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Abstract: The geometrical nature of gravity emerges from the universality dictated by the equivalence
principle. In the usual formulation of General Relativity, the geometrisation of the gravitational
interaction is performed in terms of the spacetime curvature, which is now the standard interpretation
of gravity. However, this is not the only possibility. In these notes, we discuss two alternative, though
equivalent, formulations of General Relativity in flat spacetimes, in which gravity is fully ascribed
either to torsion or to non-metricity, thus putting forward the existence of three seemingly unrelated
representations of the same underlying theory. Based on these three alternative formulations of
General Relativity, we then discuss some extensions.
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1. Introduction

Gravity and geometry have accompanied each other from the very conception of General
Relativity (GR) brilliantly formulated by Einstein in terms of the spacetime curvature. This inception
of identifying gravity with the curvature has since grown so efficiently that it is now a common
practice to recognise the gravitational phenomena as a manifestation of having a curved spacetime.
As Einstein ingeniously envisioned, the existence of a geometrical formulation of gravity is granted
by the equivalence principle that renders the gravitational interaction oblivious to the specific type
of matter and hints towards an intriguing relation of gravity with inertia. Thus, the motion of
particles can be naturally associated with the geometrical properties of spacetime. If we embrace the
geometrical character of gravity advocated by the equivalence principle, it is pertinent to explore in
which equivalent manners gravity can be geometrised. It is then convenient to recall at this point
that a spacetime can be endowed with a metric and an affine structure [1–4] determined by a metric
tensor gµν and a connection Γα

µν, respectively. These two structures, although completely independent,
enable the definition of geometrical objects that allow for conveniently classify geometries. The failure
of the connection to be metric is encoded in the non-metricity

Qαµν ≡ ∇αgµν, (1)

while its antisymmetric part defines the torsion

Tα
µν ≡ 2Γα

[µν]. (2)
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Among all possible connections that can be defined on a spacetime, the Levi–Civita connection is the
unique connection that is symmetric and metric-compatible. These two conditions fix the Levi–Civita
connection to be given by the Christoffel symbols of the metric{

α
µν

}
=

1
2

gαλ
(

gλν,µ + gµλ,ν − gµν,λ
)
. (3)

The corresponding covariant derivative will be denoted by D so that we will have Dαgµν = 0. A
general connection Γα

µν then admits the following convenient decomposition:

Γα
µν =

{
α

µν

}
+ Kα

µν + Lα
µν (4)

with

Kα
µν =

1
2

Tα
µν + T α

(µ ν)
Lα

µν =
1
2

Qα
µν −Q α

(µ ν)
(5)

the contortion and the disformation pieces, respectively. Notice that, while the Levi–Civita part is
non-tensorial, the contortion and the disformation have tensorial transformation properties under
changes of coordinates.

The curvature is determined by the usual Riemann tensor

Rα
βµν(Γ) = ∂µΓα

νβ − ∂νΓα
µβ + Γα

µλΓλ
νβ − Γα

νλΓλ
µβ. (6)

In Figure 1 we give a geometrical intuition for the different objects associated to the affine structure.
A relation that will be useful later on is how the Riemann tensor transforms under a shift of the
connection Γ̂α

µν = Γα
µν + Ωα

µν, with Ωα
µν an arbitrary tensor. Under such a shift, the Riemann tensor

becomes
R̂α

βµν = Rα
βµν + Tλ

µνΩα
λβ + 2∇[µΩα

ν]β + 2Ωα
[µ|λ|Ω

λ
ν]β , (7)

where R̂α
βµν and Rα

βµν are the Riemann tensors of Γ̂ and Γ, respectively, and ∇ is the covariant
derivative associated with Γ.
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The rotation of a vector transported along a closed 
curve is given by the curvature: General Relativity.

The non-closure of parallelograms formed when two 
vectors are transported along each other is given by the 
torsion: Teleparallel Equivalent of General Relativity.

The variation of the length of a vector as it is 
transported is given by the non-metricity: 
Symmetric Teleparallel Equivalent of General Relativity.
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Figure 1. This figure illustrates the geometrical meaning of the curvature, the torsion and the
non-metricity when the remaining objects vanish. We should emphasise that, when a vector is
transported along a closed curve in a general geometry, it will acquire a rotation determined by R[αβ]µν

and a length variation given by R(αβ)µν. It should be compared to Figure 2 where it is summarised how
General Relativity admits equivalent representations in terms of these three geometrical objects.
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After gathering the relevant geometrical objects, we can use them to characterise a spacetime
as follows:

• Metric: the connection is metric-compatible, Qαµν(Γ, g) = 0. Non-metricity measures how much
the length of vectors change as we parallel transport them, so in metric spaces the length of vectors
is conserved.

• Torsionless: the connection is symmetric, Tα
µν(Γ) = 0. Torsion gives a measure of the non-closure

of the parallelogram formed when two infinitesimal vectors are parallel transported along each
other. For this reason, it is usually said that parallelograms do not close in the presence of torsion.

• Flat: the connection is not curved, Rα
βµν(Γ) = 0. Curvature measures the rotation experienced

by a vector when it is parallel transported along a closed curve. This represents an obstacle to
compare vectors defined at different spacetime points. In flat spaces, however, vectors do not
rotate as they are transported so that there is a better notion of parallelism at a distance. This is
the reason why theories formulated in these spaces are referred to as teleparallel.

Einstein’s original formulation founded GR on a metric and torsionless spacetime and imputed
gravity to the curvature. It is, however, natural to explore, as Einstein also did later, if gravity can
instead be ascribed to the remaining attributes that a spacetime can have, i.e., to the torsion and to
the non-metricity. In these notes, we will confirm that the very same underlying theory, i.e., GR, can
be equivalently described in terms of these three seemingly unrelated elements, knocking into shape
a geometrical trinity of gravity. We will nonetheless illustrate some subtle, conceptual and practical,
differences among them.

