical models [1–3].

Understanding the small positive value of the cosmological constant Λ and the associated energy
density ρΛ is one of the biggest problems in modern physics, qualitatively and quantitatively. Currently,
the Quantum Field Theory (QFT) estimate of ρΛ is about 120 orders of magnitude bigger than the
actually measured value [1–5]. There is a big variety of models that are attempting to explain the value
of ρΛ. Most models consider dynamical mechanisms to generate ρΛ as zero-point energy (vacuum
energy) of a matter field. In the 1980s, there were few very appealing general arguments that Λ should
be zero or can be viewed as an integral of the motion, some arguments were based on quantum
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gravity [6], some on supersymmetry [4], or reparametrization invariance [5]. However, experimental
data have shown that ρΛ is actually small and positive:

ρΛ = ρcΩΛ =
c4

8πG
Λ ∼ 6.3× 10−9 erg/cm3, (1)

which is 1.4× 10−123 times smaller than the Planck’s scale energy density:

ρPlanck =
c7

h̄G2 ∼ 4.6× 10114 erg/cm3. (2)

Here, ρc = 3H2
0 c2/(8πG) is the critical energy–density, H0 = 70 km s−1Mpc−1 is the Hubble

expansion rate, and ΩΛ = 0.72 based on observations [2,3,7]. The definition of the critical
energy–density is a naturally important quantity—it separates the open from the closed cosmological
solutions within the cosmology based on Friedmann–Lemaitre–Robertson–Walker (FLRW) metric.

Seeing the enormous discrepancy above is just the numerical manifestation of a fundamental
problem in our understanding of nature. Thus, looking at different viewpoints and lines of reasoning
can be enlightening. Let’s briefly sketch a few of them: of course, one shall start with the source:
Einstein and his “biggest blunder”. As the legend has it, Einstein introduced the cosmological constant
Λ into his equation Gαβ = κTαβ in order to counteract the gravitational pull of the matter encoded
by Tαβ—the stress–energy–momentum tensor. Tαβ determines the geometry of the space-time via the
metric tensor gαβ, which is a solution to the Einstein equation, and the associated metric connection∇α

that provides the covariant derivative of various tensors. In Einstein’s GR, the metric tensor gαβ and
the connection are in special relation ∇γgαβ = gαβ;γ = 0 and are utilized to build the Einstein tensor
Gαβ = Rαβ − 1

2 gαβR with the help of the scalar curvature R = Rαβgβα and the Ricci tensor Rαβ = Rγ
αγβ

constructed from the Riemann curvature tensor Rαβγν.
The Einstein’s equation Gαβ = κTαβ relies on the matter conservation laws ∇γTαγ = 0 and

the uniqueness of the Einstein tensor with the same property ∇γGαγ = 0; then, the constant of
proportionality κ = 8πG

c4 is determined from the Newtonian limit of the theory. According to this
reasoning, the Einstein’s equations are uniquely determined and illustrate the idea that the matter
distribution and motion determine the metric tensor gαβ and thus the structure of the space-time.
In particular, when there is no matter and only vacuum Tαγ = 0, the solution corresponds to Ricci
flat spacetime since Gαβgβα = −R = 0 and thus Rαβ = Gαβ = 0. However, if there is matter,
then, depending on the initial conditions, the solutions to the Einstein’s GR equations will correspond
to systems that re-collapse or expand forever. Thus, the desire for a static solution prompted the
introduction of a term Λgαβ into the Einstein’s GR equation Gαβ + Λgαβ = κTαβ, where Λ is a constant
since the new term has to obey the conservation laws already satisfied by Gαβ and Tαβ along with the
postulate gαβ;γ = 0. When Λ is introduced in the model, as illustrated by the above line of reasoning,
the result is a phenomenological theory with a constant parameter Λ that has to be determined by
experiment and observations. Furthermore, if one is to estimate Λ by using dimensional reasoning
based on the relevant system parameters such as c, G, and the size of the Universe via the use of the
Hubble constant H0, then one obtains an energy density (3) that is very close to the experimental value
above (1):

ρH ∝
2H2

0
κc2 =

1
4π

H2
0 c2

G
= 6× 10−9 erg/cm3 (3)

Here, the numerical factor of 4π can be justified as the solid angle being part of the volume
measure for the energy density in 3D space. Therefore, by inspection of (1) and (3), one can conclude
that Λ ≈ 2H2

0 /c2 and the Hubble constant H0 should be one of the fundamental constants of nature.
It is important that the expression above is based on simple dimensional reasoning. However, one can
get a very similar result (Λ ≈ 3H2

0 /c2) by considering the LFRW equations that are derived from the
Einstein field equations with cosmological constant by using the Robertson-Walker metric ansatz and
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neglecting the curvature and matter energy–density terms. Note that such approximations are standard
handwaving estimates in building simple models of nature. The Robertson–Walker metric is the most
general homogeneous and isotropic metric (up to time-dependent conformal factor), thus consistent
with the cosmological principle that the Universe is homogeneous and isotropic at very large scales.
One can neglect the curvature and matter energy–density terms since there seems to be very little
matter in the Universe at very large scales and the Universe seems to be large enough to appear
practically flat. In this respect, the cosmological constant is a property of an expanding, flat, and matter
empty Universe, which except for its expanding property is what one would call a classical vacuum.

