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Abstract: A genuine dilaton σ allows scales to exist even in the limit of exact conformal invariance.
In gauge theories, these may occur at an infrared fixed point (IRFP) αIR through dimensional
transmutation. These large scales at αIR can be separated from small scales produced by θ

µ
µ , the trace

of the energy-momentum tensor. For quantum chromodynamics (QCD), the conformal limit can be
combined with chiral SU(3)× SU(3) symmetry to produce chiral-scale perturbation theory χPTσ,
with f0(500) as the dilaton. The technicolor (TC) analogue of this is crawling TC: at low energies,
the gauge coupling α goes directly to (but does not walk past) αIR, and the massless dilaton at αIR

corresponds to a light Higgs boson at α . αIR. It is suggested that the W± and Z0 bosons set the scale
of the Higgs boson mass. Unlike crawling TC, in walking TC, θ

µ
µ produces all scales, large and small,

so it is hard to argue that its “dilatonic” candidate for the Higgs boson is not heavy.

Keywords: quantum chromodynamics; technicolor; conformal; Nambu–Goldstone; Wigner–Weyl;
dilaton; scalon; renormalization; fixed point

1. Introduction

It is surprising how far the notion of a “dilaton” has strayed from the original version of 1968–1970.
Now it can be any of the following:

I. a scalar Nambu–Goldstone (NG) boson for exact conformal invariance of a Hamiltonian H
which has a scale-dependent ground state |vac〉 and hence scale-dependent amplitudes in the
limit of scale invariance; or

II. a scalar component of the gravitational field; or
III. a scalar particle in a theory where conformal invariance is permitted only in the Wigner–Weyl

(WW) mode (scale-invariant amplitudes). In terms of a Hamiltonian H, scale-dependent
effects such as fermion condensation exist only in the presence of a term δH which breaks
scale invariance explicitly in H = H0 + δH. Both H0 and its ground state |vac〉0 are
conformal invariant.

Evidently, I and III contradict each other and may have little to do with II. Typical of III are
(a) deformed conformal Lagrangians and (b) walking TC, which have been promoted as ways of
explaining why the Higgs boson is so light. I observe that these theories are very unlikely to achieve
this because they apparently involve just one scale, set by θ

µ
µ . Two scales are needed, as in crawling

TC [1], which is a type-I theory.
Most papers on “dilatons” consider type-II or type-III. The problem is with assertions that type-III

theories can be matched to type-I effective Lagrangians. So I begin with a quick summary of the
fundamental type-I theory in its original setting, strong interactions (Section 2).

Dilatonic versions of gauge theories are considered in Section 3. For quantum chromodynamics
(QCD), only a type-I theory is possible, chiral-scale perturbation theory χPTσ [2–4], where the dilaton at
the IRFP corresponds to the light resonance f0(500). The TC analogue of this is crawling TC, where the
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Higgs boson is the type-I TC analogue of f0. The scale-dependent IRFP lies outside the conformal
window [5].

Section 4 compares crawling TC with type-III theories for the Higgs boson. The type-III concept is
due to Gildener and Weinberg [6]. They called their spin-0+ particle a “scalon”—a good name—but
that morphed into the term “dilaton” in “dilatonic” walking TC [7–15] and deformed conformal
potential theory [16–23]. I will reserve the term “genuine dilaton” for type-I dilatons.

The key observation is that in type-III theories, it is hard to distinguish small scales from large
scales because they are all generated by the trace θ

µ
µ . For example, in walking TC, the sill of the

conformal window produces the fermion condensate 〈ψψ〉vac. That indicates a large mass

mh
III

=
〈

h
III

∣∣θµ
µ

∣∣h
III

〉
∼ a few TeV (1)

for the would-be Higgs boson h
III

, no matter how slowly α walks. A similar conclusion was drawn in
early work on walking TC [7,9,10]. It cannot be undone by assuming [19] an equivalence to a type-I
dilaton Lagrangian below the sill.

By contrast, in a type-I theory, all large scales arise from the scale dependence of amplitudes in
the exact conformal limit: that is what is meant by the NG mode for conformal invariance. In crawling
TC, the fermion condensate 〈ψψ〉vac sets the scale at the IRFP αIR. For values of α just below αIR, θ

µ
µ

appears as a small perturbation which produces small scales, such as the mass acquired by the type-I
dilaton: a light Higgs boson.

Why has the concept that there can be scale dependence in the conformal limit, which seemed so
simple in 1968–70, been so systematically overlooked since then? In particular, why must all IRFP’s be
in WW mode? An IRFP cannot appear outside the conformal window, by definition? I offer possible
reasons for these points of view in Section 5, with a separate Section 6 specifically for IRFP’s.

Possible tests of these proposals are considered in Section 7. A light scalar boson has been
observed in lattice data for SU(3) gauge theory with N f = 8 triplet fermions [24–27] and two sextet
fermions [28,29]. In each case, this is being interpreted as a type-III dilaton for walking TC, but it is
more likely to be a genuine dilaton, and hence evidence for an IRFP just outside the conformal window.

2. Hadronic Physics

The idea that scale and conformal invariance may be spontaneously (i.e., not explicitly) broken
dates from 1962 (footnote 38 of [30]). An analogy was drawn with the partial conservation of the
axial-vector currents ~Fµ5 for chiral SU(3)L × SU(3)R symmetry, where π, K, K̄, η pole dominance of
amplitudes of the divergences ∂µ ~Fµ5 yields soft-meson relations such as the Goldberger–Treiman
relation for the pion-nucleon coupling constant gπNN . Similarly, a spin-0+ particle σ tied to the trace
θ

µ
µ of the energy-momentum tensor θµν couples universally to particle mass. For a nucleon N with

mass MN , the σ-nucleon coupling constant gσNN is given by

fσgσNN ' MN , (2)

where fσ is the scalar analogue of the pion decay constant fπ :

〈σ|θµν|vac〉 = ( fσ/3)(qµqν − gµνq2) . (3)

The currents for scale and conformal transformations can be written in terms of θµν (improved [31] if
spin-0 fields are present) as follows:

Dν(x) = xµθµν(x) and Kµν = (2xµxλ − x2gµλ)θ
λ
ν . (4)
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As for chiral SU(3)L × SU(3)R currents, explicit breaking of the symmetry is measured by
current divergences:

∂νDν = θλ
λ and ∂νKµν = 2xµθλ

λ . (5)

Therefore, scale and conformal invariance correspond to the limit

θλ
λ → 0. (6)

The question [32–35] is, does the vacuum state respect the symmetry, or break it? Are scale and
conformal invariance realized in the WW mode or the “spontaneous” NG mode?