2. General Relativity

Before delving into its alternative representations, let us start with the best-known formulation of
GR where gravity is identified with the curvature of spacetime and the dynamics is described by the
Hilbert action

SGR(2)
=

1
16πG

∫
d4x

√
−gR(g) (8)

withR = gµνRµν({}) the curvature of the Levi–Civita connection (3). The fundamental object here is
the metric with its ten components. We have, however, a four-parameter gauge symmetry provided
by the invariance of the action under diffemorphisms (Diffs). This gauge symmetry is guaranteed
by the presence of four components of the metric that are Lagrange multipliers (the so-called lapse
and shift functions in the ADM decomposition). These Lagrange multipliers enforce the energy and
momentum constraints which remove four out of the ten components of the metric. Since we also have
the freedom to fix another four components of the metric by a suitable choice of coordinates (i.e., fixing
a gauge), the number of physical propagating degrees of freedom DOFs reduces to 10− 4− 4 = 2, as it
corresponds to a massless spin 2 particle1. At a more technical level, the constraints on the connection
being symmetric and torsion-free should be more properly incorporated by adding suitable Lagrange
multiplier fields enforcing such constraints

SGR(1)
=
∫

d4x
[√−g

16πG
gµνRµν(Γ) + λα

µνTα
µν + λ̂α

µνQα
µν

]
, (9)

where the R is now the scalar of the curvature (6). The two constraints being imposed on the connection
integrable and holonomic, we can simply solve them, insert back into the action (9) and obtain the
second order action for the metric (8). There is, however, a very remarkable property of the Hilbert
action that makes it special. When considered in the metric-affine formalism, i.e., with a completely

1 That each gauge invariance removes two degrees of freedom is a general consequence of the fact that gauge invariances are
nothing but redundancies in the theory. For a general treatment of constrained systems, see, e.g., [5,6].
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general connection not fixed a priori nor by means of Lagrange multipliers, the first term in the action (9)
alone gives rise to equations for the connection that fix it to be precisely the Levi–Civita connection of
the spacetime metric gµν. A subtlety of this result is related to the existence of a projective symmetry
for the Hilbert action. In fact, under a projective transformation of the connection δζΓα

µβ = ζµδα
β,

the Riemann tensor changes as δζ Rα
βµν = 2δα

β∂[µζν] so that the Ricci scalar R is invariant. As a
consequence, the projective mode is left undetermined by the field equations as a gauge mode that can
then be fixed by simply making a projective gauge choice (see, e.g., the authors in [7] and references
therein for more details).

This formulation has some inherent difficulties owed to working in a curved spacetime. Among
others, the Hilbert action (8) contains second derivatives of the metric so the variational principle is not
well-posed in the usual sense since one is led to fix normal derivatives of the metric on the boundary,
which further hinders a composition law for the path integral. As it is well-known, these formal issues
are solved by the Gibbons–Hawking–York (GHY) boundary term [8], whose physical importance is
prominently reflected by the fact that it entirely determines the black hole entropy.

3. Metric Teleparallelism

An alternative geometrical framework, attributing gravity to the torsion, is defined by its flatness
and metric compatibility. These properties conform to the Weitzenböck connection characteristics.
As the natural starting point to construct the theories, we will consider the most general even-parity
second order quadratic form that can be built with the torsion and which is given by the
three-parameter combination

T ≡ c1TαµνTαµν + c2TαµνTµαν + c3TαTα, (10)

where c1, c2, c3 are some free parameters and Tµ = Tα
µα is the trace of the torsion. At the level of the

action, the constraints will be enforced by introducing suitable Lagrange multipliers so that the general
quadratic action is given by

ST = −
∫

d4x
[

1
16πG

√
−gT+ λ

βµν
α Rα

βµν + λ̂α
µν∇αgµν

]
. (11)

Notice that the Lagrange multipliers have the obvious symmetries λ
µβν

α = λ
µ[βν]

α , λ̂α
µν = λ̂α

(µν)
,

and that we have defined them as tensorial densities of weight −1 for convenience.
We will start by solving the constraints. Since the curvature is the field strength of the connection,

its vanishing implies that the connection must be a pure gauge field or, in other words, the connection is
purely inertial. It can then be parameterised by an element Λα

µ of the general linear group GL(4,R) as

Γα
µν = (Λ−1)α

λ∂µΛλ
ν . (12)

The metric constraint further restricts Λα
β and the metric to satisfy the following relation2:

2(Λ−1)λ
κ∂αΛκ

(µgν)λ = ∂αgµν . (13)

This equation determines the metric in terms of the connection, i.e., given a solution for Λα
µ, the

above relation will determine the corresponding metric. This is analogous to a vierbein determining

2 Let us note here the typo in the corresponding Equation (50) in Ref. [9] where the inverse was misplaced.
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the metric, as will be shortly clarified in Section 3.1. These are all the required elements to formulate
gravity in terms of the torsion, given thus by

Tα
µν = 2(Λ−1)α

λ∂[µΛλ
ν] . (14)

We now proceed to explore if GR can be recovered by a suitable choice of parameters. This is
in fact possible in a simple manner by noticing that, when non-metricity vanishes, we can use the
relation (7) to express the Ricci scalar as

R = R(g) + T̊+ 2DαTα, (15)

where T̊ is nothing but T setting c3 = −2c2 = −4c1 = −1 in Equation (10). The flatness condition
R = 0 then tells us that the Ricci scalar R of the Levi–Civita connection differs from T̊ by a total
derivative. We can thus conclude that the dynamics of GR is identically recovered by

STEGR = − 1
16πG

∫
d4x

√
−g T̊(g, Λ) . (16)

The resulting theory is the well-known Teleparallel Equivalent of GR (TEGR). The usual
formulation of TEGR makes fundamental use of the tetrad fields, which requires additional geometrical
structure to introduce the frame bundle and the corresponding soldering form [10]. Here, instead, the
same theory results from a manifestly covariant approach.

