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Abstract: In the Einstein–Cartan gravitational theory with the chameleon field, while changing
its mass independently of the density of its environment, we analyze the Friedmann–Einstein
equations for the Universe’s evolution with the expansion parameter a being dependent on time only.
We analyze the problem of an identification of the chameleon field with quintessence, i.e., a canonical
scalar field responsible for dark energy dynamics, and for the acceleration of the Universe’s expansion.
We show that since the cosmological constant related to the relic dark energy density is induced by
torsion (Astrophys. J. 2016, 829, 47), the chameleon field may, in principle, possess some properties of
quintessence, such as an influence on the dark energy dynamics and the acceleration of the Universe’s
expansion, even in the late-time acceleration, but it cannot be identified with quintessence to the full
extent in the classical Einstein–Cartan gravitational theory.
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1. Introduction

The chameleon field, changing its mass independently of a density of its environment [1,2],
has been invented to avoid the problem of the equivalence principle violation [3]. Nowadays it is
accepted that the chameleon field, identified with quintessence [4–10], i.e., a canonical scalar field,
can be useful for an explanation of the late-time acceleration of the Universe’s expansion [11–14]
and may shed light on the origins of dark energy and dark energy dynamics [15–21]. Since the
relic dark energy density is closely related to the cosmological constant [15], in contrast to such a
hypothesis that the chameleon field might originate the cosmological constant proportionally to the
homogeneous static dark energy density, it has been shown at the model-independent level within the
Einstein–Cartan gravitational theory [22–38] that the cosmological constant or the relic dark energy
density has a geometrical origin caused by torsion [39]. In this case the chameleon field is able only to
evolve above the relic background of the dark energy simulating its dynamics and, of course, to make
a certain influence on the acceleration of the Universe’s expansion.

For the observation of torsion in the terrestrial laboratories there have been derived potentials of
low-energy torsion–neutron interactions [40–42]. In terrestrial laboratories, the extreme smallness of
absolute values of torsion was confirmed in different estimates of constraints on the contributions of
torsion to observables of elementary particle interactions [43–48], including the qBounce experiments
with ultracold neutrons (UCNs) [49–55] (see also [48]).

The chameleon–matter interactions were also intensively investigated in terrestrial laboratories [49–57]
in experiments with ultracold and cold neutrons through some effective low-energy chameleon–neutron
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potentials [58–61] and by using cold atoms in the atom interferometry [62–66]. However, recently the
importance of the chameleon field as quintessence in the late-time acceleration of the Universe has been
questioned by Wang et al. [67] and Khoury [68] by pointing out that the conformal factor, relating Einstein’s
and Jordan’s frames and defining the chameleon–matter interactions, is essentially constant over the last
Hubble time. According to Wang et al. [67] and Khoury [68], this implies a negligible influence of the
chameleon field on the late-time acceleration of the Universe’s expansion. To some extent, this should also
imply that the chameleon field cannot possess such a property of quintessence as responsibility for the
late-time acceleration of the Universe’s expansion [5–7].

Thus, the aim of this paper is to investigate the properties of the chameleon field in comparison
to the properties of quintessence. We would like to remind readers that by definition, quintessence
is a hypothetical state of dark energy described by a canonical scalar field for an explanation of the
observable acceleration of the Universe’s expansion. We have to also emphasize that our analysis is
restricted by the classical Einstein–Cartan gravitational theory. Below we show that the chameleon
field has no relation to the origin of the cosmological constant, or the relic dark energy density,
which is induced by torsion [39]. However, the chameleon field can still influence on the Universe’s
expansion even in the late-time acceleration, caused by its evolution above the background of the
relic dark energy [39]. By analyzing Einstein’s equations for the flat Universe in spacetime with the
Friedmann metric, dependent on the expansion parameter a [69], we show that conservation of a total
energy–momentum tensor of the system, including the chameleon field, radiation and matter (dark and
baryon matter), demands the conformal factor to be equal to unity if and only if the dependencies of
the radiation ρr(a) and matter ρm(a) densities on the expansion parameter a do not deviate from their
standard forms, ρr(a) ∼ a−4 and ρm(a) ∼ a−3 respectively [69]. We obtain the same result by analyzing
the first order differential Friedmann–Einstein equation, relating ȧ2/a2 to the chameleon field, radiation
and matter densities, and the second order differential Friedmann–Einstein equation, relating ä/a to
the chameleon field, radiation and matter densities and their pressures, where ȧ and ä are the first and
second time derivatives of the expansion parameter. Of course, the equality of the conformal factor
to unity suppresses any coupling of the chameleon field to a matter density of its environment and
makes such a scalar field unhelpful for avoiding the problem of the equivalence principle violation
[3]. However, it does not prevent the chameleon field, evolving above the background of the relic
dark energy, from a simulation of a dark energy dynamics and having an influence on the acceleration
of the Universe’s expansion. Then, we show that the Friedmann–Einstein equation for ȧ2/a2 is the
first integral of the Friedmann–Einstein equation for ä/a if and only if the total energy–momentum of
the system, including the chameleon field, radiation and matter, is locally conserved. As a result we
infer that (i) if the radiation and matter densities obey their standard dependence on the expansion
parameter ρr(a) ∼ a−4 and ρm(a) ∼ a−3 the conformal factor is equal to unity and the chameleon field
loses the possibility to couple to an environment, and (ii) if the dependencies of the radiation and
matter densities deviate from their standard behavior ρr(a) ∼ a−4 and ρm(a) ∼ a−3, the conformal
factor is not equal to unity and makes possible interactions of the chameleon field with its environment.
In this case, usage of the chameleon field for the problem of equivalence principle violation becomes
meaningful. In spite of the fact that the chameleon field does not possess the main property of
quintessence in order to be a hypothetical form of dark energy [4], since the relic dark energy density
or the cosmological constant has a geometrical origin related to torsion [39], the chameleon field,
evolving above the relic dark energy and simulating a dark energy dynamics, might be responsible for
an acceleration of the Universe’s expansion.