An alternative point of view is to reason that, even if one neglects the contribution of the matter
and electromagnetic radiation to the stress–energy–momentum tensor Tαβ, thus setting Tαβ = 0 as for
classical matter vacuum, there is still energy and momentum within the space-time due to the possible
presence of gravitational waves. Therefore, there should be a non-zero source on the right-hand side
of the Einstein equation Gαβ = −Λgαβ

1 that should be related to the presence of a metric field gαβ.
This way, the parameter Λ of proportionality has something to do with stress–energy–momentum
tensor for gravity in space-time of the classical matter vacuum. Solution to such equation has been
introduced by de Sitter and has illustrated that matter may not be the only source of gravity and
thus wrinkles in the space-time may not be due to matter only. Furthermore, such solutions illustrate
that vacuum solutions do not have to be Ricci flat but instead can correspond to non-zero constant
scalar curvature R = 4Λ. This way one extends minimally the Einstein’s GR framework in the sense
that space-time can be spatially flat, homogeneous, and isotropic, but with a non-zero constant scalar
curvature. The possibility of non-flat universe has recently received observational support [8] . Thus,
Λ can be viewed as a fundamental constant which is somehow related to the energy–density of the
vacuum. Furthermore, since the Einstein original equation, Gαβ = κTαβ, now reads as Gαβ = −Λgαβ,
therefore, the stress–energy–momentum tensor can be viewed as a tensor that contains (non-classical)
non-zero vacuum part:

κTαβ = −Λgαβ. (4)

Due to the signature of the metric gαβ, such vacuum has a very special equation of state,
relationship between pressure and energy–density, pvac = −ρvac that behaves thermodynamically
well upon adiabatic expansion and compression. This point of view implies that ρvac is constant. Thus,
ρvac is related to the cosmological constant in a very simple way Λ = κρvac [9]. Unfortunately, the
scale of the energy–density that one can deduce based on the relevant fundamental constants like c, G,
and the Planck constant h̄, results than in ρPlanck (2), which is about 120 orders of magnitude bigger
than the actually measured value of ρΛ (1).

The above discussion demonstrates that “old fashioned” dimensional reasoning provides a
reasonable value for Λ and the corresponding energy–density ρΛ, while the quantum field theory
based reasoning results in an enormously different energy–density value. The smallness of the
observed cosmological constant and the related energy–density is one of three puzzling facts. If the
cosmological constant is really due to quantum effects, then the other puzzle is why quantum energy
fluctuations are not manifesting at the scale of applicability of the general relativity. The third question
is related to the comparable value of ρΛ to the overall matter density ρm, which is about a factor of
three given that Ωm = 28%. It seems that the last two questions could be addressed well within the
unimodular gravity approach to Einstein’s equations [10]. While the smallness of Λ could be justified
in few possibly equivalent ways: via the Universe as a Black Hole idea where the large entropy in
the Universe results is small Λ (5), or via the quantum corrected Raychaudhuri equation [11], or as
a second-order quantum correction to the Newtonian gravity [12,13], or as related to the relevant
observables at the infrared stable fixed point of the 4D gravity at large distances [14]. It may not be a

1 The negative sign is for consistency of moving Λ from the RHS to the LHS of the equation, as well as for convenience in
relating Λ to the scalar curvature R.
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surprise that all these could be equivalent, but, to the best of our knowledge, no one has been able to
tie the knot on their equivalence and to derive the observed value unambiguously.

Finding an explanation of the value of ρΛ has been the focus of many research papers and projects.
A somewhat favorite approach nowadays is based on the weak anthropic principle, which is consistent
with the above demonstrated ρH value. Thus, the Hubble constant H0 is a parameter of the system
while the fundamental constants c, G, and h̄ are really fundamental. This way, the Planck length and
time are “unique” once the Planck system of units is chosen, while the Hubble constant H0 is somehow
related to the details of how much stuff is in the system and what are the initial conditions of the
relevant processes. Systems near equilibrium often have a characteristic scale that is a result of a few
different competing factors. In physics, this is often reflected by the kinetic and potential energy of
a system or the balance of various forces. In this respect, a reasonable approach that can link the
Planck scale to the observed size of the Universe should then deliver a resolution to the Cosmological
Constant Problem (CCP) above and may shed light on the problem of quantum gravity.

It is natural to expect that the value of the cosmological constant would be determined or justified
within Quantum Cosmology (QC) or at least QC will provide some initial understanding of why it is
so small. The problem is that QC involves path integrals over 4D-geometries. While path integrals
seem to make sense in physics—they are not yet well-defined mathematical objects. It seems, however,
that progress in causal dynamical triangulations [15,16] may provide a method to compute such
complicated path integrals over 4D-geometries.

The focus of the current paper is the construction of a partition function over a characteristic-size
variable that should be equivalent to a path integral over 4D-geometries when all other characteristics
of the corresponding universe are integrated out. Such research is motivated by the progress
in causal dynamical triangulations [15,16] and the possibility to numerically simulate various
space-time geometries for the purpose of testing quantum cosmology models. Thus, far in this
paper, the Cosmological Constant Problem (CCP) has been introduced and a few of the directions,
which researchers are exploring as resolutions to this problem, have been briefly mentioned. The next
section outlines five of the main categories as discussed by Weinberg [5] with a particular focus
on the Weak Anthropic Principle and Quantum Cosmology as well as an additional category of
geometry related/motivated approaches for justifying the value of ρΛ. Then, the mathematical
structure of Quantum Cosmology is briefly discussed along with how the cosmological constant and
the matter vacuum energy can be absorbed in an effective cosmological constant. Once the Euclidean
partition function over geometries has been constructed, one can map the path-integral partition
function onto one-dimensional integral over the characteristic size of each possible universe—Multiverse
Partition Function. Finally, the implications of this partition function and possible interpretations of the
characteristic size of a universe are discussed.

2. The Three Main Model Groups and the Seven Principal Model Categories

The Planck scale is a well-accepted scale where something new and interesting should start
showing up; however, it may not be applicable as a scale for estimating the vacuum energy–density
fluctuations relevant to the large-scale cosmological phenomenon. It may well be the same reason for
which a matter density of a material is correctly estimated as macroscopic quantity and, if one uses
sub-atomic scale measurements, then the density of the material would exhibit significant variations.
Thus, without a suitable procedure/model for extrapolating from one scale to another, the results may
be drastically incorrect. As a result, there are many different approaches based on various ideas as
explanations of the value and the origin of the non-zero cosmological constant.

In a 1989 review paper, Weinberg discussed five main categories [5]: (a) Super-fields and
super-potential approaches based on Supersymmetry, Supergravity, and Superstrings; (b) Anthropic
considerations associated with processes in the Universe related to the observed age, mass density,
and other astrophysical observations; (c) Adjustment/Tuning mechanisms based on a scalar field and
its evolution over the history of the Universe; (d) Changing Einstein GR/ Modifying Gravity either by
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restricting the dynamical degrees of freedom associated with the metric tensor and/or the relevant
symmetry transformations or by adding new terms to the Action that result in a cosmological constant
term as a constant of integration; (e) Quantum Cosmology as pertained to estimating the probability of
observing a specific field configurations and relevant field expectation values build on appropriate
effective actions. Each of these five categories can be grouped further either as high-energy/short-distance
scale phenomena (a) & (c), or long-time/large-distance scale phenomena (b) & (d), or presumably all
scales (c, d, e). While the models from the first two groups are self-evident and are expected to be
extendable into the all-scales group, these models are originally devised, developed, and tested or
expected to hold in their primary domain. The models like (c, d, e) are built with the aim and hope to
be applicable to all scales.