3.1. Vierbein Formulation

For comparison, we can briefly review the vierbein formulation of GR and TEGR. The vierbein
is introduced as a set of covectors @a = @a

µ∂µ that are orthonormal with respect to the Minkowski
metric in the sense that ηabea

µeb
ν = gµν, where the set of 1-forms ea = ea

µdxµ is the inverse vierbein.
These objects naturally live in the Lorentz frame bundle which is endowed with the usual spin
connection ωa

b = ωa
µbdxµ. The vierbein is related to the translation gauge potential Ba = Ba

µdxµ as
ea = Ba + Dξa, where D is the covariant exterior derivative with respect to the spin connection. It is
necessary to introduce the field ξa, which can be interpreted as the tangent space coordinate [10], since
the vierbein has the covariant transformation law, but Ba transforms as a connection. The field strength
of translations, DBa, coincides with the torsion two-form, Ta = Dea = dea + ωa

b ∧ eb, if there is no
curvature. The curvature is, as usual, Ra

b = Dωa
b = dωa

b +ωa
c ∧ωc

b, and it can be understood as the
field strength of the Lorentz rotations. An important relation is that, between the affine connection and
the spin connection, Γα

µν = @a
αDµea

ν = −ea
νDµ@a

α. Taking this into account, the spacetime tensors
are related to the field strength two-forms simply as Rα

βµν = @a
αRa

bµνeb
β and Tα

µν = @a
αTa

µν.
We have now all the ingredients to rewrite our actions for GR and TEGR in the vierbein formalism.

To obtain the second order vierbein formulation of the Hilbert action, we would simply insert the
definition of the metric gµν = ηabea

µeb
ν into (8), and write R(@a) instead of R(g), and employ the

determinant @ for which −@2 = g. The proper first order formulation of GR would be obtained instead
by doing the corresponding replacements in (9) (where the last constraint is unnecessary in the Lorentz
bundle, but would be needed in the general linear bundle). Solving the spin connection from the
constraint of vanishing torsion, we would obtain the non-trivial expression for the ωa

b that boils down
to the Equation (3), when rewritten for the spacetime affine connection.

In the teleparallel formulation, in contrast, there exists a solution with ωa
b = 0. Again, we may

begin with the action (11) with the respective replacements such that the torsion is understood as a
function T(@, ω). The flatness condition can be solved and it determines the spin connection to be
ωa

b = (Λ−1)a
cdΛc

b, analogously with (12). Plugging back into the action and choosing the TEGR
parameter combination c3 = −2c2 = −4c1 = −1, we obtain (16), wherein now T̊ = T̊(@a, Λa

b). This
formulation was introduced in [11] and the physical interpretation of the purely inertial spin connection
determined by the matrix Λa

b was clarified in the recent review [12]. Here, instead, we would like
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to only make the further remark on the relation to the formulation in terms of the affine connection.
If we choose the solution ωa

b = 0, which could be called the Weitzenböck gauge, the torsion is
then determined by the vierbein as Ta

µν = ∂[µea
ν] and we can project it with the vierbein to obtain

Tα
µν = @α

a∂[µea
ν]. Comparing with our (14) in the metric-affine formalism, it is interesting to see that

the gauge transformation of the vanishing affine connection had essentially generated the vierbein in
the Weitzenböck gauge.

One can identify the TEGR as a special case among the family of quadratic theories described by
T because it features an additional local Lorentz symmetry: we may transform only the vierbein and
neglect the spin connection. This local symmetry is only realised up to a total derivative, which has
some important consequences that were reviewed in Ref. [12]. Consequently, out of the 16 components
of the vierbein, or of the Λα

µ in the covariant formulation, eight are non-dynamical due to Diffs, while
six more simply reflect the freedom in performing a Lorentz transformation, leaving thus the two
dynamical DOFs of GR.

3.2. Alternative Theories

The metric teleparallel reformulation of GR can be straightforwardly extended in two different
directions, both of which result in the loss of symmetries. The first modification consists in leaving the
three parameters in (10) free, which is known as New GR, first introduced in [13]. In that case, the extra
local Lorentz symmetry disappears and this results in the appearance of additional propagating fields.
As a first check of the content of this extension, we can look at the linearised theory around Minkowski.
This has been performed in the formulation that makes use of the vierbeins. It would be interesting
to redo the analysis in the covariant formalism presented here without resorting to the vierbein
formalism. Of course, we expect to obtain the same field content. The perturbed vierbein around
Minkowski is simply ea

µ = δa
µ + Aa

µ. The background configuration with δa
µ allows for constructing3

Aµν ≡ δa
µ Aa

ν. This perturbation can then be decomposed into its symmetric hµν = 2A(µν) and
antisymmetric bµν ≡ 2A[µν] pieces. The quadratic action for these fields was given in Equation (4.173)
of Ref. [14], and a more general case was studied in Ref. [15]. The full quadratic Lagrangian, up to an
irrelevant normalisation, is given by

L(2)NGR = −
(
2c1 + c2

)
∂αhµν∂αhµν + (2c1 + c2 − c3)∂µhµα∂νhνα + 2c3∂µh∂νhµν − c3(∂h)2

−(2c1 − c2)∂αbµν∂αbµν + (2c1 − 3c2 − c3)∂µbµα∂νbνα (17)

+2(2c1 + c2 + c3)∂µbµα∂νhνα.

We see a mixing between hµν and bµν which vanishes if 2c1 + c2 + c3 = 0 and the consistency of the
theory requires this. Up to the overall normalisation, imposing this condition leaves a one-parameter
class of theories which propagates, in addition to the graviton hµν, a Kalb–Ramond field represented by
bµν, i.e., a massless 2-form field with the gauge invariance δθbµν = ∂[µθν], for an arbitrary θν. The latter
is removed if one further imposes that 2c1 = c2, which leaves the special case of TEGR [14]. It is
interesting that the crucial constraint 2c1 = c2 is related to a symmetry that renders the inverse vierbein
equivalent to the translation gauge potential [15]. In the following section, we will uncover another
perspective, from symmetric teleparallelism, to the relevance of making the theory oblivious to the ξa.

Another straightforward modification is simply taking nonlinear extensions of the TEGR action,
which results in the so-called f (T̊) theories. Since the local Lorentz symmetry is realised up to a total
derivative, these extensions also lose such a symmetry and additional DOFs are expected. Related to
the details of these theories, we refer the reader to [11,12] and their references.

3 This simply means that we can identify the tangent space and the curved indices at first order.
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4. Symmetric Teleparallelisms

The advent of GR fully ascribed to the non-metricity is materialised in a flat and torsion free
geometry [16]. As we will see, the geometrical framework for this formulation of GR is arguably
the simplest among the three equivalent representations because there is no curvature nor torsion
and non-metricity is left as the fundamental geometrical object. Furthermore, the connection can
be globally4 completely removed by an appropriate choice of coordinates so that the spacetime is
trivially connected.