The paper is organized as follows. In Section 2 we derive Einstein’s equations in the
Einstein–Cartan gravitational theory with torsion, chameleon and matter fields. Following [39]
we show that the contribution of torsion to the Einstein–Hilbert action is presented in the form of
the cosmological constant. Then, following Khoury and Weltman [1] we include the part of the
integrand of the Einstein–Hilbert action proportional to the cosmological constant for the potential
of the self-interaction of the chameleon field. This implies that the chameleon field has no relation
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to an origin of the cosmological constant or the relic dark energy density but can only evolve above
such a relic background caused by torsion and simulate dark energy dynamics. In Section 3 in the flat
Friedmann spacetime with the standard Friedmann metric gµν, i.e., g00 = 1, g0j = 0 and gij = a2(t) ηij
and ηij = −δij, we show that the Einstein equations reduce themselves to the Friedmann–Einstein
equations of the Universe’s evolution with the chameleon field, radiation and matter (dark and baryon)
densities. Since the Einstein tensor Gµν = Rµν − 1

2 gµνR, where Rµν and R are the Ricci tensor and
scalar curvature, respectively, obey the Bianchi identity Gµν

;µ = 0, where Gµν
;µ is the covariant

divergence [69], the total energy–momentum tensor of the system, including the chameleon field,
radiation and matter (dark and baryon), should be locally conserved. We find that local conservation
of the total energy–momentum tensor imposes the evolution equations for the radiation and matter
densities, where the dependence of them on the expansion parameter a is corrected by the conformal
factor in comparison to the standard dependence ρr(a) ∼ a−4 and ρa ∼ a−3, respectively [69]. We show
that the Friedmann–Einstein equation for ȧ2/a2 is the first integral of the Friedmann–Einstein equation
for ä/a if and only if the total energy momentum of the system, including the chameleon field,
radiation and matter, is locally conserved. In case of the standard dependence of the radiation and
matter densities on the expansion parameters ρr(a) ∼ a−4 and ρm ∼ a−3 [69], local conservation of the
total energy–momentum tensor of the chameleon field, radiation and matter demand the conformal
factor to be equal to unity. This suppresses any interaction of the chameleon field with an ambient
environment. In Section 4 we discuss experiments to probe torsion in the terrestrial laboratories
through effective low-energy torsion-neutron interactions derived in [40–42]. In Section 5 we discuss
the results obtained.

2. Einstein’s Equations in the Einstein–Cartan Gravitational Theory with Chameleon and
Matter Fields

We take the Einstein–Hilbert action of the Einstein–Cartan gravitational theory without chameleon
and matter fields in the standard form [27,37,69]:

SEH =
1
2

M2
Pl

∫
d4x

√
−gR, (1)

where MPl = 1/
√

8πGN = 2.435 × 1027 eV is the reduced Planck mass, GN is the Newtonian
gravitational constant [70] and g is the determinant of the metric tensor gµν. The scalar curvatureR is
defined by [27,37]

R = gµνRα
µαν = gµν

( ∂

∂xν
Γα

αµ −
∂

∂xα
Γα

νµ + Γα
νϕΓϕ

αµ − Γα
αϕΓϕ

νµ

)
= gµνRµν, (2)

whereRα
µβν andRµν are the Riemann and Ricci tensors in the Einstein–Cartan gravitational theory,

respectively. Then, Γα
µν is the affine connection

Γα
µν = {α

µν}+Kα
µν = {α

µν}+ gασKσµν, (3)

where {α
µν} are the Christoffel symbols [69]

{α
µν} =

1
2

gαλ
(∂gλµ

∂xν
+

∂gλν

∂xµ −
∂gµν

∂xλ

)
(4)

and Kσµν is the contorsion tensor, related to torsion Tσµν by Kσµν = 1
2 (Tσµν + Tµσν + Tνσµ) and

T α
µν = gασTσµν = Γα

µν − Γα
νµ with the following properties: Kσµν = −Kνµσ and Tµν = −Tνµ [27,37].

The integrand of the Einstein–Hilbert action Equation (1) can be represented in the following form:

√
−gR =

√
−g R +

√
−g C + ∂

∂xν
(
√
−g gµνKα

αµ)−
√
−g gµν

( 1√−g
∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
, (5)



Universe 2020, 6, 221 4 of 20

where we have denoted

C = gµν(Kϕ
αµ Kα

νϕ −Kα
αϕKϕ

νµ) (6)

and R is the Ricci scalar curvature of the Einstein gravitational theory, expressed in terms of
the Christoffel symbols {α

µν} [69] only. When removing in Equation (5) the total derivatives
and integrating by parts, we delete the third term and transcribe the fourth term into the form√−g gµν

;α Kα
νµ, where gµν

;α is the covariant derivative of the metric tensor gµν, vanishing because of
the metricity condition gµν

;α = 0 [69].

Derivation of Equation (5)

Let us show that
√−gR can be presented in the form of Equation (5). Using Equation (3) we get

an obvious relation√
−gR =

√
−g R +

√
−g C +

√
−g gµν

( ∂

∂xν
Kα

αµ −
∂

∂xα
Kα

νµ + {α
νϕ}Kϕ

αµ + {ϕ
αµ}Kα

νϕ

− {α
αϕ}Kϕ

νµ − {ϕ
νµ}Kα

αϕ

)
. (7)

Having replaced the first term in the brackets by the total derivative and by adding the last term in the
brackets, we arrive at the expression

√−gR =
√−g R +

√−g C + ∂
∂xν

(√−g gµν Kα
αµ
)
− ∂

∂xν

(√−g gµν
)
Kα

αµ −
√−g gµν {ϕ

νµ}Kα
αϕ

− √−g gµν
(

∂
∂xαKα

νµ + {α
αϕ}Kϕ

νµ − {α
νϕ}Kϕ

αµ − {ϕ
αµ}Kα

νϕ

)
.

(8)

Then, the first term in the brackets we rewrite as follows:

√
−gR =

√
−g R +

√
−g C + ∂

∂xν

(√
−g gµν Kα

αµ
)
− ∂

∂xν

(√
−g gµν

)
Kα

αµ −
√
−g gµν {ϕ

νµ}Kα
αϕ

−
√
−g gµν

( 1√−g
∂

∂xα

(√
−gKα

νµ
)
− 1√−g

∂
√−g
∂xα

Kα
νµ + {α

αϕ}Kϕ
νµ − {α

νϕ}Kϕ
αµ − {ϕ

αµ}Kα
νϕ

)
. (9)

Since
√−g gµν{ϕ

νµ} and {α
αϕ} are equal to [69] (see Equation (10.107) and Equation (9.56))

√
−g gµν{ϕ

νµ} = −
∂

∂xν

(√
−g gϕν

)
, {α

αϕ} =
1√−g

∂
√−g
∂xϕ , (10)

the fourth and fifth terms in the first line in Equation (9) and the second and third terms in the brackets
are cancelled out in pairs. This reduces Equation (9) to Equation (5).