A comparison with the chiral SU(3)L × SU(3)R group in hadronic physics is instructive [35].
In that case, both modes occur. The subgroup SU(3)L+R associated with vector currents ~Fµ has
a symmetry limit in the WW mode—its generators ~F annihilate the vacuum state:

~F |vac〉 → 0 , ~F =
∫

d3x ~F0 . (7)

The symmetry is manifest: its representations can be seen in the particle spectrum. The rest of the
group, represented by cosets SU(3)L × SU(3)R

/
SU(3)L+R and generated by axial charges ~F5, has its

symmetry realized in the NG mode:

~F5 |vac〉 6→ 0 , ~F5 =
∫

d3x ~F05 . (8)

As a result, the axial part of the symmetry is hidden, |vac〉 becomes a member of a degenerate set of
physically equivalent vacua

|vac〉~α = exp{i~α·~F5}|vac〉~α=0 , (9)

and there is a massless NG boson for each independent direction in~α space: for SU(3)L × SU(3)R,
eight 0− NG bosons π, K, K̄, η. A unique vacuum state can be picked out by perturbing the Hamiltonian
with a term which breaks the axial part of the symmetry and gives the NG bosons mass.

Similarly, for the limit of scale and conformal invariance, “there are two possibilities: either all
particle masses go to zero, or there is a massless scalar boson of the NG type that allows other masses
to be non-zero” [35].

The first possibility refers to the WW scaling mode, where scale and conformal invariance are
manifest. Let

D(t) =
∫

d3xD0(t, x) and Kµ(t) =
∫

d3xKµ0(t, x) (10)

generate scale and special conformal transformations. In the symmetry limit, D and Kµ become
time independent, and their commutators with the translation and Lorentz generators Pµ and Mµν

simplify, e.g., [
Kµ, Pν

]
= −2i

(
gµνD + Mµν

)
, θλ

λ → 0 . (11)

Given that |vac〉 is the only state annihilated by both Pµ and Mµν, it follows from (11) that Kµ|vac〉 = 0
implies D|vac〉 = 0 and vice versa. Conformal invariance of the vacuum state implies that the theory
lies within the conformal window: Green’s functions exhibit power-law behavior characteristic of
representations of the conformal group SO(4, 2). Dimensional couplings vanish, e.g., scalar particles
decouple from θµν:

〈ϕ|θµν|vac〉 → 0 . (12)

Particles are massless or do not exist [36], and the rest of the mass spectrum is empty or continuous.
Consequently, the WW-mode scaling limit is nothing like the real world. Key physical properties such
as a massive spectrum can arise only as dominant contributions from terms in the Hamiltonian which
break scale invariance explicitly.
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The other possibility is the NG scaling mode, where there is a non-compact degeneracy of Poincaré
invariant vacua

|vac〉ρ = exp{iρD}|vac〉ρ=0 . (13)

As for the chiral case (9), these vacua are physically equivalent; one of them is picked out if a small
symmetry breaking term is added to the Hamiltonian. Equation (11) remains valid, so D|vac〉 6= 0
implies Kµ|vac〉 6= 0. Conformal symmetry is hidden by the dependence of amplitudes on dimensional
constants such as masses. This is allowed if there is a massless 0+ NG boson σ for scale and conformal
invariance: the dilaton1.

The key property of a dilaton is that the decay constant fσ in (3) remains non-zero in the
scale-symmetric limit:

fσ 6→ 0 , θ
µ
µ → 0 . (14)

Since fσ has dimensions of mass, amplitudes can depend on scales in the limit (14).
Scalar Goldberger–Treiman relations of the form (2) become exact, so particles such as nucleons N
can remain massive in a theory with NG-mode scale invariance. The pion decay constant fπ can also
remain non-zero: the NG mode for conformal invariance is compatible with the NG mode for chiral
invariance [37–42].

Evidently, compared with the WW mode, the NG scaling mode offers the great advantage
that there is a chance that it approximates the real world. A small scale-violating perturbation of the
Hamiltonian may be sufficient to give the dilaton and other NG bosons their observed small masses and
make small corrections to large masses in the non-NG particle sector. The consistency of assuming an
NG mode for scale invariance was confirmed via effective Lagrangians [32,34,37,38,40], and by the end
of 1970, a complete understanding had been achieved [40,41,43]. However, dilaton phenomenology
at that time did not go far: the only candidate for σ was a vague 0+ resonance ε(700) which was last
listed in the Particle Data Tables in 1974. The main results were for the σ→ ππ coupling [38,39],

fσgσππ ' −m2
σ i.e., σ-width ∼ σ-mass, (15)

and for the σ→ γγ coupling due to the electromagnetic trace anomaly [44–46]:

fσgσγγ '
Re2

6π2 , R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)

∣∣∣∣
high energy

. (16)

3. Gauge Theories

This line of investigation was resumed almost 40 years later, prompted by a partial-wave
analysis [47] which isolated the broad low-mass 0+ resonance2 f0(500) at 441− 272 i MeV, with small
experimental and theoretical uncertainties—unlike the ε(700). A perfect candidate for the hadronic
dilaton of 1968–72 had appeared:

σ|hadronic = f0 . (17)

The mass of f0 is close to K(495) and η(549), so it makes sense to extend standard chiral SU(3)× SU(3)
perturbation theory χPT3 to chiral-scale perturbation theory [2–4] χPTσ, with NG bosons π, K, K̄, η,
σ in the combined limit of chiral and conformal symmetry.

A common question here is: what is so special about the case of N f = 3 flavors?