4.1. Symmetric Teleparallel Equivalent of GR: Coincident GR

Once we have described the coincident GR’s dwell, we will proceed as before considering the
most general even-parity second order quadratic form of the non-metricity5

Q =
c1

4
QαβγQαβγ − c2

2
QαβγQβαγ − c3

4
QαQα + (c4 − 1)Q̃αQ̃α +

c5

2
QαQ̃α, (18)

where Qα = Qαλ
λ and Q̃α = Qλ

λα are the two independent traces of the non-metricity. The general
quadratic action including suitable Lagrange multipliers is then

SQ = −
∫

d4x
[

1
16πG

√
−gQ+ λα

βµνRα
βµν + λα

µνTα
µν

]
. (19)

In this case, we have a 5-parameter family of quadratic theories. We could now explore the whole
space of theories and check the existence of some particular case that gives rise to an equivalent of
GR. However, we can again show the existence of an equivalent to GR by using (7) for a torsion-free
connection, which gives

R = R(g) + Q̊+Dα(Qα − Q̃α), (20)

where Q̊ is given by Q setting all ci = 1 so that, in a flat spacetime with R = 0, we find the relation
R(g) = −Q̊−Dα(Qα − Q̃α) and, consequently, the action

SSTEGR = − 1
16πG

∫
d4x

√
−g Q̊, (21)

where STEGR stands for Symmetric Teleparallel Equivalent of GR, differs from the Hilbert action by a
total derivative, thus reproducing the dynamics of GR. As in the TEGR, the quadratic form Q̊ is special
because it has an enhanced symmetry that is realised up to a total derivative. This will become clearer
in a moment, but now let us look at the affine structure of this theory in more detail by solving the
constraints. The flatness condition again restricts the connection to be purely inertial so that it can be
parameterised by a general element Λα

β of GL(4,R). This form of the connection in combination with
the absence of torsion leads to the additional constraint ∂[µΛα

ν] = 0. The general element of GL(4,R)
determining the connection can thus be parameterised by a set of functions ξλ so that6

Γα
µν =

∂xα

∂ξλ
∂µ∂νξλ . (22)

This seemingly innocent form of the connection hides, however, an outstanding property of
the non-metricity representation of GR, namely: the connection can be trivialised by a coordinate

4 Barring possible topological obstructions.
5 It is noteworthy that Einstein considered these five non-metricity terms with a trivial connection, which corresponds to our

coincident gauge [17].
6 Of course, in this expression, ∂xα

∂ξλ should be interpreted as the inverse of the matrix ∂ξλ

∂xα .
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transformation [18]. The gauge where the connection vanishes gives ξα = xα, which can be interpreted
as the gauge where the origin of the tangent space parameterised by ξα coincides with the spacetime
origin and for this property it is dubbed the coincident gauge7. Notice then that, after integrating the
constraints out, we have in (21) that Q̊ = Q̊(r, ξ) in a general gauge.

An interesting form of writing the STEGR action is in terms of the disformation directly as

SSTEGR =
1

16πG

∫
d4x

√
−ggµν

(
Lα

βµLβ
να − Lα

βαLβ
µν

)
. (23)

The interest of this expression is that, in the coincident gauge and recalling the decomposition (4),
the triviality of the connection directly gives the relation{

α
µν

}
= −Lα

µν. (24)

It is then straightforward to verify that, in this coincident gauge, the action (21) can be written as

SCGR = SSTEGR[Γ = 0] =
1

16πG

∫
d4x

√
−ggµν

( {
α

βµ

}{
β

να

}
−
{

α
βα

}{
β

µν

} )
. (25)

We call this the action of Coincident GR. Remarkably, it reproduces the Einstein action for GR
consisting of the Hilbert action devoid of boundary terms. It has the advantage of only involving
first derivatives of the metric, thus leading to a well-posed variational principle without any
Gibbons–Hawking–York boundary terms [8]. However, Diff invariance is only realised up to a
total derivative which causes the action to depend on the chosen coordinates. It may look striking that
we refer to Diffs even though we have used them to fix the coincident gauge, but there is no onus.
The reason is that, similarly to the TEGR being special because it features an additional symmetry,
the theory (21) is special among the quadratic theories because it enjoys an enhanced four-parameter
gauge symmetry so the full theory actually has an eight-parameter gauge symmetry. In the coincident
gauge, the additional symmetry appears as a Diff symmetry. Furthermore, unlike the TEGR where
the metric and the connection are related, in the non-metricity formulation of GR, the connection is
fundamentally pure gauge and all the dynamics can be encoded into the metric, now in a trivially
connected spacetime. In this respect, it is worth pointing out that the fields ξα that parameterise the
connection play in turn the role of Stückelberg fields associated with coordinates’ transformations
invariance and the coincident gauge is nothing but the corresponding unitary gauge8.

4.2. General Quadratic Theory

As for the TEGR, there are two straightforward extensions that can be considered. The first one
corresponds to considering arbitrary parameters in the general quadratic action, in which case the
Diffs in the coincident gauge is lost, thus resulting in additional DOFs. This family of theories was
dubbed Newer General Relativity. It is illustrative to look at the structure of these theories around a

7 This gauge is defined up to an affine transformation xµ → axµ + b with a and b constants. Since this residual global
symmetry does not vanish at infinity, it might lead to interesting properties of the infrarred structure of the theory.