Now we may show that the contribution of the fourth term in Equation (5) to the Einstein–Hilbert
action reduces to the contribution of the term

√−g gµν
;α Kα

νµ. The contribution of the fourth term in
Equation (5) to the Einstein–Hilbert action is defined by the integral∫

d4x
√
−g gµν

( 1√−g
∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
. (11)

After the integration by parts in the first term we get∮ √
−g gµνKα

νµdSα −
∫

d4x
√
−g
(∂gµν

∂xα
Kα

νµ + gµν{ϕ
αµ}Kα

νϕ + gµν{α
νϕ}Kϕ

αµ

)
. (12)

Having omitted the surface term and having renamed some indices in the second integral in
Equation (12), we arrive at the expression

−
∫

d4x
√
−g
(∂gµν

∂xα
+ gρν{µ

ρα}+ gνρ{µ
ρα}
)
Kα

νµ, (13)
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where we have used the property of the Christoffel symbols {µ
αρ} = {µ

ρα}. The expression in the
brackets is the covariant derivative of the metric tensor gµν (see, for example, [27,69])

gµν
;α =

∂gµν

∂xα
+ gρν{µ

ρα}+ gµρ{ν
ρα}. (14)

Thus, the contribution of the fourth term to the Einstein–Hilbert action is proportional to the integral

∫
d4x

√
−g gµν

( 1√−g
∂

∂xα
(
√
−gKα

νµ)− {ϕ
αµ}Kα

νϕ − {α
νϕ}Kϕ

αµ

)
= −

∫
d4x

√
−g gµν

;α Kα
νµ. (15)

This confirms our assertion concerning a vanishing contribution of the fourth term in Equation (5) to
the Einstein–Hilbert action in case of the metricity condition gµν

;α = 0 [69].
Since it has been shown in [39] that C = −2ΛC, where ΛC is the cosmological constant [69,71,72]

(see also [15]) or the relic dark energy density, the Einstein–Hilbert action Equation (1) of the
Einstein–Cartan gravitational theory with the scalar curvature Equation (2) can be represented in the
following form [39]:

SEH =
1
2

M2
Pl

∫
d4x

√
−g
(

R− 2ΛC
)
. (16)

As has been shown in [39], the same result is valid for the Poincaré gauge gravitaitonal theory [73–77]
(see also [31–34]). Using Equation (11) the action of the Einstein–Cartan gravitational theory with
torsion, chameleon fields and matter fields we take in the form [39]

SEH =
1
2

M2
Pl

∫
d4x

√
−g R +

∫
d4x

√
−gL[φ] +

∫
d4x

√
−g̃Lm[g̃], (17)

where L[φ] is the Lagrangian of the chameleon field

L[φ] = 1
2

gµν ∂µφ∂νφ−V(φ) (18)

and V(φ) is the potential of the chameleon self-interaction. In Equation (17), following Khoury and
Weltman [1], we have included additively the cosmological constant ΛC in the form of the relic
dark energy density ρΛ = M2

PlΛC into the potential V(φ) of the chameleon field self-interaction;
i.e., V(φ) = ρΛ + Φ(φ). This implies that the chameleon field has no relation to the origin of the
cosmological constant or the relic dark energy density. It can only evolve above the relic background
of the dark energy, caused by torsion.

The matter fields and the radiation [78,79] are described by the Lagrangian Lm[g̃µν].
The interactions of the matter fields and radiation with the chameleon field are expressed in terms
of the metric tensor g̃µν in the Jordan frame [1,2,80], which is conformally related to Einstein’s frame
metric tensor gµν by g̃µν = f 2 gµν (or g̃µν = f−2 gµν) and

√
−g̃ = f 4√−g with f = e βφ/MPl , where β

is the chameleon–matter coupling constant [1,2]. The factor f = e βφ/MPl can be interpreted also as a
conformal coupling to matter fields and radiation [80] (see also [1,2,81]). For simplicity we have set the
chameleon–photon coupling constant βγ [79] to be equal to the chameleon–matter coupling constant β.

By varying the action of Equation (17) with respect to the metric tensor δgµν (see, for example, [69]),
we arrive at Einstein’s equations, modified by the contribution of the chameleon field. We get

Rµν −
1
2

gµν R = − 1
M2

Pl

(
f 2 T̃(m)

µν + T(φ)
µν

)
, (19)
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where Rµν is the Ricci tensor [69]; T̃(m)
µν and T(φ)

µν are the matter (with radiation, which we treat as a
radiative fluid [82–86]) and chameleon energy–momentum tensors, respectively, determined by

T̃(m)
µν =

2√
−g̃

δ

δg̃µν

(√
−g̃L[g̃]

)
= (ρ̃ + p̃) ũµũν − p̃ g̃µν,

T(φ)
µν =

2√−g
δ

δgµν

(√
−gL[φ]

)
=

∂φ

∂xµ

∂φ

∂xν
− gµν

(1
2

gλρ ∂φ

∂xλ

∂φ

∂xρ −V(φ)
)

. (20)

The factor f 2 appears in front of T̃(m)
µν because of the relation

2√−g
δ

δgµν

(√
−g̃Lm[g̃]

)
=

√
−g̃√−g

δg̃λρ

δgµν T̃(m)
λρ = f 2 T̃(m)

µν , (21)

where we have used that
√
−g̃√−g

= f 4 ,
δg̃λρ

δgµν = f−2 1
2
(gλ

µgρ
ν + gλ

νgρ
µ), (22)

since g̃λρ = f−2 gλρ [80] and T̃(m)
µν = T̃(m)

νµ . Then, the quantities ρ̃, p̃ and ũµ in the Jordan frame are
related to the quantities ρ, p and uµ in Einstein’s frame as [80]

ρ̃ = f−3 ρ , p̃ = f−3 p , ũµ = f uµ , ũµ = f−1 uµ. (23)