1 This term was coined in 1969, and first appeared in print in [37].
2 A successor f0(400–900) to the dormant ε(700) resonance was first identified in 1996 [48] in the context of the linear sigma

model. The key features of the 2006 analysis [47] were its model independence and precision, which led to the inclusion of
f0(500) in the 2008 Particle Data Tables. See [49] for an extensive review. Our symbol σ for the dilaton does not mean that
we rely on the sigma model.
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This has to do with whether good phenomenology results, in a first approximation, when a given
quark flavor is considered to be

1. heavy enough to be decoupled, or
2. light enough to be part of a chiral perturbation theory, or
3. neither.

The quarks t, b and c are far too heavy to belong to category 2. However, they certainly belong to
category 1 if we restrict ourselves to particle states and operators constructed from u, d, s quarks and
consider amplitudes at energies� mc. So, let us decouple the heavy quarks:

mQ → ∞ , Q = t, b, c. (18)

Then, since u and d are much lighter than s, it is tempting to try chiral perturbation theory
χPT2 based on approximate SU(2)L × SU(2)R symmetry. That gives relatively precise results
(5–10% accuracy), but only if the s-quark mass ms is held fixed. That becomes a problem if we
want to make a connection with scale invariance, because θ

µ
µ contains a renormalized version of

the mass term ms s̄s. Any attempt to decouple s by taking the limit ms → ∞ would be a terrible
approximation, given e.g., the observed SU(3)L+R multiplet structure of particle states.

The remaining possibility is that u, d and s all belong to category 2, which corresponds to
approximate SU(3)L × SU(3)R symmetry. The result is χPT3, a less precise but adequate theory
∼ 30% accuracy, apart from difficulties in 0+ channels due to the low-lying f0(500) resonance.
Unitarized chiral perturbation theory UχPT [49,50] is a general dispersive method for dealing with
this, while χPTσ is a QCD-based effective theory with f0 treated as a NG boson. These technicalities
do not detract from the requirement that QCD must make sense in the IR limit that category-2 masses
and all momenta pOperators/NG for physical operators and NG bosons tend to zero:

pOperators/NG → 0 , mq → 0 , q = u, d, s. (19)

The key observation is that there is no way of distinguishing this limit from the infrared limit of
the renormalization group (RG) for gauge theories with massless fermions. We are therefore able to
determine to some extent how the gauge coupling runs in that limit. That is the benefit of having no
quarks in category 3.

The result of the decoupling (18) is QCD for N f = 3 quark flavors q = u, d, s. Since QCD
is renormalizable, there is a trace anomaly [51–54] proportional to the N f = 3 Callan–Symanzik
function β(αs),

θ
µ
µ

∣∣∣
QCD

=
β(αs)

4αs
GaµνGa

µν +
(
1 + γm(αs)

)
∑

q=u,d,s
mq q̄q , (20)

where αs is the gauge coupling for strong interactions and Ga
µν is the field-strength tensor. The theory is

asymptotically free, so αs increases as low-momentum scales are approached. In the infrared limit (19),
there are two main possibilities:

(A) This is the conventional alternative. The result is the green curve labelled χPT3 in Figure 1,
where β(αs) remains negative and αs runs to +∞. In that limit, the gluonic part (β/4αs)G2 of
the trace is still present and breaks conformal invariance explicitly. Apart from the massless
0− bosons {π, K, η}, all hadrons, including f0(500), acquire their mass through this mechanism.
Please note that the chiral condensate 〈q̄q〉vac 6= 0 survives in this limit.

(B) There is an IRFP αIRs at which β vanishes and beyond which αs cannot go (the red curve in
Figure 1 labelled χPTσ):

αs ⇁ αIRs , β(αIRs) = 0 . (21)
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As a result, both the gluonic and quark-mass terms in Equation (20) vanish and the theory
becomes conformal invariant:

θ
µ
µ

∣∣∣
QCD
→ 0 . (22)

Since this is equivalent to the chiral limit (19), the 0− NG bosons π, K, η and hence the chiral
condensate 〈q̄q〉vac survive, and so 〈q̄q〉vac acts as a scale condensate. That implies the presence
of a massless dilaton σ at the IRFP, which permits all non-NG hadrons to be massive in the
conformal limit (22). Chiral-scale perturbation theory χPTσ is then a simultaneous expansion
about αIRs and in the u, d, s masses. Note the desirable scale separation between the NG-boson
sector {π, K, η, f0} and heavy hadrons in Figure 2.
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Figure 1. Alternatives for the N f = 3 QCD β-function. (A) Conventional N f = 3 soft-meson theory
χPT3 (green curve) involves a large breaking of scale invariance at αs ∼ ∞ to ensure that heavy hadrons
such as nucleons acquire sufficient mass, but then that mechanism also generates the mass of the f0,
which is not heavy: m f0 ∼ mK � mN . (B) That problem is solved in χPTσ (red curve): (a) the massless
dilaton σ at αIRs allows nucleons to be heavy (Equation (2)), and (b) σ becomes the pseudodilaton
fo as it acquires a small (mass)2 to first order in εs = αIRs − αs. Both curves are consistent with
model-independent UχPT.

�PT� (mass)2

NG bosons
p = O(mK) separation

scale
Non-NG sector� -

v vvvvvvvvvvvvvvvv v vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv vvvvv v vvvvvvvvvvvvvvvvvvvv -r
⇡ f0 K ⌘ ⇢!



K⇤ N ⌘ 0

Figure 2. The hadronic spectrum below 1 GeV, seen from the point of view of χPTσ. Masses and
momenta p of NG bosons, including f0(500), are small relative to scales of the non-NG sector.
Please note that χPTσ works only for N f = 3 light flavors; there is no analogue of it for N f = 2
because of the presence of the s quark: ms � mu,d.

Alternative (A) is possible, but from the point of view of QCD, the small mass of f0(500) is
an unexplained accident. In a nonperturbative setting, the simplest (and perhaps only) argument
for a small mass is that the theory approximates a symmetry in NG mode. If f0 is not an NG boson,
then we have no symmetry to force its constituents, qq̄ or [49,55] qq̄qq̄, to be bound together so strongly
compared with other heavy hadrons.

In alternative (B), the small f0 mass is due to the approximate conformal symmetry of N f = 3
QCD, together with the small values of the current-quark masses mu,d,s. The qq̄ binding of f0 is similar
to that of π, K, η but in P-wave instead of S-wave.