8 For the sake of completeness, let us recall that the Stückelberg fields are a set of compensating fields introduced to restore
any gauge invariance. In practice, one performs a transformation on the fields ψ → U(θi)ψ and, then, the parameters of
the transformation θi are promoted to fields φi . The object U(φi)ψ, which is invariant by construction if the φi’s transform
according to U(φi) → U(φi)U−1(θi), is then used to construct the action that is now manifestly gauge invariant at the
expense of having introduced the (redundant) compensating fields φi . The unitary gauge is defined as that in which the
transformation is the identity, i.e., in unitary gauge we have U = 1. Of course, in this gauge, we recover the original
non-gauge invariant action before introducing the compensating fields.
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Minkowski background with gµν = ηµν + hµν. Unlike in the TEGR, there is no antisymmetric field and
the whole dynamics is encapsulated into hµν. The quadratic action then reads

L = − c1

4
∂αhµν∂αhµν +

( c2

2
+ 1− c4

)
∂αhµν∂µhαν +

c3

4
∂αh∂αh− c5

2
∂µhµ

ν∂νh, (26)

where h = hµ
µ. This is nothing but the general quadratic action for a spin-2 field. In this theory,

there can be up to 10 propagating modes, but, as it is well-known, the theory must enjoy some
gauge symmetries in order to avoid ghostly DOFs. Before proceeding to that, let us notice that c2

and c4 appear degenerated, so that the linear order does not allow for completely fixing the theory
from consistency arguments. Furthermore, the normalisation of hµν allows for absorbing one of
the parameters (up to a sign). Irrespectively of the number of propagating modes, they all trivially
propagate on the light cone owed to the Lorentz invariance of the background and the absence of any
mass parameters. For Fourier modes of momentum k, it is convenient to decompose hµν into helicity
modes with respect to k. Then, the helicity-1 sector will contain a ghostly mode unless the gauge
symmetry hµν → hµν + 2∂(µξν) with ∂µξµ = 0 is imposed, which is called transverse diffeomorphisms
or TDiffs. This symmetry restricts the parameters in (26) to satisfy c2 − c1 = 2(c4 − 1), which is of
course fulfilled by the STEGR. In order to end up with two propagating DOFs (as it corresponds to a
massless spin 2 field), we need to complete the TDiffs to a four-parameter gauge symmetry, which
can be achieved in two ways. The first possibility is to complete the symmetry to full linearised
diffeomorphisms (DiffsCG

9) hµν → hµν + 2∂(µξν) with no constraints on ξµ. This leads to additional
constraints c5 = c3 = c1, which indeed reproduce the values of the STEGR. The second possibility is to
impose an additional Weyl symmetry (WTDiffsCG) hµν → hµν + φηµν with φ an arbitrary scalar field.
This symmetry further requires c3 = 3c1/8 and c5 = c1. This is the linearised version of unimodular
gravity10 (see, e.g., [21]), which differs from GR in the appearance of a cosmological constant as an
integration constant. The general quadratic theory within the symmetric teleparallelism framework
for this choice of parameters is yet to be analysed.

Let us remark that the above constraints are of paramount importance for the consistency of the
theory so that theories that fail to satisfy them will be prone to ghost-like instabilities. This is in fact a
general result not only applicable to the quadratic theory but to a general nonlinear extension11 theory
with Lagrangian L = f (Q1, Q2, Q3, Q4, Q5) with Qi the five independent terms of the quadratic theory.
Around a Minkowski background solution (provided such a solution exists), the quadratic Lagrangian
for the perturbations will take the same form as (26), with ci given in terms of ∂ f /∂Qi. Thus, all of
these theories will be constrained by stability around Minkowski very much like the general quadratic
theory. In particular, this crucially impacts the number of possible stable propagating polarisations in
a general symmetric teleparallel theory. Moreover, even if the linear perturbations succeed in fulfilling
the stability conditions, the loss of gauge symmetries12 when considering interactions will likely
re-introduce ghostly degrees of freedom that were removed from the quadratic spectrum. This is in
fact a very strong constraint that must be carefully taken into account for the theories to be consistent.

4.3. f (Q̊) Extensions

A special case of a nonlinear extension is given by L = f (Q̊), which trivially fulfils the stability
requirements around Minkowski because the only effect will be a re-scaling of the gravitational

9 We denote this symmetry DiffsCG as the Diffs symmetry that arises in the coincident gauge in order to distinguish it from
the original Diffs that in turn are used to go to the coincident gauge.

10 Unimodular gravity can be regarded as the Einstein–Hilbert action where the metric is constrained to have det gµν = 1.
Remarkably, as pointed out in [19], the field equations of this theory had already been considered by Einstein in 1919 [20].

11 By nonlinear extension, we refer to the corresponding field equations not being linear in the non-metricity.
12 Let us stress that all these theories are Diffs invariant by construction and, consequently, the coincident/unitary gauge also

exists for them. The gauge symmetries we refer to here are the DiffsCG that remain in the coincident gauge and that ensure
the absence of additional propagating DOFs.
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constant determined by f ′. It is important to notice that, by virtue of (20), even if LCGR = Q̊ is
equivalent to LGR = R because they only differ by a total derivative; precisely this boundary term
makes f (R) and f (Q̊) completely different.

This specific nonlinear extension, besides being a priori less prone to instabilities than the
general nonlinear extensions, exhibits one of the crucial features of these extensions, namely,
since DiffsCG are only realised up to a total derivative in the STEGR, and the f (Q̊) theories will
no longer realise this symmetry13, with important consequences. In order to illustrate some
of these consequences and further motivate the special case represented by f (Q̊) among all the
theories based on f (Q1, Q2, Q3, Q4, Q5), we will consider a cosmological background described by a
Friedman-Lemaître-Robertson-Walker FLRW metric with spatially flat sections

ds2 = −N2(t)dt2 + a2(t)dx2, (27)

with N(t) and a(t) the lapse function and the scale factor, respectively. If we work in the coincident
gauge, then we have exhausted all the freedom in choosing the coordinates so that, in principle, it is
not legitimate to fix the lapse N(t) to any particular value by means of a time reparameterisation, as it
is usually done. However, the special case of f (Q̊) does permit to fix the lapse because the background
action in the minisuperspace14

S = − 1
16πG

∫
d4x

√
−g f (Q̊) = − 1

16πG

∫
d3xdtNa3 f

(
6ȧ2

a2N2

)
(28)

retains a time-reparameterisation invariance t → ζ(t), N(t) → N(t)/ζ̇(t) for an arbitrary function
ζ(t). The gravitational field equations for N = 1 and in the presence of a perfect fluid with density ρ

and pressure p then are given by

6 f ′H2 − 1
2

f = 8πGρ, (29)(
12 f ′′H2 + f ′

)
Ḣ = −4πG (ρ + p) . (30)

A remarkable class of theories is given by f = Q̊+ Λ
√
Q̊ with Λ some parameter. This family is

special because it gives exactly the same background evolution as GR irrespectively of Λ, which will
thus only affect the evolution of the perturbations. Since the background equations of motion (29) and
(30) are the same as those of the f (T̊) theories, we will not go into more details here, but, obviously,
the same cosmological solutions will be possible. The differences will arise in the perturbations. Going
back to the existence of a time-reparameterisation symmetry in this specific theory, there will be some
associated Bianchi identities that are applied to (29) and (30) give

ρ̇ + 3H(ρ + p) = 0, (31)

completely consistent with the continuity equation of the matter sector. In order to show that this is a
non-trivial result, we can consider the general quadratic theory, whose action in the minisuperspace of
a FLRW universe is given by

13 It can happen that a subset of DiffsCG remains a symmetry. The conditions would be that such a subset of symmetries give
rise to a trivial boundary term. We will see an explicit example of this below.