The five Weinberg’s categories are the natural classification based on where the Occam’s razor
principle could lead us to in terms of the minimal and sufficient change towards resolution of the
CCP. The minimal and sufficient change may come from extension to the Einstein’s GR theory of
Gravity, category (d) above or to the theory behind the matter fields that generate the stress–energy
tensor, category (a) above; the new theory, however, should be consistent with observations about our
Universe described in category (b). The successful model will probably have an effective description in
terms of the category (c). Finally, if the model is to be a bridge towards fusing the principle of general
relativity and quantum mechanics that is applicable to the Universe at a larger scale than it should in
some sense be related to quantum cosmology or may define what this category (e) means.

Models that have a mechanism of connecting short to long scale phenomena are known in the
literature, for example, T-duality in string theory, or models that are the same at any scale, i.e., fractal
or conformal geometry [17,18]. Since the physics deduced from astronomical observations at large
distances is expected to be somehow related to the physics that can be studied at short distances,
for example in any on/near Earth laboratory, then such scale mapping procedure should play a role
in models that may resolve the CC problem. In this respect, models that exhibit, scale invariance,
conformal symmetry, T-duality, or fractal geometry should be another (sixth) category of models—(g)
geometric models [17–21]. Of course, there is always the possibility to consider models that don’t fit in
any of these six categories the (seventh) category type—(f) further futuristic/exotic models category.

Relatively recently, the Weinberg’s classification was discussed and extended further in a review
paper by Li et al. [22] by adding more symmetry based models or string-theory motivated models that
either expand the matter sector, or modify gravity, or add further examples to the geometry related
model category (g) discussed in the paragraph above. For example, Wetterich’s scaling invariance via
dilatation field, or the Blackhole Self-Adjustment model that can be viewed as a variation on the theme
of Blackhole Cosmology models. The Holographic principle category in Li’s paper has a significant
overlap with the geometry related model category (g) which can also absorb the Back-Reaction category
in Li’s paper. Some of the Phenomenological models (Quintessence, K-essence, and so on) could also be
viewed as members of the category (c) adjustment/tuning mechanisms category by Weinberg, or the
(f) category of futuristic models that expand the matter fields models either in the particle physics
sector or the type of fluid(s) (Chaplygin gas, viscous fluid, super-fluid condensation) involved in the
relevant Freedman equations.

The fact that researchers have been exploring various models, like string theory tuning
mechanisms for bouncing brane-world scenarios, Blackhole self-adjustment, Holographic principle,
and Back-Reaction models, is adding weight to the importance of the category (g) of geometry
related/motivated approaches for justifying the value of ρΛ. If a model has a way to relate the
short-scale r processes to large-scale R processes, i.e., as the T-duality in string theory, there will
be a fundamental constant of dimension L2 such that (r = L2/R), and therefore an energy density
associated with it (ρ ∼ c4L−2/(8πG)). If this scale is the string tension, as in string theory, then one still
has an enormous energy–density of the string vacuum compared to the observed value. In a similar
way, the Black-Hole related reasoning [22] results in an energy–density expression (ρ ∼ 3L−2/(8πG))
that has the correct numerical factor of 3 which gives support to the Blackhole Cosmology ideas
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where our Universe is considered to be essentially the interior of a huge Blackhole [20,21,23]. Thus,
this idea could be used to explain the value of the observed energy density, if one uses the future event
horizon L = Rh, and thus the remarkable agreement of dimensional argument (3) with the observation
result (1). If one considers the Blackhole Cosmology, then there is an alternative explanation of the
cosmological constant Λ as related to the entropy of the Universe rather than the energy–density of the
vacuum. Such approach can use the entropy of a de Sitter Space as derived by Gibbons and Hawking
[24] SdS and match it to the corresponding expression for a blackhole SBH :

SdS = 12πΛ−1 ≡ SBH =
A
4

(5)

in units kB
lP

2 = 1, where kB is the Boltzmann constant, lP is the Planck length, and A = 4πR2 is the area

of the event horizon R of the blackhole. The result is then R = 2lΛ, where lΛ =
√

3
Λ is the characteristic

size of the de Sitter spacetime with a cosmological constant Λ [25]. This justifies the simple dimensional
results discussed after (3) as related to the entropy of the Hubble horizon RH = c

H0
when employing

results from path integral quantum gravity considerations [24]. This relation between H0 and Λ is
expected to be influenced minimally upon the specific details of the final quantum gravity theory
because the relations discussed are about the entropy of the de Sitter spacetime which is the asymptotic
limit of our Universe. Thus, while (5) could provide a new viewpoint on the smallness and the value
of Λ, the unimodular gravity approach to Einstein’s equation [10] could provide the resolution to the
other two puzzles about the cosmological constant. Alternatively, the smallness of Λ could be related
to second-order quantum corrections to the equations of motion either via the quantum corrected
Raychaudhuri equation [11], or as a second-order quantum correction to the Newtonian gravity via
the use of the quantum hydrodynamic approach [12,13]. Such an approach is very appealing due
to its economy in terms of exotic new stuff and as a member of the category (d) above where the
cosmological constant is related to the quantum vacuum fluctuations that induce effectively conformal
effects via the non-zero trace of the corresponding energy–momentum matter tensor.