The scale separation shown in Figure 2 means that an effective chiral-scale Lagrangian for χPTσ

can be set up with leading-order (LO) terms given entirely by the tree approximation. That should
be contrasted with conventional χPT3, where the tree approximation fails in 0+ channels and the LO
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must be patched up with unitarized π, K, η loops. In χPTσ, the role of unitarization is to patch up
next-to-LO π, K, η, σ loop diagrams; so far, little has been done in that regard.

Concerns about this scheme typically run along the following lines:

(a) IRFP’s outside the conformal window are not taken seriously in the literature: they do not exist either in
principle or on the lattice. Questions of principle and evidence from the lattice are analyzed in
Sections 6 and 7 respectively.

(b) There are no light dilatons in gauge theories [9,10]. These claims are made for a type-III definition
of “dilaton”, to be discussed further in Section 4 below. They do not affect the identification
above of the f0(500) as a genuine dilaton σ for QCD.

(c) There is no light dilaton in hadronic physics because there is no scalar particle nearly degenerate with
pions. This overlooks the role of ms � mu,d, and comes from TC literature, where all chiral NG
bosons are called ”technipions” and none “technikaons” or “technietas”.

(d) A light dilaton is not seen for N f = 4. This refers to the lattice study [27] closest to the relevant
case N f = 3. See Section 7.

(e) There may be an IRFP for N f = 2 which would, in analogy with the case N f = 3, produce a spin-0+

particle with mass O(mπ), contrary to experiment. An IRFP at N f = 2 is not excluded but, as noted
above, a connection with scale invariance can be obtained only by decoupling the s quark,
and ms ∼ ∞ is a very bad approximation. The argument works only for N f = 3.

Continuing with the case N f = 3, let us consider the LO approximation for

2m2
σ = 〈σ

∣∣θµ
µ

∣∣σ〉 ' αIRs − αs

4αIRs
β′QCD〈σ|G2|σ〉+

(
1 + γm(αIRs)

)
∑

q=u,d,s
mq〈σ|q̄q|σ〉 . (23)

Here β′QCD > 0 is the slope at the IRFP of the red curve in Figure 1. The optimal space-like scale
−m2 at which αs = αs(−m2) should be evaluated is determined by how close to the limit (19) it is
possible to go in the real world. Soft-meson theorems for approximate SU(3)× SU(3) involve O(mK)

extrapolations in NG-boson masses and momenta3, so we take m ∼ mK. Therefore, relative to a QCD
large scale such as MN , effects due to

εs = αIRs − αs ' αs(0)− αs
(
−m2

K
)
= O

(
m2

K/m2
N
)

(24)

are similar in magnitude to those of ms. That is why f0(500) is as light as K and η (Figure 2).
The physical consequences of having an IRFP at αIRs can be seen in low-energy mesonic processes.

The results are encoded in a chiral-scale Lagrangian Leff|QCD for χPTσ [2,3]. The formalism is
entirely standard, having been invented in 1969–1970 [37,38,40,56], so will not be repeated in full
here. Under global conformal transformations x → x′, the Goldstone field σ is translated by a constant:

σ → σ− ( fσ/4) ln |det(∂x′/∂x)| . (25)

Then exp(σd/ fσ) transforms covariantly with dimension d and can be used to adjust the dimensions of
terms in an effective Lagrangian. For example, the mass term MN NN for a nucleon can be converted
into a scale-invariant potential Vinv,

MN NN −→ Vinv = MNeσ/ fσ NN = MN NN
{

1 + σ/ fσ + . . .
}

, (26)

from which the scalar Goldberger–Treiman relation (2) may be deduced. So, any effective Lagrangian
can be made conformal invariant by introducing a suitable dependence on σ. The key point is that this

3 Including pion momenta, as in η → 3π decay. Distinguish ππ → ππ for O(mK) momenta from the same process for O(mπ)
momenta, where χPT2, a different theory, is applicable. See Footnote 7 and Figure 4 in [3].
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produces amplitudes which depend on scales such as MN , fπ and ΛQCD in the limit of exact conformal
invariance, i.e., at the IRFP αIR.

The same technique is applied to a chiral Lagrangian by noting that the unitary matrix field U for
chiral NG bosons has dimension 0. For example, the Lagrangian

Linv =
1
2

∂µσ∂µσe2σ/ fσ +
1
4

f 2
πTr ∂µU∂µU†e2σ/ fσ (27)

has dimension-4: both chiral and scale invariance are preserved. The term |∂~π|2σ/ fσ obtained from
Equation (27) corresponds to the result (15) for the dilaton width.

The effective Lagrangian for χPTσ generalizes (27) to include all possible LO terms consistent
with the conformal and chiral SU(3)L × SU(3)R properties of QCD for small values of mu,d,s and εs.
The most important result is that the ∆I = 1/2 rule for nonleptonic kaon decays is a consequence of
broken scale and chiral invariance. Equation (15) remains valid [4], while R in Equation (16) is replaced
by the high-energy ratio RIR for the scale-invariant theory at αIR.

Crawling TC [1] is the most recent application of the idea of an NG mode at the IRFP of a gauge
theory. It adopts the standard TC viewpoint [57–59] that the Higgs mechanism is the dynamical effect
of a gauge theory which resembles QCD, with a TC coupling α which is nonperturbative at scales of
a few TeV. Where it differs from other TC theories is that, in analogy with (21), the TC gauge coupling
runs to an infrared fixed point αIR with conformal invariance in NG mode. So, at αIR, there is a massless
dilaton—a feature unique to crawling TC. At energies much less than a TeV, α sits just below αIR and
the dilaton acquires a mass� TeV. It makes sense to identify this massive σ particle with the mass
125 GeV Higgs boson.

The characteristic feature of crawling TC is its dependence on the slope β′ of the TC β function at
the fixed point:

β′ =
dβ

dα

∣∣∣∣
α=αIR

> 0 . (28)

In particular, the Higgs potential in leading order is a nonpolynomial function

V(h) =
M2

σF2
σ

β′

[
−1

4

(
1 +

h
Fσ

)4
+

1
4 + β′

(
1 +

h
Fσ

)4+β′

+
β′

4(4 + β′)

]
, (29)

where h = h(x) is a fluctuating Higgs field, Fσ is the TC analogue of fσ, and Mσ is identified as the
Higgs boson mass mh.