14 It may be worth stating that, by minisuperspace, we simply mean the homogeneous and isotropic sub-manifold whose
only variables are the time-dependent lapse N(t) and scale factor a(t), but it does not intend to relate to any quantum
gravity scheme.
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S = − 1
16πG

∫
d3xdt

a3

N

[
3
(
c1 − 3c3

) ȧ2

a2 +
(
c1 − 2c2 − c3 + 2c4 − 2 + 2c5

) Ṅ2

N2 + 6
(
c5 − c3

) ȧṄ
aN

]
, (32)

which clearly does not have the symmetry under time reparameterisations and the lapse is an additional
dynamical degree of freedom. Thus, fixing the lapse is not legitimate and can lead to inconsistent
equations of motion. More precisely, setting the lapse would be a selection of some particular branches
of solutions, which are not guaranteed to exist a priori. This is related to the choice of good versus bad
tetrads in the f (T̊) case, where it was noted that some choices of tetrads led to inconsistent equations
of motion, which is nothing but a reflection of overfixing a gauge.

The cosmological perturbations of the f (Q̊) theories will give crucial signatures for the
discrimination of these theories. We will not go into the details of the perturbations equations but
will simply point out an interesting general feature that, in turn, may point towards the inviability
of the whole family of theories. As we have repeatedly commented, we no longer have the freedom
to choose the coordinates once we work in the coincident gauge. At the background level, time
reparameterisations remain as a symmetry, but, at the perturbative level, there are no remnant gauge
symmetries in general so we have to work with all the metric perturbations15. We will focus here on
the scalar sector, so the metric will be decomposed as

ds2 = −a(t)2(1 + 2φ)dτ2 + 2a2β,idτdxi + a2
[
(1− 2ψ)δij + 2

(
∂i∂j −

1
3

δij∇2
)

E
]

dxidxj (33)

with φ, ψ, β and σ the corresponding scalar potentials. As a remnant of the STEGR, the potentials B and
φ remain non-dynamical for the f (Q̊) theories and, therefore, they can be integrated out. We are then
left with two dynamical scalar potentials. A very interesting feature of the perturbations that is worth
mentioning here is their behaviour under a gauge transformation. Since this is no longer a symmetry,
obviously, under a gauge transformation with parameters δεxµ = (ε0, δij∂jε) of the scalar potentials

φ → φ− (ε0)′ −Hε0, (34)

β → β− ε′ + ε0, (35)

ψ → ψ +
1
3

δijε,ij +Hε0, (36)

E → E− ε, (37)

the equations will not be invariant. However, for the particular case of maximally symmetric
backgrounds, i.e., Minkowski, de Sitter and anti de Sitter, there is a residual symmetry provided
the gauge parameters satisfy ε0 + ε′ = 0. This means that these backgrounds will exhibit one less
propagating mode, as can be also directly seen from the fact that the Hessian around these backgrounds
becomes degenerate. This feature might, however, signal the potential presence of a strong coupling
problem for these backgrounds, since this symmetry would seem accidental and, in any case, these
backgrounds would seem to present a discontinuity in the number of propagating DOFs. This strong
coupling problem may represent a fatal flaw of these theories since Minkowski and/or de Sitter are
desirable stable background solutions, but there might still be room for some viable phenomenology.
We refer to [22] for a more exhaustive and detailed analysis of the cosmological evolution within
f (Q̊) theories.

15 Another possibility would of course be to re-introduce the connection through ξα and seek for a more convenient gauge
involving both metric and connection perturbations.
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5. Matter Couplings

Besides the purely gravitational sector, prescribing how matter couples is a foundational aspect
of gravity. The majority of the matter fields living on a manifold with a general connection will be
oblivious to the presence of the distortion. However, in order to rigorously investigate the possible
existence of subtleties, one has to be aware of the fact that

• generalized geometries give room for ambiguity in the matter coupling,
• crucial differences arise for bosonic and fermionic fields.

In consideration of the first point, let us remind ourselves that, if one considers the action of a
point particle S = −mc2

∫
dτ, this particle will only access the Levi–Civita part of the connection.

In GR, this is equivalent to postulating that the point particle will follow the geodesic equation
d2xµ

dτ2 + Γµ
να

dxν

dτ
dxα

dτ = 0 with Γµ
να = {µ

να}. However, in generalized geometries, starting from the action
or the postulated geodesic equation will not give rise to the same conclusion and introduce ambiguities.

Concerning the second point, crucial differences arise for bosonic and fermionic fields because
bosons only couple to the metric, but fermions also couple to the connection. Already within GR, it is
necessary to introduce an additional structure in order to define spinors in curved spacetimes: the
tetrads. Another crucial point is whether one starts from the minimal coupling procedure. Bosonic
particles minimally coupled to gravity, with the prescription ηµν → gµν, d → d, will only see
the Levi–Civita part of the connection. Hence, they will follow the above geodesic equation with
Γµ

να = {µ
να}. Starting from the geodesic equation, it is clear that the torsion does not contribute since

the geodesic equation is symmetric under the exchange of ν ↔ α. However, the minimal coupling
prescription ηµν → gµν, d → D, the latter implying that ∂µ → ∇µ, can already be problematical for
bosonic fields of nonzero spin. For example, the gauge invariance of the Maxwell field Aµ would need
to be reconsidered in TEGR due to the appearance of a non-gauge invariant coupling to torsion in
Fµν = 2∇[µ Aν].