The numerical agreement between (1), (3), and (5), however, is not sufficient to establish the
validity of a model or the idea behind it as outlined in the example above. In order to do so, one
has to build a model that can provide a description to the vast body of observational data to the
level compatible with what the ΛCDM model can provide. Recently, a model based on the idea of
scale-invariance of the vacuum (SIV) and the Weyl’s conformal gravity idea has been in development
and has been showing a promise to resolve the dark-matter problem dynamically and possibly without
the need for dark-matter particles [26,27]. Connecting the SIV theory to the unimodular gravity
may be a fruitful approach to resolving the various dark puzzles in cosmology and gravity. Further
fortification of the argument for such connection can be justified given the fact that the unimodular
gravity can be viewed as a particular gauge fixing of the conformal factor as a constraint [28]. In
this respect, the specific SIV realization of the Weyl Integrable Geometry with suitable conformal
factor is equivalent to the Einstein GR equation with traceless energy–momentum for matter and
a Cosmological Constant term originating from a non-flat background characterized by non-zero
Ricci scalar which absorbs the over all trace contribution of the matter energy–momentum tensor.
Such non-flat Lorentzian backgrounds are expected to be viable stable vacuum configurations for
quantum gravity [28]. The studies by Mottola and his collaborators seem to be intimately related to
the understanding of the trace of the stress–energy tensor (4), and thus to the value of Λ as induced
by the “energy” of the gravitational field. The study of the trace-anomaly-induced dynamics of the
conformal factor of four-dimensional (4D) quantum gravity [14] seems to be closely related to the
scale-invariance of the vacuum (SIV) and the Weyl’s conformal gravity idea explored by the authors of
the current paper in a different context [29]. Unfortunately, despite the simple relation between the
field contents of these studies (σ = ln λ), we couldn’t finalize the correspondence on the level of the
equation content within the short time frame we have been studying Mottola’s work for the current
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paper. Establishing the connection is an important step and has to be done carefully and accurately,
which usually takes significant time, effort, and other relevant resources.

Models that successfully compete with the ΛCDM model are effectively satisfying the Weak
Anthropic Principle. That is, the parameters of the model do allow for good description of the observed
physical reality, even though part of the parameter space may not be consistent with the existence and
evolution of Life as we know it. Current understanding of the inflationary Universe model suggests
that there could be the possibility of a Multiverse where various universes are perpetually created as
the inflation field expands and decays locally. As a result, the laws of physics may differ in different
universes and we just happen to live in a Universe that has the observed structure. When the anthropic
reasoning is properly utilized, it can help us understand the correlations between various observational
facts and the corresponding numerical representations of the data [5,30].

An alternative multiverse scenario is the Blackhole Cosmology idea where each Universe is a
Blackhole that is either a daughter Universe or parent Universe. This way the Blackhole universes
are disconnected universes, but the laws of physics are close in the generationally related universes.
The above multiverse options are interesting due to their implication about the overall history and
fate of the Universe and therefore are more consistent with viewing the cosmological constant as
constant of integration related to the initial conditions of the system or a byproduct of a specific
cancellation mechanism.

An alternative equally radical view point is based on the idea of self-similarity and scale relativity
as related to fractal geometry [17] where the value of the cosmological constant is related to the scale
of the classical electron radius, thus a byproduct of a specific phase transition mechanism. Regardless
of the mechanism and the origin of the specific value of the cosmological constant, there is always a
scale that should characterize a quasi-static cosmological constant value.

Quantum Cosmology (QC) is an approach aiming at understanding the Universe at the larger
scale by using the ideas behind general relativity and quantum mechanics. It has been used previously
to justify that the cosmological constant is probably zero. Some initial arguments were based on
supersymmetry [4] and quantum gravity [6], while reparametrization invariance considerations were
used to demonstrate that the cosmological constant can be viewed as an integral of the motion [5].
The QC approach was viewed as the most promising road back then, but the experimental observation
has raised a red flag over this method. Some QC studies argued that the zero Cosmological Constant
result is not that much a statement about what should be observed as the most likely value of Λ but
more of a statement about the asymptotic “far future” value of the model parameter Λ corresponding
to model based on Baby Universes [31]. Another argument in support for the zero Cosmological
Constant as related to the asymptotic infrared stable fixed point for 4D gravity has been given very
rigorously and much earlier then in [31] by Mottola and his collaborators [14,15].

Subsequent adjustments to the Multiverse approach seem to be aligned with observational
support for inflation. In the next few sections, an approach based on the isolation of a characteristic
scale as an integration parameter is considered for the purpose of estimating the expected average size
of “typical” universe as part of a Multiverse ensemble.

3. Cosmological Constant within Quantum Cosmology

The Einstein equations with cosmological constant Λ:

Rαβ −
1
2

gαβ(R− 2Λ) =
8πG

c4 Tαβ (6)

can be derived from the Einstein–Hilbert action supplemented with the matter action Amatter:

A[g, ψ] =
c4

16πG

∫
(R− 2Λ)

√
−gd4x + Amatter[g, ψ, ∂ψ]. (7)
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The first term above is the standard Einstein–Hilbert action for a metric gravity gαβ with
cosmological constant Λ while the second term is the matter action Amatter that depends on the
metric gαβ but not on its derivatives and thus it determines the stress–energy tensor Tαβ but does not
contribute to the left-hand side of (6). In Amatter, the matter fields are denoted by ψ and their derivatives
are ∂µψ. The symbol ψ is a placeholder for the variety of possible matter fields like those in the standard
model of elementary particles, such as leptons, quarks, and interaction bosons. The equations obeyed
by the matter fields within given background spacetime with a metric gαβ are obtained upon the
variation of the relevant fields when the appropriate functional form of Amatter is considered.

The expectation value of an observable O[g, ∂g, ψ, ∂ψ] is then defined via a partition function that
is a formal Feynman path integral with a functional integration measure D[g, ψ] over the space of
varius possible and relevant metrics and matter fields:

〈O〉 =
1
Z

∫
D[g, ψ]O[g, ∂g, ψ, ∂ψ]e

i
h̄ A[g,ψ],

Z =
∫
D[g, ψ]e

i
h̄ A[g,ψ].

When the matter fields ψ are integrated out, one expects Tαβ to be proportional to the metric
tensor gαβ which leads to an effective Λ for an empty Universe [5,32]:

〈
Tαβ

〉
= σgαβ, Λ→ Λ− 8πG

c4 σ. (8)

Here, σ denotes the constant of proportionality between
〈

Tαβ

〉
and the metric tensor gαβ. Therefore,

it is related to the effective energy–density 〈T00〉 when the quantum fields ψ are integrated out. If one
is to consider the trace of the effective energy–momentum tensor

〈
Tαβ

〉
, then one has 4σ =

〈
Tαβ

〉
gβα.