4. Comparison of Crawling and Walking TC

While writing [1], we became aware that the 1968–70 concepts of “dilaton” and “spontaneous
breaking of conformal invariance”, on which our work relies, have lost their original meaning
(Section 1). Most of the thousands of papers on the subject written since 1972 do not recognize
the type-I concept that scale-dependent amplitudes can occur in the limit of conformal invariance.
For most authors, the label “dilaton” is just a fancy name for a scalar field appearing in a conformal
theory. That has led to a lack of clarity between competing concepts.

Most definitions of “dilaton” on the Internet are of type-II: they refer to a scalar component of
the gravitational field. There is now a vast literature on this. The term was first used in that context
in 1971 [60]. At the time, it drew the remark [61] (quoted in [62]) that “Brans–Dickeon” would be
a better name.

There is a third meaning for “dilaton” (type-III), also with an extensive literature,
which unfortunately contradicts the 1968–70 definition reviewed above. This re-working of the subject
started in 1976:
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1. Fubini [63] noted problems with the conformal NG mode for λφ4 theory which subsequent authors
incorrectly interpreted as an inconsistency of type-I theories in general; see Section 5 below.

2. Gildener and Weinberg (GW) [6] introduced the concept of a spin-0+ “scalon” associated
with a flat direction of the potential of a massless gauge theory in the tree approximation.
Scale invariance is broken explicitly by one-loop corrections of the Coleman–Weinberg (CW) [64]
type. The analysis is entirely consistent, except for a remark that the result is an example of a
“spontaneous breaking” of scale invariance4. That is not so: the tree approximation is scale-free by
construction, so the invariance is realized in the WW mode. In that limit, the “scalon” is massless
but is not a genuine dilaton because it lacks a decay constant connecting θµν to the vacuum.
All breaking of conformal invariance is explicit: the one-loop corrections violate scale invariance
of the Hamiltonian.

As reported in Section 1, the GW scalon became the type-III “dilaton” of walking TC [7–15]
and conformal potentials deformed by the CW mechanism [16–23]. Exact conformal invariance is
clearly in the WW mode, e.g., within the conformal window for walking TC, yet the “breaking” of
the symmetry is said to be both “explicit” and “spontaneous”. Other versions of this contradiction
are that “approximate conformal invariance is spontaneously broken”, or that the breaking “triggers”
scale generation “spontaneously”.

A general definition for the type-III dilaton ϕ for walking TC and CW-deformed potentials is as
follows. It is a 0+ particle in a theory which approximates a system with exact conformal invariance in
the WW mode,

D|vac〉 = 0 = Kµ|vac〉 , θ
µ
µ → 0 , (30)

and obeys Equation (12). All scales, large and small, are “triggered” when the Hamiltonian5 is
perturbed by a term which breaks conformal invariance explicitly. These large scales include a fermion
condensate 〈ψψ〉vac and hence chiral NG bosons.

Walking TC assumes that all infrared fixed points lie within the conformal window, where deep
infrared dynamics is scale-free and Green’s functions exhibit the power-law scaling expected for
the WW mode. The gauge coupling α for a theory just outside the conformal window is supposed
to walk slowly when it passes the IRFP αWW of a theory just inside the window. The result is then
a small β-function which (it is hoped) can be held responsible for small-scale effects such as the mass
of the Higgs boson. Physics outside the conformal window is vastly different from physics inside,
so there must be a discontinuity or phase transition in N f at a sill [65–67] produced by a term δH in
θ00 which breaks conformal symmetry explicitly. Despite being proportional to β, δH must produce
effects ∼ several TeV, such as 〈ψψ〉vac.

Therefore, even though θ
µ
µ is formally small, its effects are ∼ a few TeV, as foreshadowed in

Section 1 and in general remarks below Equation (12). So it is hard to argue that the sill produces a
small-mass Higgs boson. That can be done only if an explicit model for the sill can be formulated with
unusual properties. The model would have to specify a large-scale mechanism for the gauge theory
to produce the chiral condensate 〈ψψ〉vac without affecting the mass of the 0+ boson. Early attempts
in that direction [7,9,10] came to the conclusion that this is not possible: type-III dilatons are heavy6.
Of course, the self-consistency of these gauge-theory models for fermion condensation is far from
obvious, but that does not mean that the difficulty can be circumvented by assuming (as in [19]) that a
type-I dilaton Lagrangian from 1970 [37,38,40] may be valid below the sill but not above it. For that to
be convincing, the self-consistent model for the sill would have to produce a dilaton-like Lagrangian.

4 Coleman and E. Weinberg [64] stick to the textbook definition of the term “spontaneous”, i.e., for breaking which is not
explicit, and apply it only to the breaking of chiral invariance. In footnote 8, they note that scale invariance is broken
explicitly by the one-loop trace anomaly.

5 In walking TC, the decompositionH = H0 + δH is often not considered explicitly. Such theories involve extrapolations in
N f , with an understanding that the extra flavor fields are almost decoupled.

6 The analysis does not appear to depend on their having an ultraviolet (UV) fixed point instead of an IRFP.



Universe 2020, 6, 96 10 of 19

This should be contrasted with crawling TC, which relies on a single assumption that there is
an IRFP αIR in the NG mode for conformal invariance. Support for this comes from evidence noted
in Section 3 for the analogue theory [2–4] for QCD. Assumptions about the detailed dynamics of the
sill are not needed; indeed, the sill plays no role in the extrapolation from αIR to α. That extrapolation
accounts for small-scale corrections to the scale set at αIR, including the mass of the Higgs boson

mh = O(ε) , ε = αIR − α & 0 . (31)

See [1] for an explicit O(ε) formula for mh in terms of the gluon condensate at αIR. A diagrammatic
comparison of the two theories is shown in Figure 3.
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Figure 3. Graphs of the TC β function in SU(3) gauge theories with N f Dirac flavors for (a) crawling
TC and (b) walking TC. On each graph, the sill of the conformal window at Nc

f flavors is shown as
a thick gray line. In (a), there is a genuine massless dilaton at αIR outside the conformal window
(N f 6 Nc

f ), so large scales are possible at that point. Small-scale corrections such as mh = 125 GeV for
the Higgs boson mass occur for α . αIR . In (b), the physical theory below the sill (red line, N f 6 Nc

f ) is
scale-dependent and lacks an IRFP. The theory above the sill and hence inside the conformal window
(blue line, Nc

f < N f 6 16) is scale-free and has an IRFP αWW with conformal invariance in WW mode.
The sill generates all scales in the physical theory, both large and small, no matter how closely the red
line in the walking region approaches αWW , with the walking α evaluated at a space-like scale ∼ −Λ2

TC .
Therefore, a type-III “dilaton” is unlikely to be light.