In general, fermions will be very sensitive to the presence of any distortion of the connection.
The TEGR encounters some difficulties in coupling gravity to fermions because the natural coupling is
to the Weitzenböck connection [23].

The STEGR elegantly avoids this difficulty due to the absence of torsion and the fact that the
Dirac Lagrangian is blind to the non-metricity so that fermions are only concerned with the usual
Levi–Civita piece of the connection [9].

In all these formulations, the corresponding dynamics of the matter fields will non-trivially
depend on the assumed matter action and whether the minimal coupling prescription is selected on
purpose. This is also the case in the standard formulation of GR and the choice has to be done based
on the wanted physical effects.

5.1. General Relativity

When we write down the Hilbert action in the presence of the standard matter fields

SGR(2)
=

1
16πG

∫
d4x

√
−gR(g) + Smatter[gµν, φ], (38)

there enter already non-trivial assumptions on the physical system at hand. Namely, one has explicitly
assumed that

• the matter fields do not couple to the connection, and
• the minimal coupling prescription ηµν → gµν, ∂µ → Dµ with Γµ

να = {µ
να} is applied.

Therefore, only the variation with respect to the metric has to be performed, yielding

Gµν = Rµν −
1
2
Rgµν =

Tµν

M2
Pl

, (39)
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with the stress energy tensor defined as

Tµν =
−2√−g

δSmatter

δgµν . (40)

The Bianchi identities, i.e., the divergenceless nature of the Einstein tensor, enforces DµTµν = 0
upon the matter fields. This is directly related with the consistency of the matter fields equations of
motion. If one instead assumes the starting Lagrangian to be of the form

SGR(1)
=
∫

d4x
[

1
16πG

√
−gR(g, Γ) + λα

µνTα
µν + λ̂α

µνQα
µν

]
+ Smatter[gµν, Γα

µν, φ] (41)

with an explicit coupling of the matter field to the general connection, then the variation of the action
with respect to the connection yields

∇ρ

[√
−ggµν

]
− δ

µ
ρ∇α

[√
−ggαν

]
=
√
−g
[

gµνTα
αρ + gανTµ

ρα − δ
µ
ρ gβνTα

αβ

]
+ ∆ρ

µν (42)

with the hypermomentum of the matter fields defined as

∆ρ
µν =

2
M2

Pl

δSmatter

δΓρ
µν

, (43)

which arises due to the coupling to the connection. Given the torsion-free and metric constraints
enforced by the Lagrange multipliers, Equation (42) would imply that the hypermomentum must be
identically zero, giving rise to non-trivial constraints for the matter fields, especially fermions, which
do carry hypermomentum due to their coupling to the axial torsion. Thus, when including matter
fields, we must either consider minimally coupled fields or formulate the theory in an unconstrained
metric-affine formalism for the consistency of the theory.

Already in the standard formulation of GR, the presence of fermions requires the introduction of
a vielbein and the gravitational spin connection. The information about the spacetime and the spin
meets in the Clifford algebra with the Dirac matrices acting at each spacetime point. Dirac’s equation
in curved spacetime then naturally takes the form

iγa@
µ
a DµΨ−mΨ = 0 (44)

with the Dirac matrices γa and the covariant derivative Dµ = ∂µ − i
4 wab

µ σab defined in terms of the
spin connection wab

µ and σab = i
2 [γa, γb]. This equation follows naturally from the minimal coupling

prescription discussed above16. In this way, the vielbein approach supports a local symmetry of
Lorentz transformations in tangential space and diffeomorphism invariance. Hence, already within
GR, fermions need a special care and the introduction of an additional structure.

5.2. Metric Teleparallelism

It is possible to stipulate that, for the bosonic fields, the minimal coupling is ∂µ → ∂µ, whilst, for
the fermionic fields, one sets ∂µ → ∇µ. This may seem arbitrary in view of the fact that gravitation
is a universal force, under which also bosonic fields are “charged” in principle. However, adopting
the covariant prescription for bosons as well as fermions will lead to problems with gauge fields in
metric teleparallelism. To see this, consider the simplest example, the photon Aµ, whose field strength
in the absence of gravitation is Fµν = 2∂[µ Aν], and would become Fµν → 2∇[µ Aν] = 2∂[µ Aν] + Tα

µν Aα

16 It is worth stressing that the equation obtained from the covariantization of the Dirac Lagrangian does not give the
covariantized version of the Dirac equation in spaces with torsion and/or non-metricity. This subtlety is irrelevant in the
case of GR, but it is important when considering more generally connected spacetimes.
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in the universal covariant prescription. In the case of both GR and STGR, nothing happens to the
Maxwell field strength, since there is no torsion. However, in the context of metric teleparallelism, this
is obviously not the case, and the photon becomes non-minimally coupled to torsion. This spoils the
U(1) invariance, at least in its standard form.

The problem of coupling fermions in metric teleparallelism is seen easily from the definition of the
spin connection given above, Dµ = ∂µ − i

4 wab
µ σab. When wab

µ is the pure-gauge connection that can be
always be set to zero by a Lorentz rotation, the fermions are obviously decoupled from the Levi–Civita
connection (3). However, this coupling would be required to ensure the usual energy-momentum
conservation DµTµ

ν. The problem can of course be avoided by re-invoking the GR coupling ∂µ → Dµ

now in metric teleparallelism. At least one heuristic justification for such a prescription is that by
writing the pure-gauge wab

µ in terms of trivial tetrads and then promoting those to the full tetrads
indeed would make the pure-gauge spin connection become the metric spin connection of GR [10,12].
However, this is not the standard procedure in gauge theories. Thus, the conventional coupling
principle ∂µ → ∇µ in metric teleparallelism is not viable for either bosons or fermions.

5.3. Symmetric Teleparallelisms

The coupling to matter within the realm of symmetric teleparallel theories can be performed
following the usual minimal coupling prescription:

SSTEGR = −
∫

d4x
[

1
16πG

√
−g Q̊+ λα

βµνRα
βµν + λα

µνTα
µν

]
+ Smatter[gµν, φ,∇µφ] . (45)

This theory is then equivalent to GR where the matter fields in Smatter follow the same physical
geodesic equations as in GR, since the couplings are exactly the same for the known fields in the
Standard Model. For bosonic fields, we will then have ∇µφ → ∂µφ as in the usual formulation
of GR. There is a subtle point concerning the general quadratic theory that is worth explaining in
detail. In that case, the connection field equations do not trivialise in the coincident gauge (as they
do for the Coincident GR). However, the corresponding equations can be obtained by applying the
Bianchi identities to the metric field equations and, thus, they are redundant with them. Hence, the
information in the connection field equations is of course not lost when working in the coincident
gauge in general theories.