This gives T̃(m)
µν = f−1T(m)

µν . By plugging Equation (20) with T̃(m)
µν = f−1T(m)

µν into Equation (19),
we arrive at Einstein’s equations

Rµν −
1
2

gµν R = − 1
M2

Pl
Tµν, (24)

where Tµν is the total energy–momentum tensor equal to

Tµν =
(
(ρ + p) uµuν − p gµν

)
e βφ/MPl +

( ∂φ

∂xµ

∂φ

∂xν
− gµν

(
gλρ 1

2
∂φ

∂xλ

∂φ

∂xρ −V(φ)
))

, (25)

where the contribution of torsion T(tor)
µν = ρΛgµν = M2

PlΛCgµν [39] is included additively in the
potential V(φ) of the self-interactions of the chameleon field. Below we analyze the Einstein equations
(Equation (24)) in the cold dark matter (CDM) model [70] in the Friedmann flat spacetime with the line
element [69,70]

ds2 = gµν(x)dxµdxν = dt2 + a2(t) ηijdxidxj, (26)

where g00(x) = 1 and gij(x) = a2(t) ηij with ηij = −δij. Then, a(t) is the expansion parameter of the
Universe’s evolution [69]. The Christoffel symbols {α

µν}, the components of the Ricci tensor Rµν and
the scalar curvature R are equal to [69]

{0
00} = {0

0j} = {j
00} = {i

kj} = 0, , {0
kj} = −aȧ ηkj , {i

0j} =
ȧ
a

δi
j,

R00 = 3
ä
a

, R0j = 0 , Rij =
( ä

a
+ 2

ȧ2

a2

)
gij , R = 6

( ä
a
+

ȧ2

a2

)
, (27)

where ηi`η`j = δi
j and ȧ and ä are first and second derivatives with respect to time.
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3. Friedmann–Einstein Equations of the Universe’s Evolution

In Friedmann spacetime, Einstein’s equations (Equation (24)) define the equations of the
Universe’s evolution, which are usually called Friedmann’s equations (or the Friedmann–Einstein
equations) [69]. They are given by

ȧ2

a2 =
1

3M2
Pl

(
ρφ + (ρr + ρm) f (φ)

)
(28)

and

ä
a
= − 1

6M2
Pl

(
ρφ + 3pφ + (ρr + 3pr) f (φ) + ρm f (φ)

)
, (29)

where ρr and ρm are the radiation and matter densities. The scalar field φ couples to radiation and
matter densities through the conformal factor f (φ) = e βφ/MPl . Then, the radiation density ρr and
pressure pr are related by the equation of state pr = ρr/3 [69]. For the description of matter we use the
cold dark matter (CDM) model with the pressureless dark and baryon matter [70]. The scalar field
density ρφ and pressure pφ are equal to

ρφ =
1
2

φ̇2 + V(φ) , pφ =
1
2

φ̇2 −V(φ). (30)

Varying the action Equation (17) with respect to the scalar field φ and its derivative one gets the
equation of motion for the scalar field [81]. In Friedmann spacetime it reads

φ̈ + 3
ȧ
a

φ̇ +
dVeff(φ)

dφ
= 0, (31)

where Veff(φ) is the effective potential given by

Veff(φ) = V(φ) + ρm
(

f (φ)− 1
)
. (32)

The contribution of the radiation density comes into the effective potential in the form
(ρr − 3pr)

(
f (φ)− 1

)
. As for the equation of state pr = ρr/3, such a contribution vanishes. Thus,

through the interaction with matter density ρm the scalar field can acquire a non-vanishing mass if the
effective potential Veff(φ) obeys the constraints

dVeff(φ)

dφ

∣∣∣
φ=φmin

= 0 ,
d2Veff(φ)

dφ2

∣∣∣
φ=φmin

> 0, (33)

i.e., the effective potential Veff(φ) possesses a minimum at φ = φmin. An important role for a
dependence of a chameleon field mass on a density of an environment is the conformal factor f (φ)
and its deviation from unity.

3.1. Bianchi Identity, Conservation of Total Energy–Momentum Tensor and Conformal Factor

By using Equation (27) and taking into account that in the Friedmann flat spacetime the
non-vanishing components of the Einstein tensor Gµν = Rµν − 1

2 gµνR are equal to

G00 = −3
ȧ2

a2 , Gij =
(
− 2

ä
a
− ȧ2

a2

)
gij (34)
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one may show that Einstein’s tensor Gµν obeys the Bianchi identity [69]

Gµν
;µ =

1√−g
∂

∂xρ

(√
−g Gρν

)
+ Γν

µρGµρ = 0, (35)

where Gµν
;µ is a covariant divergence and Γν

µρ = {ν
µρ} are the Christoffel symbols [69]. As a result,

the covariant divergence of the total energy–momentum tensor Tµν
;µ should also vanish

Tµν
;µ =

1√−g
∂

∂xρ

(√
−g Tρν

)
+ Γν

µρTµρ = 0. (36)

Due to time-dependence only Equation (31) takes the form

1√−g
∂

∂t

(√
−g T00

)
+ Γ0

ijTij = 0, (37)

where we have taken into account Equation (27). Using the non-vanishing components of the total
energy momentum tensor

T00 = ρφ + (ρr + ρm) f (φ) , Tij = −
(

pφ + pr f (φ)
)

gij (38)

we transcribe Equation (32) into the form

d
dt

(
ρφ + (ρr + ρm) f (φ)

)
+ 3

ȧ
a

(
ρφ + pφ + (ρr + pr) f (φ) + ρm f (φ)

)
= 0. (39)

Since Equation (31) can be rewritten as follows:

d
dt

(
ρφ + ρm f (φ)

)
=

d
dt

ρm − 3
ȧ
a

(
ρφ + pφ

)
, (40)

we may remove the contribution of the chameleon field in Equation (39). As result, we get

d
dt

(
ρr f (φ) + ρm

)
+

ȧ
a

(
4ρr f (φ) + 3ρm f (φ)

)
= 0, (41)

where we have used the equation of state pr = ρr/3 [69]. Due to independence of radiation and matter
densities, Equation (41) can be split into evolution equations of the radiation and matter densities:

d
dt
(
ρr f (φ)

)
+ 4

ȧ
a
(
ρr f (φ)

)
= 0,

d
dt

ρm + 3
ȧ
a

ρm f (φ) = 0. (42)

For the standard dependence of the radiation and matter densities on the expansion parameter a(t) [69],

ρr = 3M2
PlH

2
0Ωr

a4
0

a4 , ρm = 3M2
PlH

2
0Ωm

a3
0

a3 , (43)

where a0, H0 = 1.438(11)× 10−33 eV, Ωr and Ωm are the expansion parameter, the Hubble rate and
the relative radiation and matter densities at our time t0 = 1/H0 [70], the equations for the radiation
and matter densities Equation (42) are satisfied identically for f (φ) = 1.