It seems reasonable to assume that the trace operation commutes with the process of integrating out
the fields ψ which leads to the relationship 4σ =

〈
Tαβgβα

〉
= 〈T〉, where T = Tαβgβα is the trace of the

energy–momentum tensor. If one chooses traceless formulation for the Einstein GR equations, then
the Λ appears as constant of integration related to the Ricci scalar curvature R and the trace T of the
energy–momentum tensor [5].

In units where the speed of light is c = 1 and the metric tensor has time-like signature
{+,−,−,−} , the energy–momentum tensor for an ideal fluid is given by the expression: Tαβ =

(ρ + p)uαuβ − pgαβ. Here, ρ is the energy–density, p is the pressure, and uα are the components of
the for-velocity of the fluid with uαuβgαβ = 1 and u0 ≈ 1 in the Newtonian limit of a slow motion.
Then, the trace of the energy–momentum tensor becomes T = gαβTβα = (ρ− 3p), which turns into
T = ρ(1− 3w) if an equation of state p = wρ is considered.

Based on the conservation laws in the scale-invariant theory, which are also reduced to the usual
conservation laws [26], the overall energy–density scaling ρ ∼ r−3(w+1) indicates five special values
of w. The five values can be grouped as follows, three of which are particularly important: radiation
(w = 1/3), pressureless matter (w = 0), and dark energy (w = −1). The first two, radiation and
matter, are familiar non-negative pressure fluids. The negative w results in negative pressure systems
that are not common laboratory fluids. The other two special cases, w = −1/3 (string defects) and
w = −2/3 (domain wall defects) [33], correspond to r−2 and r−1 scaling, while the dark energy
(w = −1) corresponds to constant energy density independent of r; thus, it does not scale with the size
r of the system for w = −1. This is also the equation of state of the locally Lorentz invariant vacuum.

It is interesting to notice that the dark-energy equation of state (p = −σ) is implied by the
assumption

〈
Tαβ

〉
= σgαβ, which cannot be satisfied neither by radiation nor by pressureless dust

alone. The trace of the radiation energy–momentum tensor is zero (T = ρ(1− 3w) = 0) due to w = 1/3
for radiation; therefore, radiation cannot contribute to the value of σ. If the energy–momentum tensor
is traceless, then σ = 0 and it would have implied w = 1/3 (relativistic matter only) and Λ would be
related to the Ricci scalar R. Effectively, this is the case of the very,very early Universe where matter
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and radiation were in the state of very-hot quark–gluon plasma. However, the current Universe is far
from such state.

If one assumes that locally w ≥ 0, then integrating out the matter fields ψ will result in 4σ =

〈T〉 = 〈ρ〉 − 3 〈wρ〉 < 〈ρ〉, which implies σ/ 〈ρ〉 < 1/4. Thus, the effective dark energy–density σ,
of radiation and matter, cannot be more than a quarter of the overall total energy–density 〈T〉 ∼ 〈ρ〉
when 〈wρ〉 � 〈ρ〉. Notice that this provides an interpretation of the dark-energy as an effect arising
from the integration of the matter fields and possible cancellation mechanism for bringing the effective
energy–density 4σ = 〈ρ〉 − 3 〈wρ〉 arbitrarily close to zero depending on the overall distribution
of ρ and the relevant local values of w ≥ 0. Unfortunately, the inequality σ < 〈ρ〉 /4 implies that
the energy–density of the dark-energy field σ is less then the radiation and matter energy–density
〈ρ〉 when w ≥ 0, which contradicts the current state of the observed Universe. Of course, for the
dark-energy field when w = −1, one has 4σ = 〈T〉 = 4 〈ρ〉, thus, σ = 〈ρ〉 while radiation and
matter can be added on top of it as perturbations and one can consider R = 4Λ0. However, if one
insists on R = 4Λ0 = 0 but without dark energy (w = −1), then −1 < w < 0 is needed to have
σ > 〈ρrad+matter〉, but it is still not enough to agree with observations. For example, given that
ΩΛ/ΩM = 0.72/0.28 ≈ 2.6, to have σ to be about two to three times as much as 〈ρmatter〉 with three
species w ∈ {0,−1/3,−2/3} each with an equal amount of energy–density ρ, one can only get to
σ/ρ = 6/4 = 1.5 since 4σ = 〈T〉 = ρ + ρ(1− 3× (−1/3)) + ρ(1− 3× (−2/3)) = ρ× (1 + 2 + 3).
2 Note that dark-matter has been already included by considering ΩM = 0.28. Given the lack of
laboratory observations of dark species obeying −1 < w < 0, a non-zero cosmological constant Λ0

must be present to explain the cosmological observation. Therefore, there must be non-zero Ricci
curvature R = 4Λ0 associated with it. Such consideration is consistent with viewing the effective
cosmological constant as a constant of integration [5]:

Λ→ Λe f f = Λ0 −
8πG

c4 σ =
1
4

R− 8πG
c4

1
4
〈Tα

α 〉 . (9)

Therefore, since empty space (the vacuum) is dominating the Universe, then one can integrate
the matter fields and use an effective Λ that has an implicit contribution from the matter (9). For flat
space-time (R = 0), this would imply that the value of the effective cosmological constant should be
due to the trace part of the stress energy–momentum tensor Tαβ and should somehow be deducible
from the matter distribution. Then, the smallness of Λe f f would imply that it is a perturbative effect
rather than a leading order effect as implied by (2). In fact, models based on estimates of the quantum
fluctuations using quantum potentials and quantum hydrodynamic formalism are pointing to such
behavior when one is looking at the quantum corrected Raychaudhuri equation [11], as well as the
Classical Klein–Gordon Field [12], and the Spinor-Tensor Gravity of the Classical Dirac Field [13].
If one adopts the above viewpoint as the main sources of the non-zero vacuum energy density, then
one can accept the zero cosmological constant argument based on ideas from the 1980s and 1990s, and
then add a perturbative effect of sparse matter distribution on top of it.