At what scale should α be evaluated? Unlike QCD, where the relevant scale in (24) was found
to be set by the heaviest light quark s, TC theory is a gauge theory with massless fermions with
no obvious analogue of approximate chiral SU(3)L × SU(3)R symmetry. However, TC is in some
way perturbed by the electroweak theory responsible for the W± and Z0 bosons and lighter non-TC
particles. So, it is tempting to suppose that the optimal scale for α is set by the largest small (non-TC)
scale available, i.e., MW,Z:

ε ' α(0)− α(−M2
W,Z) = O

(
M2

W,Z
/

Λ2
TC

)
. (32)

Here ΛTC is a typical nonperturbative TC scale ' a few TeV. This would explain why the Higgs boson
is almost as light as W± and Z.

Theoretical support for this outcome requires the construction of a fully unified gauge theory
which combines the Standard Model with TC. That deserves further investigation.

5. Scale Dependence in the Conformal Limit

Evidently the proposition that amplitudes at αIR can be scale-dependent requires further
explanation. In the limit of exact conformal invariance, (a) is scale dependence of the ground state
generally possible, and (b) can it occur at an IRFP of a massless gauge theory (Section 6 below)?

The argument against (a) typically refers to Fubini [63] and runs as follows [22]: “if a theory
is exactly conformal, it either does not break scale invariance, or the breaking scale is arbitrary
(a flat direction).” In effect, it is being argued that the NG mode for exact conformal invariance with a
type-I dilaton is absolutely impossible. That cannot be so:
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1. Fubini’s analysis is restricted to λφ4 theories and therefore does not constitute a general proof
that strict conformal invariance must be manifest, i.e., in WW mode. To obtain the NG mode
for conformal invariance, simply omit the φ4 term and add other invariants to 1

2 (∂φ)2 such as
couplings to chiral NG bosons or (say) the 4-point self-interaction

L4-pt. = κ
(
∂φ
/

φ
)4 , κ = const., (33)

and [1] constrain φ, e.g., to a half line
φ > const. (34)

2. As noted in [1], Fubini’s conclusion was anticipated in 1970 by Zumino (page 472 of [40]),
who observed that a dilaton Lagrangian is consistent only if the quartic term vanishes in the
conformal limit:

λ = O(ε) , ε→ 0 . (35)

Here ε is a measure of the explicit breaking of conformal symmetry. Equation (35) reflects the fact
that, like other genuine NG bosons, type-I dilatons for ε→ 0 are massless and cannot self-interact
at zero momentum: they correspond to a flat direction of the dilaton potential.

3. All dilaton Lagrangians from 1968–1670 which obey Zumino’s rule (35) are
counterexamples [32–34,37,38,40]: they exist in the limit of exact conformal symmetry
and produce amplitudes which depend on a non-arbitrary scale, the dilaton decay constant fσ of
Equations (3) and (14). All except [32] allow chiral condensates to exist in the conformal limit
ε→ 0.

4. The “flat direction” is not associated with a continuum of scales. Instead, it corresponds to the
continuum of degenerate vacuum states (13).

The quote continues: “Thus an explicit breaking must be present to trigger and stabilize the
spontaneous breaking of scale invariance.”

5. Again, the effective Lagrangians above are counterexamples. A tiny 0(ε) scale-violating
perturbation δHtiny can pick out one of the degenerate vacua (stabilization) and produce tiny
corrections to the scale-dependent amplitudes and masses of the type-I theory at ε = 0.

6. Implicit in this quote is the type-III assumption that there are no scales in the ε = 0 theory, so it is
necessary to have a large discontinuity appear “spontaneously” at a small or infinitesimal value
of ε 6= 0 to produce large scales. If the ε = 0 theory is in the WW scaling mode, it does not have
scale-degenerate vacua, so there is nothing to stabilize.

7. The large discontinuity is a problem for type-III phenomenology, because θ
µ
µ ∼ 0 is such a bad

approximation.

A formal argument that “the breaking scale is arbitrary” in a conformal invariant theory was first
given by Wess [68]. It is most simply derived from the identity [34]

eiDρP2e−iDρ = e2ρP2 , θ
µ
µ → 0 , (36)

which implies that mass-M eigenstates |M〉 obey the relation

|eρM〉 = eiDρ|M〉 . (37)

That implies a spectrum of zero-mass particles, or a continuum 0 6M < ∞, or both—provided that
the ground state is unique (WW mode of conformal invariance).

However, for vacua (13) degenerate under scale transformations, this conclusion is not valid
because states related by eiDρ belong to different worlds, W and W ′. A discrete scaleM can exist in W
and correspond to a discrete scaleM′ in W ′. Since dimensional units are also scaled up or down in the
same way, e.g.,

GeV→ GeV′ = eρ GeV , (38)
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experimental data in W and W ′ are identical. Therefore these worlds are physically equivalent, as for
any other symmetry in the NG mode. See Appendix D of [1] for details.

Sometimes type-I dilaton Lagrangians are written in a form such that scales do not appear
explicitly in the conformal limit. That happens when all fields are chosen to transform homogeneously
under scale transformations. The result is a polynomial Lagrangian with dimensionless coupling
constants which is easily confused with the conformal WW mode considered by Gildener and
Weinberg [6]. The difference for the NG mode is that the scale may be hidden in a constraint like (34)
which must be implemented nonlinearly. The simplest example is the constraint φ > 0 which is not
changed by scale transformations and seems to have no scale dependence. However, to implement it,
a scale must be introduced, as is evident from the mapping [56]

φ = fσ exp
(
σ
/

fσ

)
> 0 (39)

from the unconstrained Goldstone field σ.
Flat directions for conformal invariant Lagrangians are also possible for type-III theories,

as noted by Gildener and Weinberg [6], but they do not correspond to the vacuum degeneracy (13)
because a type-III vacuum state is conformal invariant. Instead, the flat direction corresponds to
field-translation invariance

φ(x)→ φ(x) + c for −∞ < c < ∞ , c = const., (40)

which forbids definitions like (39) that introduce a scale. In particular, Equation (39) cannot be used
above the sill of the conformal window.