Thus, if the radiation and matter densities depend on the expansion parameter a as ρr(a) ∼ a−4

and ρm(a) ∼ a−3, local conservation of the total energy–momentum in the Universe can be fulfilled
if and only if the conformal factor f (φ), relating Einstein’s and Jordan’s frames and defining the
chameleon–matter coupling, is equal to unity; i.e., f (φ) = 1. However, in this case there is no influence
of the chameleon field on the evolution of the radiation and matter densities and a dependence of the
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chameleon field mass on a density of its environment. In turn, for f (φ) 6= 1 the evolution equations
(Equation (37)) admit some exact solutions. It is convenient to search these solutions independently of
the expansion parameter a. Treating the conformal factor f (φ) as a function of the expansion parameter
a, i.e., setting f (φ) = f (a) 6= 1, the solutions to Equation (37) can be given by

ρr(a) = ρr0
a4

0
a4

f (a0)

f (a)
,

ρm(a) = ρm0
a3

0
a3 exp

(
3
∫ a0

a

f (a′)− 1
a′

da′
)

, (44)

where ρr0 = 3M2
PlH

2
0Ωr and ρm0 = 3M2

PlH
2
0Ωm are the radiation and matter densities at out time

t0 = 1/H0 and a(t0) = a0, i.e., in the era of the late-time acceleration of the Universe’s expansion or
the dark energy–dominated era. The integration constants of the first order differential equations
(Equation (35)) are fixed by the conditions ρr(a0) = ρr0 and ρm(a0) = ρm0, respectively [69,70].
According to the solutions (Equation (44)), the chameleon field has an influence on the evolution of the
radiation and matter densities.

As an example of the conformal factor we may use f = e βϕ(a)/MPl [1,2], where ϕ(a) is the
chameleon field as a function of the expansion parameter a and the solution to Equation (31),
i.e., φ(t) = ϕ(a). Keeping the linear order contributions in the βϕ(a)/MPl expansion we get

ρr(a) = ρr0
a4

0
a4

(
1 +

β

MPl
(ϕ(a0)− ϕ(a))

)
,

ρm(a) = ρm0
a3

0
a3

(
1 + 3

β

MPl

∫ a0

a
ϕ(a′)

da′

a′
)

. (45)

Thus, the deviations of the radiation and matter densities from their standard behavior ρr(a) ∼ a−4

and ρm(a) ∼ a−3 are given by

δρr(a) =
β

MPl
ρr0

a4
0

a4

(
ϕ(a0)− ϕ(a)

)
,

δρm(a) = 3
β

MPl
ρm0

a3
0

a3

∫ a0

a
ϕ(a′)

da′

a′
. (46)

Some observations of deviations of the radiation and matter densities in the Universe from their
standard form might, in principle, evidence an existence of the chameleon field. Nevertheless, we have
to emphasize that the contributions of the conformal factor to the radiation and matter densities at our
time are not practically observable. It is seen from the solutions (Equation (44)) that the conformal factor
affects the evolution of the radiation and matter densities during the radiation and matter-dominated
eras only. Of course, an influence of the chameleon field evolution on the distribution of the radiation
density might seem rather questionable, since the evolution equation (Equation (37)) defines an
evolution of the product ρr f (φ), where one may hardly separate ρr from f (φ). By introducing an
effective radiation density ρ

(eff)
r = ρr f (φ) we obtain a canonical radiation density Equation (43), where

the contribution of f (φ) at a = a0 is hidden very likely in Ωr.

3.2. The Friedmann–Einstein (Equation Equation (28)) as the First Integral of the Friedmann–Einstein
Equation (Equation (29))

It is well–known that without the chameleon field and for the conformal factor f (a) = 1 the
Friedmann–Einstein differential equation for ȧ2/a2 is the first integral of the Friedmann–Einstein
differential equation for ä/a [69]. However, such a property of Equation (28) with the chameleon
field and the conformal factor f (a) 6= 1 to be the first integral of Equation (29) has not so far been
investigated and proven in the literature. In order to prove that Equation (28) is the first integral
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of Equation (29) with the contributions of the chameleon field and the conformal factor f (a) 6= 1,
we rewrite Equation (28) as follows:

ȧ2

a2 =
1

3M2
Pl

(
ρch + ρr f + ρm

)
, (47)

where ρch = ρφ + ρm( f − 1) = 1
2 φ̇2 + Veff(φ) is the chameleon field density, given by Equation (30)

with the replacement V(φ) → Veff(φ) (see Equation (32)). In order to find ρch as a function of the
expansion parameter a we use Equation (31) and transcribe it into the form

a
d
da

ρch(a) + 6ρch(a) = 6Veff(a), (48)

where we have denoted Veff(φ) = Veff(a), assuming that φ is a function of a; i.e., φ = φ(a). As a
function of the expansion parameter a, the effective potential Veff(a) is given by

Veff(a) = V(a) + ρm(a)( f (a)− 1), (49)

where V(a) = V(φ) = V(ϕ(a)) with the additive contribution of the relic dark energy density,
induced by torsion, and f (a) = e βϕ(a)/MPl . The solution to Equation (48) is equal to

ρch(a) =
Cφ

a6 +
6
a6

∫
a5Veff(a)da, (50)

where the term Cφ/a6 corresponds to the contribution of the kinetic term of a scalar field [87].
The integration constant Cφ, we define as follows: Cφ = 3M2

PlH
2
0Ωφa6

0, where Ωφ is the integration
constant, having the meaning of a relative density of a scalar field at time t0 = 1/H0 [70]. As a result,
Equation (47) takes the form