However, from the point of view of the usual QC, the effective cosmological constant Λe f f ,
the origination of the non-zero value is irrelevant since flat spacetime (R = 0) as well as non-flat
spacetime (R 6= 0) are viable stable Lorentzian background vacua for path-integral based Quantum
Gravity models [28]. Thus, in (6) and (7), one can set Tαβ = 0 and Amatter = 0, which effectively is the
vacuum Einstein field equation (EFE) with the corresponding action:

2 The ratio is even smaller (σ/ρ = 5/4 = 1.25) if one is to consider equal energy partition per degree of freedom (1/2) with
dimension degree of freedom n deduced from the scaling ρ ∼ r−n.
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Rαβ −
1
2

gαβ(R− 2Λ) = 0 (10)

A[g] =
c4

16πG

∫
(R− 2Λ)

√
−gd4x (11)

Most modern vacuum cosmology models are derived from (10) for specifically chosen metric
tensor g. For homogeneous and isotropic Universe, the Ricci scalar curvature is expected to be constant
or at most time dependent only. If one considers a vacuum solutions to (6), then one arrives at (10),
which implies that R = 4Λ. Quantum cosmology considers all reasonable possibilities for the metric
tensor g within the appropriate path integrals [10,14,15,24].

It is usually assumed that (10) provides a satisfactory description of the physical reality at
cosmological scales. Therefore, the main contribution to the action (11) comes from the “classical
trajectories” satisfying (10). In this respect, one can approximate the action (11) by considering an
integration of (10) and its implication for (11):∫

(4Λ− R)
√
−gd4x = 0 (12)

A[g] ≈ c4

16πG

∫
2Λ
√
−gd4x =

∫
ρΛ
√
−gd4x (13)

One can justify the partition function Z in the familiar form ( e−βE ) by switching to imaginary
time, Euclidean metric gE, and, assuming the separation of the four-volume integral into time integral
and three-volume integral by using the following relationships:

e
i
h̄ A[g] → e−βE, β = − i

h̄

∫
dt,√

−gd4x → dtdV(3), E =
∫

ρΛdV(3). (14)

In view of the above expressions, one expects that the partition function for a set of metrics g
satisfying (10) is given in terms of the corresponding Euclidean metric gE [5]:

Z =
∫
D[gE] exp

(
− c4

8πGh̄

∫
Λ
√

gEd4x
)

. (15)

When evaluated using a Hartle–Hawking no-boundary condition in complexified spacetime, one
gets to 4-spheres of radius R =

√
3/Λ and obtains a probability density distribution [5,24,34]:

P ∼ e−Ie f f = exp (
3πc4

Gh̄Λ
) (16)

Based on this expression of the probability density distribution, Hawking has concluded that the
cosmological constant is probably zero [5,34]. Various approaches have been suggested on improving
the probability density distribution since the measured value of Λ has turned out to be very small
but non-zero. One of the most current approaches have been focused on the 4-volume cutoff measure
of the multiverse [35]. The discussion in [34] considers also an anti-symetric tensor Aµνγ that is
one way to arrive at unimodular gravity [5,10]. The above result (16) relies on the observation
that

∫ √
gEd4x = ν [gE] ζ4 where the characteristic size ζ is actually the 4-spher radius R =

√
3/Λ.

The overall geometric dimensionless factor of proportionality is denoted by ν [gE]. For example,
this factor is 1 for standard Euclidian n-cube, and 4π/3 for the volume of a 3D sphere. Calculations
for the tunneling probability from “nothing” into something with a 4D size R =

√
3/Λ considering

wormholes, using Euclidian action and imaginary time, have resulted in the expression P ∼ exp(1/Λ),
while the use of real time and WKB-approximation result in P ∼ exp(−1/Λ) instead [6,31]. It has
been argued that the more appropriate probability expression is P ∼ exp(−1/|Λ|) [36]. The sign
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difference can be traced to whether there is a minimum size or maximum size of the 4D manifold
as well as how the overall path integral measure is handled [28]. In the forthcoming discussion,
we will utilize (15) and will not impose such relationship (ζ ∼ R =

√
3/Λ) between characteristic

size ζ and Λ. Our goal is to estimate the typical size of an universe within the multiverse approach.
The calculations discussed in the next section show that the typical size of an universe is of the order
of the Planck scale and therefore the Quantum Field Theory estimates of the vacuum energy density
(2) is a reasonable expectation.

4. Multiverse Partition Function and the Typical Size of a General ζ-Universe

Consider an ensemble of universes (Multiverse) where each universe is a solution to the Einstein
field Equation (10) and is labeled by {gαβ, Λ, ζ}. Here, ζ is an auxiliary tag, a characteristic size, to a
given EFE solution {gαβ, Λ}. The characteristic size can be determined by measuring the biggest
distance between two spacial points, or the age of the Universe t = ζ/c, or its 4D volume

∫ √
gEd4x =

ν [gE] ζ4, at a particularly important moment of its evolution and so on. The definition of ζ is loose
and fuzzy in order to fulfill its purpose to be an enumerator for various solutions of the Einstein
field equations. In order to be able to set up the integration variables in the partition function in a
manageable form, one can introduce an equivalent set of fields and variables:

{gαβ, Λ, ζ} → {g̃αβ, Λ̃, ζ̃ : a} (17)

where gαβ = a2 g̃αβ the second power of a is a matter of convenience; a is simply related to ζ since the
distance between two points along an s-parametrized curve is:

ζ =
∫

ds

√
gαβ

dxα

ds
dxβ

ds
= a

∫
ds

√
g̃αβ

dxα

ds
dxβ

ds
(18)

Thus, ζ = aζ̃. The choice ζ̃ = 1 is particularly important and will be discussed later.
Furthermore, notice that, if {gαβ, Λ} solves the Einstein field Equation (10), then {g̃αβ, Λ̃} would

also be a solution to the Einstein field Equation (10) where Λ and Λ̃ are simply related as Λ = Λ̃/a2.
This follows from the fact the affine connection Γα

βγ is invariant under rescaling of the metric tensor
and so are the Riemann curvature tensor Rα