In difference to the previous reformulation, in STGR, fermions do not require any adjustments to
the minimal prescription. The standard derivative ∂α of the usual flatspace Dirac Lagrangian is the
same as ∇α (in the coincident gauge we simply have ∇α = ∂α). In order to appreciate this statement,
bear in mind that, even if the covariant derivative ∇α appears in the action, only Dα survives in the
equations of motion for the Dirac field due to the Hermitean property of the Dirac action. Let us
remind ourselves that Γα

µν =
{

α
µν

}
+ Lα

µν = 0 in the coincident gauge, from which the piece Lα
µν is

filtered out due to the Hermitean nature of the action17.
Therefore, the standard equation of motion in curved spacetime arises for the spinors, which

only involves the
{

α
µν

}
part. Hence, the Dirac fields are completely oblivious to any disformation of

geometry given by a general Qαµν.
Needless to say that, if we consider couplings beyond the minimal coupling procedure where, for

instance, matter fields could directly explicitly couple to the connection, there will be notable physical
effects beyond GR due to the presence of the hypermomentum of the matter fields.

17 To see how this occurs, first generalise the Lorentz basis σab = i
2 [γa, γb] to the general linear basis, i

2 γaγb = σab − iηab.
Thus, only the trace Qµ of non-metricity contributes to the covariant derivative of spinors in the first place. Secondly, in the
Dirac action, this trace simply cancels due to the Hermitisation. As a result, even though in the coincident gauge we have
∂µ → ∇µ = ∂µ in the action, effectively we recover ∂µ → Dµ in the equations of motion.
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6. Conclusions

The ternion of geometrical representations of GR offers useful complementary perspectives to the
theory of gravity. The non-trivial boundary terms that differentiate the three formulations present a
new tool to explore the holographic nature of GR. In these notes, we have reviewed the formulation of
GR in three classes of geometries, and wrote down the six actions indicated below:

• Riemannian: in terms of the general (9) and the metric (8) connection,
• Metric teleparallel: in terms of the general (11) and the inertial (16) connection,
• Symmetric teleparallel: in terms of the general (19) and the inertial (21) connection.

The geometrical trinity that emerges is depicted in Figure 2. We also considered briefly the
perspective from the frame bundle in Section 3.1, and discussed some of the most straightforward
generalisations of the two versions of teleparallel GR.

Figure 2. This figure summarises the three alternative gravitational descriptions of gravity together
with its main properties. In the GR description, the fundamental object is the metric tensor gµν, the
spacetime is curved, but metric-compatible and torsion-free and the 4 Diffs symmetry reduce the
DOFs from 10 to 2. The TEGR has the inertial connection parameterised by Λα

β ∈ GL(4,R) as its
fundamental object, which generates torsion, but the connection and the non-metricity are trivial.
Diffs plus the local Lorentz symmetry reduce the 16 independent components of Λα

β to 2. Finally, the
STEGR contains the metric gµν and ξα as fundamental elements. In this case, ξα generates a flat and
torsion-free connection and only the non-metricity piece is left. Furthermore, ξα can be fully removed
by a suitable choice of coordinates (the coincident gauge) leaving a trivial connection. In that gauge,
the presence of a second Diffs symmetry realised up to boundary terms reduce the number of DOFs to
two. At the heart of these equivalences lies the fact that gravity describes a theory for an interacting
massless spin-2 particle, whose consistency requires the equivalence principle and, thus, the possibility
of describing it in geometrical terms.

Symmetry is foundational to theoretical physics, but the geometry chosen for its illustration may
be a matter of convention. From the perspective of gauge theory, we understand that spin connection is
the gauge potential of Lorentz rotation and the curvature is its gauge field strength, whilst the tetrad is
related to the gauge potential of translation and the torsion to its gauge field strength. Gravitation can
be geometrised in terms of either of these, and in fact Einstein considered both of the corresponding
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mathematical formulations in time. However, to him, the main achievement of GR was never the
geometrization of gravity per se, but its unification with inertia18. It is the essence of this unification,
as expressed in the equivalence principle that gravitation can always be locally eliminated by changing
the coordinate system. At the same time, it is a basic fact about gauge theories that a gauge field force
can be made to locally vanish if it has zero field strength. We may speculate19 that the coincident GR,
which purifies gravity from both torsion and curvature, would have been the “Einstein’s third GR”
had he lived long enough to witness the spectacular success of the gauge principle in the theories of
particle physics.

The coincident GR realises gravity as the gauge theory of the group of translations, which is the
natural interpretation for the universal interaction sourced by energy and momentum, the conjugates
of the time and space translations, respectively. The metric teleparallel torsion theory also had been
suggested as a gauge theory of the translation group [10,12]. From the gravity side, this interpretation,
however, fails in that the connection is not a translation, but a Lorentz rotation as clarified20 in Section 3;
from the matter side, the interpretation fails due to the inconsistency of the minimal coupling that was
discussed in Section 5. A paradox about the Diffs is that the consistent realisation of their underlying
gauge theory does not allow the corresponding gauge field strength to exist. This reflects the special
property of the gravitational interaction whose “external” gauge geometry describes the spacetime
itself, the arena for the compact, “internal” geometries that describe the interactions of matter fields in
the standard model of particle physics.

Nevertheless, all of the three representations of the geometrical trinity remain useful and provide
important complementary perspectives to the nature of gravity.
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Abbreviations

GR General Relativity
DOF Degree of Freedom
GHY Gibbons–Hawking–York
TEGR Teleparallel Equivalent of GR
STEGR Symmetric Teleparallel Equivalent of GR
CGR Coincident GR
Diff Diffeomorphism
TDiff Transverse Diffeomorphism
WTDiff Weyl Transverse Diffeomorphism
DiffsCG Diffeomorphism in the coincident gauge
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