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) + ρr(a) f (a) + ρm(a)

)
, (51)

where in the right-hand-side (r.h.s.) all densities and the conformal factor are functions of the expansion
parameter a. Further, it is convenient to rewrite Equation (29) as follows:

ä
a
= −2

ȧ2

a2 +
1

3M2
Pl

ρr(a) f (a) +
1

2M2
Pl

ρm(a) f (a) +
1

M2
Pl

V(a), (52)

where we have used Equation (51). Since the second derivative ä of the expansion parameter a with
respect to time can be given by

ä =
1
2

dȧ2

da
, (53)

one may transcribe Equation (47) into the form

a
d
da

ȧ2 + 4ȧ2 =
2

3M2
Pl

a2ρr(a) f (a) +
1

M2
Pl

a2ρm(a) f (a) +
2

M2
Pl

a2V(a). (54)

The solution to Equation (54) amounts to

ȧ2 =
C
a4 +

2
3M2

Pl

1
a4

∫
a5ρr(a) f (a)da +

1
M2

Pl

1
a4

∫
a5ρm(a) f (a)da +

2
M2

Pl

1
a4

∫
a5V(a)da, (55)
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where C is the integration constant. Dividing both sides of Equation (55) by a2 we arrive at the equation

ȧ2

a2 =
1

3M2
Pl

(Cφ

a6 +
6
a6

∫
a5U(a)da +

2
a6

∫
a5ρr(a) f (a)da +

3
a6

∫
a5ρm(a) f (a)da

)
, (56)

where we have set Cφ = 3M2
PlC = 3M2

PlH
2
0Ωφ. Thus, Equation (51) is the first integral of Equation (29).

Making a replacement V(a) = Veff(a)− ρm(a)( f (a)− 1) we arrive at the expression

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) +

2
a6

∫
a5ρr(a) f (a)da +

6
a6

∫
a5ρm(a)da− 3

a6

∫
a5ρm(a) f (a)da

)
. (57)

Since the radiation and matter densities as functions of a obey the equations

a
d
da

(
ρr(a) f (a)

)
= −4

(
ρr(a) f (a)

)
,

a
d
da

ρm(a) = −3ρm(a) f (a) (58)

and that ρr(a) f (a) = ρr0 f (a0)a4
0/a4 (see Equation (44)), we transcribe the right–hand–side (r.h.s.) of

Equation (57) into the form

ȧ2

a2 =
1

3M2
Pl

(
ρch(a) + ρr(a) f (a) +

1
a6

∫ d
da

(
a6ρm(a)

)
da
)
=

1
3M2

Pl

(
ρch(a) + ρr(a) f (a) + ρm(a)

)
, (59)

This proves that Equation (28) is the first integral of Equation (29) if the total energy–momentum is
locally conserved. The evolution of the chameleon field density ρch(a) independently of the expansion
parameter a is defined by Equation (50), which we rewrite as follows:

ρch(a) = ρΛ +
Cφ

a6 +
6
a6

∫
a5Φ(a)da +

6
a6

∫
a5ρm(a)

(
f (a)− 1

)
da, (60)

where ρΛ = M2
PlΛC. and the third term in Equation (60) is the model-dependent part of the potential

of the self-interaction of the chameleon field V(φ) = ρΛ + Φ(φ) [4,10,16,88], taken as a function of the
expansion parameter a, i.e., Φ(φ) = Φ(a). Such a chameleon field density may affect the acceleration
of the Universe’s expansion. Setting f (a) = 1 in Equation (60) we get

ρch(a) = ρΛ +
Cφ

a6 +
6
a6

∫
a5Φ(a)da, (61)

where the second and the last terms might still provide an acceleration of the Universe’s expansion
additional to that caused by the first term ρΛ, which is induced by torsion [39].

4. Torsion–Neutron Low-Energy Interactions

Our analysis carried out above may give an impression that after the absorption of torsion by
the cosmological constant, the Einstein–Cartan gravitational theory reduces to Einstein’s gravitational
theory [69]. Such an impression can be real only in case of the absence of fermions. As has been
shown in [40–42], there is a huge variety of minimal and nonminimal low-energy torsion–neutron
interactions. The torsion tensor field Tσµν, being a tensor of the third rank and antisymmetric with
respect to indices µ and ν, i.e., Tσµν = −Tσνµ, is defined by 24 independent components: (i) four vectors
Eµ = (E0, ~E ), (ii) four axial vectors Bµ = (B0, ~B ) and (iii) 16 tensorsMσµν [35,36,44] (see also [40–42]).
The effective low-energy torsion–neutron potentials are presented in the form of expansion in powers
of 1/m, where m is the neutron mass, and restricted by the terms of order O(1/m), by using the
Foldy–Wouthuysen (FW) canonical transformations [89]. The most interesting effective low-energy
torsion–neutron interactions are induced in the rotating coordinate systems, which can be used for
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experimental probes of torsion in terrestrial laboratories [48,60]. It is important to emphasize that a
part of these effective low-energy torsion–neutron interactions provide a violation of time-reversal
invariance [42], which can be probed in the terrestrial laboratories.

According to [42], in the coordinate system rotating with an angular velocity ~Ω the time
component E0 of the 4-vector Eµ of the torsion field induces the T–odd, i.e., violating time reversal
symmetry, optical potential

Φ(T−odd)
eff = −i

4
3
E0

m
~S · ~Ω, (62)

where ~S = 1
2~σ is the operator of the neutron spin and~σ are 2× 2 Pauli matrices [90]. As has been

shown in [47], because of the T–odd interaction (Equation (62)), the cross section for low-energy
neutron–nucleus scattering, caused by the beam of polarized neutrons passing through a spinning
cylinder, should acquire the correction [39]

∆σTV(Ω, p) =
8π

3
√

2
E0R2L

Ω
p

, (63)

where R and L are the radius and length of the spinning cylinder, and p is a neutron momentum
(for a detailed discussion of the p-dependence of ∆σTV(Ω, p) we refer to [47] below Equation (5)).
The aim of the proposed experiment is a search for the Ω-dependent part of the helicity-dependent
part of the difference of the cross sections for neutron–nucleus scattering, caused by neutrons polarized
parallel and antiparallel to the neutron beam axis coinciding with the axis of a spinning cylinder.
For contemporary experimental abilities, such a T–odd correction allows one to probe the time
component of the 4-vector part of the torsion field at the level of sensitivity of about |E0| ∼ 10−32 GeV.
This is a few orders of magnitude better in comparison to the estimate obtained in [44].