6. Scale Dependence at an IRFP

There is an extensive literature on IRFP’s, but in almost all of it, “conformality” (a lack of scale
dependence at IRFP’s) is accepted without question. This may be because:

1. The initial work [69] was perturbative with a scale-free IRFP. That implied manifest chiral
symmetry, so an IRFP of that type would presumably be close to a discontinuous transition
to a phase where fermions can condense [70]. That became the model for walking TC.

2. It is relatively easy to find scale-free IRFPs on the lattice: Green’s functions exhibit power-law
behavior in the conformal window. That does not test the possibility of IRFP’s outside the
conformal window (Section 7).

3. There is a belief that dimensional transmutation, which produces nonperturbative scales like
ΛQCD or ΛTC, implies θ

µ
µ 6= 0. If true, that would exclude scale dependence at IRFPs.

When using the term “dimensional transmutation”, care must be exercised not to conflate two
distinct concepts:

(a) RG-invariant scalesM induced by the renormalization scale µ of α,

M = µ exp
{
−
∫ α

κM
dx
/

β(x)
}

, 0 < κM < αIR , (41)

where κM is a dimensionless constant that depends onM but not on α or µ. Examples ofM
for massless N f = 3 QCD are non-NG hadron masses such as MN and dimensional constants
like fσ, fπ and ΛQCD, and for TC, their counterparts such as Fσ, Fπ and ΛTC.

(b) The trace anomaly which, if present, is also induced by µ.

If (a) and (b) are conflated, the idea that dimensional transmutation and hence scale dependence may
occur at an IRFP looks like an absolute contradiction. This confusion in terminology has arisen because
the original CW analysis was performed at one-loop order4. In that order, an IRFP cannot occur, so there
was no need to distinguish (a) and (b).
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There is no proof7 thatM 6= 0 implies β 6= 0. As α moves from the perturbative region into the
hadronization region and then beyond into the infrared region, it is hard to argue that all RG-invariants
M suddenly turn themselves off when a nonperturbative IRFP is encountered. So there is a theoretical
possibility that dimensional transmutation in the sense of (a) may occur at an IRFP αIR. It should
be investigated.

Fermion condensation is a special case of this. Figure 4 shows the standard condition for the
self-energy Σ implied by the Schwinger-Dyson equation for the fermion propagator. If a non-zero
solution for Σ and hence 〈ψ̄ψ〉vac exists for finite values of the fermion-gluon coupling constant g,
why should this result not be valid at the value gIR corresponding to the IRFP αIR = g2

IR/(4π)?
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Figure 4. Self-consistent condition for the fermion self-energy Σ, with α = g2/(4π).
The gauge-boson and fermion propagators are fully dressed, while Σ and the vertex labelled 1PI
are one-particle-irreducible.

To my knowledge, the only argument against this conclusion is a claim that the dynamical mass
acquired by fermions due to the condensate would cause them to become relatively heavy at low
energies and so decouple in the infrared limit. The trouble with that is evident from Figure 1 for QCD
with N f = 3 flavors. Decoupling of u, d, s would imply that the quark condensate 〈q̄q〉vac and hence
π, K, η decouple in the infrared limit (19). That would destroy chiral SU(3)L × SU(3)R perturbation
theory and spell the end of QCD, irrespective of whether an IRFP exists or not.

The hole in this decoupling argument was examined at length in Appendix A of [1]. It has
to do with the distinction between current and constituent quarks. Current quarks refer to the
u, d, s fields in the QCD Lagrangian, with small “current-quark” masses mu,d,s which govern the masses
of π, K, η. Constituent or “dressed” quarks have large masses Mu,d ∼ 300 MeV and Ms ∼ 450 MeV
in a quantum-mechanical Hamiltonian H which reproduces the spectrum of non-NG hadrons, e.g.,
MN = 2Mu + Md. The constituent masses are “dynamical” because H is (presumably) the result of
integrating out the NG-boson sector and so has its scale set by 〈q̄q〉vac.

Obviously, the constituent masses cannot be regarded as masses in the QCD Lagrangian because
that would prevent the chiral limit being taken, and pions would have mass ∼ 2Mu,d. So, one would
expect the Appelquist–Carazzone theorem [71] to apply only to heavy current-quark masses such as
mt,b,c, and not to Mu,d,s. That is the result found in [1].

Evidently items 1–3 are assumptions characteristic of type-III theories. For the type-I theories
χPTσ and crawling TC, the problem is to find a satisfactory replacement for item 2. If scales are present
at αIR, Green’s functions do not exhibit power-law behavior; rather, they behave much like amplitudes
observed in the real world.

7. Nonperturbative Tests of Type-I Theories

The obvious tactic is to define α non-perturbatively outside the conformal window and see if it
stops increasing as the infrared limit is approached. There are two difficulties:

1. A true analogue of the Gell-Mann–Low function ψ(x) for quantum electrodynamics [72] is
assumed to exist for non-Abelian gauge theories but is yet to be identified. Prescriptions for

7 See Section 2 of [1], especially the text below Equation (27).
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the running coupling exist beyond perturbation theory [73], but there is a danger that their
properties are artefacts of their definition. We have no analytic proof that any of them runs
monotonically and provides an unbiased test of whether the dynamics chooses to have an IRFP or
not. The method of effective charges [74–76] is nonperturbative, but there are as many definitions
as there are physical processes, and it is not obvious which of them has the desired properties all
the way to the far infrared.

2. Lattice studies [77,78] feature precise measurements of ΛQCD in UV logarithms (β ∼ perturbative)
and clear evidence for hadronization and quark condensation at intermediate energies.
However, for small N f values such as N f = 3, it is hard to reach the infrared region far below the
non-NG hadronic spectrum.

A less ambitious procedure is to look for a light scalar particle in the particle spectrum.
The problem then is to decide whether this is evidence for a type-III or a type-I theory.