βγδ and the Ricci curvature tensor Rβδ = Rα
βαδ, but the scalar

curvature R = gαβRαβ rescales as g−1 which is effectively a−2. One simple way to see that the affine
connection Γα

βγ is invariant under rescaling of the metric tensor (gαβ = a2 g̃αβ) is to notice that Γβγα is
built by using partial derivatives of the metric tensor gαβ; thus, Γα

βγ = gανΓβγν where gαν is the inverse

of gαν and therefore it scales with a−2; that is, gαβ = a−2 g̃αβ. Another way to justify Λ = Λ̃/a2 is to
recall that Tαβ is scale invariant [26], which can be guaranteed only if Λ = Λ̃/a2 when gαβ = a2 g̃αβ

given the Equations (8) and (4).
Given an ensemble of solutions {gαβ, Λ, ζ}, where ζ has been determined by using a particular

measurement procedure/definition, one can split the ensemble into same-scale ζ-subset, for example
{gαβ, Λ, ζ = 1} ≡ {g̃αβ, Λ̃, ζ̃ = 1 : a = 1}members, and a-derivable members, such that {gαβ, Λ, ζ} ≡
{a2 g̃αβ, Λ̃/a2, aζ̃ : ζ̃ = 1}. Let’s call the ζ = ζ̃ = 1 = a subset—the Planck-scale seed universes subset.

The goal now is to write a partition function Z in terms of the variables (g̃αβ, Λ̃, a) by using
guidance from Z[gE] (15). By following the mapping outlined in (14), one has:

D[gE] −→
gαβ→a2 g̃αβ

d[a2]D[g̃E] (19)

∫
Λ
√

gEd4x −→
gαβ→a2 g̃αβ

∫ Λ̃
a2 × a4√g̃Ed4x. (20)
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Since each a-derivable member is built from a particular ζ̃ = 1 solution {g̃αβ, Λ̃, ζ̃ = 1}, then its
contribution to the functional integrals is easily taken into account through the variable a. Therefore,
it seems reasonable to define Z and 〈O〉 in Planck units ( c = G = h̄ = 1 ) in the following way:

Z =
∫ ∞

0
d[a2]

∫
D[g̃]e−

1
8π a2Λ̃ν̃ζ̃4

, (21)

〈O〉 =
1
Z

∫ ∞

0
d[a2]

∫
D[g̃]Oe−

1
8π a2Λ̃ν̃ζ̃4

. (22)

Here, ν[gE] is an overall geometric factor that encodes most of the geometric information related
to g. Usually, ν[gE] is of order one. For example, for R4 Euclidean geometry ν = 1, for D4 geometry
ν = π2

2 ≈ 5. However, for a spherical blackhole with 8πM period in the imaginary time and event
horizon at R = 2M, one has ν = 16

3 π2 ≈ 53. In general, one can consider classes of metrics gE for
which ν[gE] has the same value. Then, the “path-integral” over that class D[g̃] would result in the
“volume” V [ν[gE]] of this class of metrics and ν[gE] can be used as a new integration variable. Thus, the
Jacobian for this change of variables would be the metric volume V [ν[gE]]. Since, as already mentioned,
ν[gE] is of order one usually; thus, one can neglect, for the present study, its dependence on the metric.
However, in the future, one may consider ν[gE] as an independent degree of freedom along which one
would have to integrate.

Since the Planck-scale subset consists of Planck-scale universes, it is plausible that at such
sub-microscopic scale the quantum field theory estimates of the vacuum energy density is appropriate;
that is, ρΛ̃ is of order 1. Thus, if for each solution {gαβ, Λ, ζ} there is Planck-scale seed Universe
such that a is chosen so that ζ̃ = 1, Λ̃ in the range (1, 8π), which is compensating for fixing ν̃ ≈ 1,
and O = ζ = aζ̃ = a; then, evaluating (21) and (22) results in the average characteristic size 〈ζ〉 of
this a-derivable subset to be of order one as well (〈ζ〉 ∈ (2π,

√
π/2) ≈ (6.3, 1.25) when Λ̃ ∈ (1, 8π)).

Note that, according to (21) and (22), one has Z ∼ Λ̃−1, while 〈ζ〉 ∼ Λ̃−1/2.
One can easily see this upon changing the order of the integration and by performing the following

substitution that makes the integration over [a2] very easy numerically by considering the Plank-seed
universe class (ζ̃ ≈ 1, ν̃ ≈ 1) that results in a universe of characteristic size ζ = ζ̃a. Thus, the argument
of the exponential function can be written from 1

8π (a2ζ̃2)(Λ̃ν̃)(ζ̃2) into 1
8π (ζ

2)(Λ̃ν̃)(ζ̃2) = ζ2 c̃2. We will
be performing the integration over ζ2 while keeping ζ̃ = 1 and assuming ν̃ ≈ 1 and Λ̃ in the range
(1, 8π), which is consistent with the Plank-seed universe class idea, while c̃2 = 1

8π (Λ̃ν̃)(ζ̃2).

Z =
∫
D[g̃]

∫ ∞

0
d[a2]e−

1
8π (a2 ζ̃2)(Λ̃ν̃)(ζ̃2) =

∫
D[g̃]

∫ ∞

0
d[ζ2]ζ̃−2e−ζ2 c̃2

=
8π

Λ̃

∫
D[g̃]ν[g̃]−1, (23)

〈ζ〉 =
1
Z

∫
D[g̃]c̃−3

∫ ∞

0
d[ζ2]ζe−ζ2

=
1
Z

∫
D[g̃]c̃−3

√
π

2
=

16π2

ZΛ̃3/2

∫
D[g̃]ν[g̃]−3/2 ≈ 2π√

Λ̃
. (24)

where we have used ν[g̃] = 1 assuming we can move the actual value of ν[g̃] ≈ 1 into the value of Λ̃
without that changing the range Λ̃ ∈ (1, 8π) significantly but only rearranging the elements there.

In this respect, any particular solution {gαβ, Λ, ζ} of the EFE could be viewed either as a-derivable
element connected to a particular Planck-scale seed solution or it could be a Planck-scale seed solution
itself. This means that the multiverse ensemble can be enumerated by Planck-scale seed universes and
their a-derivable elements.