Another part of the effective low-energy torsion–neutron potentials, which is not proportional to
1/m, can be used for probes of the components of the torsion field in the qBounce experiments dealing
with ultracold neutrons (UCNs) bouncing in the gravitational field of the Earth [49–55] (see also [48]).
As an example, we consider the effective low-energy potential of the time-component B0 (pseudoscalar)
of the 4-axial vector Bµ and the time-time-space-components ( ~M)k =M00k of the tensorMσµν [42]

Φeff =
1
3
B0 ~S ·

(
~Ω⊕ × (~R⊕ +~r )

)
− 1

2
~S ·
(
~M×

(
~Ω⊕ × (~R⊕ +~r )

))
, (64)

where ~Ω⊕ and ~R⊕ are the angular velocity and the radius vector of the Earth as they are shown in
Figure 1. Then,~r is the radius–vector of the UCN in the laboratory.

The experiments with UCNs, bouncing in the gravitational field of the Earth, are being performed
in the laboratory at Institut Laue Langevin (ILL) in Grenoble. The ILL laboratory is fixed to the
surface of the Earth in the northern hemisphere. Following [91–95] we choose the ILL laboratory
or the standard laboratory frame with coordinates (t, x, y, z), where the x, y and z axes point south,
east and vertically upwards, respectively, with northern and southern poles on the axis of the Earth’s
rotation with the Earth’s sidereal frequency Ω⊕ = 2π/(23 hr 56 min 4.09 s = 7.2921159× 10−5 rad/s.
The position of the ILL laboratory on the surface of the Earth is determined by the angles χ and
φ, where χ = 900 − θ is the colatitude of the laboratory, defined in terms of the latitude θ, and φ

is the longitude of the laboratory measured east of south with the values θ = 45.16667◦N and
φ = 5.71667◦ E [96], respectively. The beam of UCNs moves from south to north antiparallel to the
x–direction and with energies of UCNs quantized in the z–direction.
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Figure 1. The position of the ILL laboratory doing the qBounce experiments on the surface of the Earth.

In the qBounce experiments the contributions of interactions beyond the gravitational interaction
of the Earth are measured in terms of the transition frequencies ωpq = Ep − Eq of the transitions
|q〉 → |p〉 between two gravitational states of UCNs |q〉 and |p〉 [49–55] (see also [59,60]). As of
the small values of the components of the torsion field the contribution of the~r-dependent part of
the effective torsion–neutron potential Equation (64), where the vector~r defines a location of the
UCN in the coordinate system (t, x, y, z), to the transition frequencies between quantum gravitational
states of UCNs can be neglected in comparison to the contributions of the terms independent of~r.
Relative to the axes (x, y, z) the vectors ~Ω⊕ and ~R⊕ are equal to ~Ω⊕ = (−Ω⊕ sin χ, 0, Ω⊕ cos χ) and
~R⊕ = (0, 0, R⊕), respectively. This allows one to transcribe the effective low-energy torsion–neutron
potential Equation (64) into the form

Φeff = Ω⊕R⊕ sin χ
(1

3
B0Sy +

1
2
MzSx −

1
2
MxSz

)
= 1.1× 10−6

(1
3
B0Sy +

1
2
MzSx −

1
2
MxSz

)
, (65)

where (Sx, Sy, Sz) are operators of the neutron spin ~S–operator components. Thus, measuring the
transition frequencies of spin-flip transitions between gravitational states |q ↓〉 → |p ↑〉 one may
measure the contributions of the pseudoscalar B0 and tensor Mx = −M00x and Mz = −M00z
components of the torsion field. A predictable power of the qBounce experiments we may demonstrate
by example of the estimate of the contribution of the pseudoscalar component B0 of the torsion field
coupled to UCNs. Indeed, according to Lämmerzahl [43], the value of the pseudoscalar component of
the torsion field is constrained by |B0| < 2× 10−18 GeV. Its contribution to the transition frequencies
between quantum gravitational states of UCNs |q ↓〉 → |p ↑〉 is of about |∆ωp↑q↓| < 7× 10−16 eV.
This value is at the level of current experimental sensitivity ∆E < 10−15 eV [55] and the sensitivity of
a nearest future, which is of about ∆E < 10−17 eV and even ∆E < 10−21 eV [49,97]. The experiments
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discussed in this sections and and many others, which could be carried out by using effective
low-energy potentials of torsion–neutron interactions derived in [40–42], might make reliable the
geometrical origin of the cosmological constant or the relic dark energy, induced by torsion [39].

5. Discussion

We would like to emphasize that our analysis of the chameleon field as a candidate for
quintessence is carried out within the classical Einstein–Cartan gravitational theory with the
Einstein-Hilbert action linear in the Ricci scalar curvature. By definition [4], quintessence is a
hypothetical form of dark energy described by a canonical scalar field for an explanation of the
observable acceleration of the Universe’s expansion. The most important that quintessence should
be a hypothetical form of dark energy. In this connection in the Einstein–Cartan gravitational theory,
when the cosmological constant or the relic dark energy density has the geometrical origin, caused by
torsion, the chameleon field possesses no chance to be a hypothetical form of dark energy. In other
words having provided a geometrical origin for the cosmological constant or the relic dark energy
torsion deprives the chameleon field to have a chance to be quintessence. As a result, the chameleon
field is able only to evolve above the relic background of the dark energy, caused by torsion, but not to
originate it. Then, as a consequence of conservation of the total energy–momentum of the system, the
chameleon field can affect the dark energy dynamics and as well as the Universe’s expansion even
also the late-time acceleration. We have shown that such an influence of the chameleon field on the
acceleration of the Universe’s expansion retains also even if the conformal factor, relating Einstein’s and
Jordan’s frames and defining the interaction of the chameleon field with its ambient matter, is equal
to unity (see Equations (60) and (61). This result is closely related to our proof that for the system,
including the chameleon field, radiation and matter (dark and baryon matter), the Friedmann–Einstein
equation for ȧ2/a2 is the first integral for the Friedmann–Einstein equation for ä/a.