In the context of walking TC, the most interesting cases are those just under the sill of the
conformal window. Evidence for a light scalar particle almost degenerate with technipions has been
found in lattice data for SU(3) with N f = 8 Dirac fermions in the fundamental representation [24–27]
and two Dirac fermions in the sextet representation [28]. In each case, the particle is identified as
a “dilaton”. In this type-III interpretation, the small mass is considered to be due to α being close to
a WW-mode fixed point αWW just inside the conformal window.

However, as explained above, that involves unlikely assumptions about the dual character of
δH, the term in H which breaks scale invariance explicitly. Type-III theories require δH to generate
large-scale effects such as ΛTC and the fermion condensate at the sill, but to desist in cases where that is
inconvenient, e.g., the scalar-boson mass.

The most likely explanation [1] of the light scalar particle is that there exists an IRFP αNG just
outside the conformal window. Since there is scale dependence at αNG, a genuine type-I dilaton and
hence all large-scale effects exist at that point. At αNG, both conformal and chiral invariance are in
the NG mode, so massless technipions exist there as well as the type-I dilaton. Large-scale effects
cannot be due to δH, because α can run smoothly to αNG in the conformal limit δH → 0. The sill does
not get in the way, so there is no need to assume anything about its dynamics. The small scale of the
scalar-particle mass Mσ corresponds to α being in the infrared region close to αNG (Figure 5).

s↵NGs↵
WW -

6�

↵�

sill
N

f = 8

walking

cra
wling

UV limit

h  ivac = 0 h  ivac 6= 0

...................................................................................................................................

.
......................

......................
.........

........................
........................

....

..........................
.........................

............................
......................

...............................
..................

....................................
.............

.........................................
.......

..........................................................................................................................................

. ...........................
..........................

......................... ........................ ....................... ....................... ........................ ......................... .
..................................

........

.................................
............

................................
.................

................................
......................

....................................
.............

.........................................
.......

..........................................................................................................................................

.

.............................
.............................

.............................
..........................

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrr
rrrrsill

Figure 5. Competing explanations for the appearance of a scalar particle in lattice data for SU(3) gauge
theory with N f = 8 triplet fermions. Two IRFPs are shown: (a) the closest scale-free IRFP αWW just
inside the conformal window, Nc

f < N f 6 16, and (b) a scale-dependent IRFP αNG for N f = 8 6 Nc
f .

Walking TC assumes that αNG is not present. Instead, the small scalar mass is supposed to arise at
an intermediate energy where the curve is closest to the axis, and then the theory chooses the blue
line labelled “walking” to approach the infrared region. In crawling TC, the N f = 8 theory enters the
infrared region as it approaches the axis and chooses the red line labelled “crawling”. The short length
of the red line accounts for the small mass acquired by the type-I dilaton.

In walking TC, IRFPs outside the conformal window are thought to be forbidden.
Instead, an explanation for the light scalar particle is sought by appending dilaton Lagrangians
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to the type-III framework [29,79–82]. In fact, these effective Lagrangians are type-I theories developed
in 1970 [37,38,40]: they generate asymptotic expansions in δHeff ∼ 0 about a conformal limit with
scale-dependent amplitudes depending on the decay constant fσ or its TC analogue Fσ. The question
is: if αNG is not available, about what point is the expansion to be performed?

Since the emphasis in walking TC has been to minimize |β|, presumably the understanding
has been that the expansion should be carried out about αWW. The trouble with that is the lack of
scale dependence at αWW. An alternative has just been suggested [83], that the dilaton Lagrangian
expansion should correspond to expanding in “the distance to the conformal window”, i.e., about the
sill, where there is certainly a large scale. In a type-III theory, the sill acquires its scale dependence
from a large-scale violation δH in the Hamiltonian. The problem is then that the expansion of Ldil is
about a point where the corresponding effective Hamiltonian is conformally invariant.

The conclusion is that type-I and type-III theories should not be mixed—they are based on
contradictory assumptions. A type-I effective Lagrangian introduced to discuss the light scalar boson
should be given a type-I point about which it can be expanded: αNG. Why this should be such
a fearsome prospect is puzzling.

Finally, I should comment on the perception that lattice data for N f = 4 implies that the f0(500) is
heavy, contrary to my remarks below Figure 2. A comparison of data for N f = 4 and N f = 8 (Figure 1
of [27]) shows that as the fermion mass mψ becomes small, the light scalar particle is almost degenerate
with (techni-)pions for N f = 8 but not for N f = 4. This indicates that the gluonic contribution to the
scalar mass is negligible for N f = 8 but not for N f = 4. A type-III interpretation of this is that the
gluonic contribution is a large-scale effect due to δH—a point of view similar to that of [7,9,10].

In type-I theories, there is no problem. A gluonic contribution to the scalar mass is a
small-scale effect due to the coupling being close to but not at the NG-mode IRFP. For N f = 8,
apparently ε = αNG − α is so small that the scalar mass is dominated by the masses mψ used in the
lattice analysis. For N f = 4 (a lattice-friendly approximation to the physical case of N f = 3 light
flavors), the effects of ε appear similar in magnitude to those of mψ, within fairly large errors.

So, I maintain that the Higgs boson is the direct TC analogue of f0(500) for QCD: both are derived
from type-I dilatons at scale-dependent IRFPs. The main difference is in the ratio r of small-scale to
large-scale effects,

rQCD ≈
500 MeV

4π(92 MeV)
= 0.4 and rTC ≈

125 GeV
4π(246 GeV)

= 0.04 . (42)

This is permissible in type-I theories because large- and small-scale effects have separate origins.
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Abbreviations

The following abbreviations are used in this manuscript:

IRFP infrared fixed point
QCD Quantum Chromodynamics
χPTσ chiral-scale perturbation theory
TC Technicolor
NG Nambu–Goldstone
WW Wigner–Weyl
χPT3 chiral SU(3)L × SU(3)R perturbation theory
χPT2 chiral SU(2)L × SU(2)R perturbation theory
UχPT unitarized chiral perturbation theory
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RG renormalization group
LO leading order
GW Gildener–Weinberg
CW Coleman–Weinberg
UV ultraviolet
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