The scale of the observed Universe is clearly far larger than the Planck-scale, thus our Universe
is a-derivable Universe based on some Planck-scale seed Universe {g̃αβ, Λ̃ ∈ (1, 8π), ζ̃ = 1} so one
can expect its characteristic size to be related to its present size, which is r = 1026 m in Planck units
(lP = 1.6× 10−35 m); this gives a ≈ 6× 1060 and therefore Λ = Λ̃/a2 = 8π/(6× 1060)2 = 7× 10−121

or Λ = Λ̃/a2 = 1/(6× 1060)2 = 3× 10−122 in Planck units. These values are clearly much closer to
the measured value ρΛ/ρPlanck = 1.4× 10−123.
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5. Discussions and Conclusions

One may expect further improvements in Λ by adding quantum effects via higher order terms
in the Einstein–Hilbert action that are beyond the approximation (13), which considers only classical
fields satisfying (10), and by making more rigorous calculations using Z[g] (15) instead of Z[a] (21),
or at least understanding better the mapping (14) since one is not guaranteed that ρΛ is a constant in
general. This, however, would require the use of the full theory of quantum gravity whose structure
and mathematical apparatus are not yet fully understood. Nevertheless, some important results are
already available as pertained to a dynamical solution of the cosmological constant problem—Ref [14],
along with the possibility of numerical conformations using causal dynamical triangulations [15,16].

The reasoning above shows that the quantum field theory estimate of the vacuum energy density
is probably valid only for sub-microscopic (Planck size) universes; however, for macroscopic size
systems, one needs to use the a-scaling mapping to arrive at the observed value of Λ. An open question
is the strict definition of the characteristic scale and its meaning. It seems that there are many options:
one can think of the characteristic scale ζ as the size to which a given universe has inflated during the
inflation era, or the size at which general relativity has become a good enough approximation so one
doesn’t need quantum gravity, or the size at which Λ is dominated by the zero point energy of the
gravitational field and all the matter contributions are negligible, or the size of the future cosmological
horizon, and so on and so on. This issue, however, could be short circuited if one promotes the
characteristic scale a into a conformal gauge factor λ(x) as part of the Integrable Weyl Geometry
framework. For example, using FLRW metric:

ds2 = −c2dt2 + R(t)2
(

dr2

1− kr2 + r2dΩ2
)
= λ2ds′2 (25)

For non-zero Gaussian curvature k, one can consider a small enough patch of space r << 1/
√
|k|

to be Gaussian flat, that is, k ≈ 0. Then, by switching to conformal time τ using dt = R(t)dτ,
one can identify conformal factor λ = R(τ) such that the new metric is conformally equivalent to the
Minkowski metric and therefore a unimodular. In the case of k = 0, such interplay has been described
explicitly in the discussion of the application to the empty space solution [26].

Integrating out the matter fields is an essential step in the above calculations. When applied in
conjecture with the above reasoning, it leads to a value of Λ, which is very close to the measured value
perhaps due to the fact that the value of Λ calculated in this paper is mainly due to the vacuum energy
density of the classical gravitational field in an a-derivable universe. It seems that the above reasoning
and results are consistent with the view that the effective cosmological constant (9) is an integral of the
motion with a significant contribution from the Ricci scalar. Even more, it may be more beneficial and
less puzzling if one is considering the smallness of Λ to be due to the large value of the entropy in
the observed Universe. Furthermore, if one is using the traceless version of the Einstein’s equations,
then the zero point energy of the matter fields does not contribute to the vacuum energy density of the
classical gravitational field. A unimodular gravity approach to Einstein’s equations is well aligned
with this view [10] and, if combined with the view that the cosmological constant is about the entropy
of the system and not about its vacuum energy density as suggested by the BlackHole Cosmology (5),
then one has a plausible resolution of the main three puzzles about the cosmological constant.

In summary, the key points of the paper are: the introduction of the Multiverse Partition Function for
an ensemble of universes enumerated by their characteristic size a that is also used as integration variable
in the partition function. The averaged characteristic scale of the ensemble is estimated by using only
members that satisfy the Einstein field equations. The averaged characteristic scale is compatible with
the Planck length when considering an ensemble built on Planck-scale seed universes with vacuum
energy density of order one; that is, Λ̃ ≈ 8π. For a-derivable universes with a characteristic scale of
the order of the observed Universe a ≈ 6× 1060, the cosmological constant Λ = Λ̃/a2 is in the range
10−121 ÷ 10−122, which is close in magnitude to the observed value 10−123.
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The result that the overall averaged characteristic size of an ensemble of universes that satisfies
the Einstein Field Equations (10) and (11) is of the order of the Planck scale is not obvious in general.
Explaining the observed value of Λ as due to the possibility that we live in a very large a-derivable
universe might suggest that this is a low probability event. Thus, it may seem like an argument
in support of the anthropic principle. However, if the physical reality is such that the idea of a
characteristic scale ζ is actually an illusion of our practical models, then the overall argument would
not be applicable. For example, a scale-invariant paradigm based on the Weyl Integrable Geometry,
like the one discussed by the authors as an alternative to ΛCDM, would make all homogeneous
and isotropic a-derivable universes, based on a specific EFE homogeneous and isotropic solution

{gαβ, Λ}, part of the same Universe via their time-dependent conformal factor λ(t) =
√

3
Λ

1
ct [26].

Such an approach is clearly modifying significantly the main framework (10) and (11), their consequent
equivalent expressions, and of course the final expressions (21) and (22) that have lead to the result
that the overall averaged characteristic size of an ensemble of universes is of the order of the Planck
scale. Furthermore, utilizing the possibility of a conformal gauge factor λ(x) could lead to unimodular
gravity gauge choice where one considers the scale factor a in gαβ = a2 g̃αβ as an overall scaling field
a = λ(x) such that det g̃αβ = 1. Exploring the possible connection between unimodular gravity gauge
and the Weyl Integrable Geometry by using the viewpoint on the conformal perturbations described
by Mottola and his collaborations [14,28] is an interesting research direction that could bring new light
to the Cosmological Constant problem, as well as on the Dark Matter problem via the SIV paradigm

and probably a new understanding of the SIV conformal factor λ(t) =
√

3
Λ

1
ct within the framework of

quantum gravity.
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