We have found that local conservation of the total energy–momentum of the system, including
the chameleon field, radiation and matter (dark and baryon matter), leads to the equations of
the evolution of the radiation and matter densities, corrected by the conformal factor. Of course,
since for radiation the evolution equation defines an evolution of the product ρr(a) f (φ), where the
conformal factor f (φ) is a function of the expansion parameter a, such a product ρr(a) f (φ) does
not deviate from the standard behavior ρr(a) f (φ) ∼ a−4. Since the radiation density ρr(a) enters to
the Friedmann–Einstein equations only in the form of the product ρr(a) f (φ) one may not probably
separate the contribution of the conformal factor above the standard shape proportional to a−4. In turn,
for the matter density ρm(a) the contribution of the conformal factor leads to a deviation from the
standard behavior ρm(a) ∼ a−3 [69]. However, such a deviation might be, in principle, noticeable only
during the matter-dominated era. In the dark energy–dominated era that is in our time of the late-time
acceleration of the Universe, where the expansion parameter is equal to a0 = a(t0) for the Hubble
time t0 = 1/H0 [69], the contributions of the conformal factor to the radiation and matter densities
in comparison to the standard values ρr(a0) = 3M2

PlH
2
0Ωr and ρm(a0) = 3M2

PlH
2
0Ωm are practically

unobservable. This agrees well with the constraints on the deviations of the radiation and matter
densities from their values at our time to a few parts per million [98], which can be obtained from the
constraints on the fifth force caused by the chameleon field in the Galaxy and the Solar system.

The cosmological constant ΛC, induced by torsion [39], we have included additively to the
potential of the self-interaction of the chameleon field as a background of the relic dark energy:
V(φ) = ρΛ + Φ(φ). In the chameleon field theory [1,2] the relic dark energy density ρΛ is defined as

follows: ρΛ = Λ4, where the scale Λ = 4
√

3M2
PlH

2
0ΩΛ = 2.24(1)meV is calculated for the relative dark

energy density ΩΛ = 0.685(7) [70]. The φ-dependent part of the potential of the self-interaction of the
chameleon field Φ(φ) is arbitrary to some extent, i.e., model-dependent, and demands a special analysis
similar to that carried out in [4,10,16,88]. However, such an analysis goes beyond the scope of our
paper. We would like to emphasize that a specific analysis of a dynamics of the chameleon field such
as different mechanisms of chameleon screening and a formation of a fifth force, for example, in the
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Galaxy and the Solar system is related also to a special choice of the potential of the self-interaction of
the chameleon field [16,98]. Such an analysis has been carried out by Brax et al. [16] and Jain et al. [98].
The repetition of such an analysis goes beyond the scope of this paper.

As regards the assertion by Wang et al. [67] and Khoury [68] that since the conformal factor
is practically constant during the Hubble time, so the chameleon field is not responsible for the
late-time acceleration of the Universe, one may argue that the conformal factor might be, in principle,
practically constant (or better to say unity), but such a behavior of the conformal factor does not
prohibit the chameleon field, evolving above the relic dark energy background induced by torsion,
to take a certain part in dark energy dynamics and, correspondingly, in the acceleration of the
Universe’s expansion (see Equations (60) and (61)) and even so in the late-time acceleration of the
Universe’s expansion.

As regards another canonical scalar fields which can be introduced for an explanation of an
origin of dark energy and an influence on acceleration of the Universe’s expansion such as symmetron
and dilaton, we may say the following. Since the dynamics of the symmetron field differs from the
dynamics of the chameleon one only by the shape of the potential of self-interaction [99], our conclusion
concerning an identification of the chameleon field with quintessence is fully applicable to the
symmetron one. In other words the symmetron field cannot be quintessence to full extent. Moreover,
we have to mention that an existence of the symmetron field and its importance for an evolution of the
Universe might seem to be rather questionable after the qBounce experiments [55] on the transition
frequencies between quantum gravitational states of UCNs, which have excluded the existence of the
symmetron field.

Then, we have to confess that our analysis of an identification of a canonical scalar field with
quintessence, carried out within the classical Einstein–Cartan gravitational theory, can say practically
nothing concerning dilaton. Indeed, unlike the gravitational theories with the chameleon and
symmetron fields the gravitational theories with dilaton are based on string theory in terms of the
non-riemannian structure of space-time [100–107]. Of course, since an inclusion of dilaton as a canonical
scalar field is closely related to a requirement of scale invariance of the action of the dynamical system
under consideration, the classical Einstein–Cartan gravitational theory can be, in principle, modified by
a requirement of scale invariance [108]. However, in such a modified Einstein–Cartan gravitational
theory the problem of the geometrical origin of the cosmological constant or the relic dark energy
caused by torsion demands a special analysis, which goes beyond the scope of this paper. Nevertheless,
if in such a modified Einstein–Cartan gravitational theory torsion would be a geometrical origin of the
cosmological constant or the relic dark energy density, our conclusion concerning an impossibility to
identify dilation with quintessence might have been valid only within such a modified Einstein–Cartan
gravitational theory.

Robust support fpr the geometrical origin of the cosmological constant or the relic dark energy
could be experimental observations of torsion in terrestrial laboratories in terms of its contributions to
observables of different physical processes. In Section 4 we have discussed two of these experiments,
which can be carried out by using beams of polarized UCNs. We mean the contribution of the T–odd
torsion–neutron low-energy interaction to the cross section for the scattering of the beam of polarized
neutrons by nucleus in the end of spinning cylinder. This allows one to estimate the value of the
time component E0o f the 4-vector part of the torsion field at the level of about |E0| ∼ 10−32 GeV.
Another experiment on the probe of torsion can be carried out at ILL by the French–Austrian qBounce
Collaboration by using Gravity Resonance Spectroscopy (GRS), a new measuring technique combining
quantum measurements and gravity experiments [49–55]. The qBounce experiments, measuring
transition frequencies between quantum gravitational states of UCNs, allow one to probe torsion
with a sensitivity of about ∆E < 10−17 eV and even ∆E ∼ 10−21 eV [49,97]. This should improve
the existing upper bound on the pseudoscalar B0 component of the torsion field by a few orders of
magnitude and give new constraints on the tensorM00k components of the torsion field [44].
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