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Abstract: Recent multi-channel astrophysics observations and the soon-to-be published new
measured electromagnetic and gravitation data provide information on the inner structure of the
compact stars. These macroscopic observations can significantly increase our knowledge on the
neutron star enteriors, providing constraints on the microscopic physical properties. On the other
hand, due to the masquarade problem, there are still uncertainties on the various nuclear-matter
models and their parameters as well. Calculating the properties of the dense nuclear matter,
effective field theories are the most widely-used tools. However, the values of the microscopical
parameters need to be set consistently to the nuclear and astrophysical measurements. In this work,
we investigate how uncertainties are induced by the variation of the microscopical parameters.
We use a symmetric nuclear matter in an extended o-w model to see the influence of the nuclear
matter parameters. We calculate the dense matter equation of state and give the mass-radius diagram
for a simplistic neutron star model. We present that the Landau mass and compressibility modulus of
the nuclear matter have definite linear relation to the maximum mass of a Schwarzschild neutron star.

Keywords: dense matter; stars: neutron; equation of state; astro-particle physics

1. Introduction

The investigation of the structure of compact astrophysical objects like neutron stars, magnetars,
quark- or hybrid stars, etc. is an active novel research area as a child of astrophysics, gravitational
theory and experiment and nuclear physics. Thus far, the extreme dense state of the matter can not
be produced in today’s Earth-based particle accelerators, thus only celestial objects can be used for
tests. Electromagnetic measurements, such as X-ray- and gamma satellites, aim to measure properties
of these objects more and more accurately [1-4]. In parallel, radio array data [5] and the newly
discovered gravity waves provide a new way to probe their inner structure [6-8]. These observations
are particularly important inputs for the theoretical studies of dense nuclear matter [9,10].

From the theoretical point of view, first principle calculations based on lattice field theory are
still challenging at high chemical potentials present in compact stars [11-13]. Thus, effective theories
play an important role in studying the properties of cold dense nuclear matter [14,15]. Recent studies
show the importance of the correct handling of the bosonic sector in effective theories of nuclear
matter [16,17]; moreover, applying the functional renormalization group (FRG) method on the simplest
non-trivial nuclear matter, the effect of the microscopical parameters on neutron star observables were
shown in Refs. [18,19].

We note that we use the simplest nuclear matter for neutron stars without crust. Leptonic fields
were not included in the model; therefore, no B-equlibrium was taken into account. During the
calculations of the nuclear equation of state, the condition of charge neutrality was not imposed.
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We note, however, that this does not lead to the violation of the charge neutrality of the neutron
star itself, as there are no energy terms related to the electrical charges of the nucleons, and all the
hadronic fields considered are identical. The model effectively describes nuclear matter that consists of
interacting neutrons and neutral mesons that are parametrized to describe the saturation properties of
symmetric nuclear matter as in the case of the original Walecka-model [20]. These assumptions are
restricting but led us to investigate the consequences of varying the nuclear matter parameters in a
more clear nuclear environment like e.g., in Ref. [21]. We note that an ongoing extended theoretical
work is in progress for a more realistic case to compare astrophysical experimental data to our model.

In this paper, we study the connection between the parametrizations of effective nuclear
models and measurable properties of compact stars in three differently extended versions of the
o-w model. All of these include symmetric nuclear matter with various interaction terms in the bosonic
sector. After calculating the equation of state (EoS) corresponding to different parametrizations of these
models, the mass-radius (M-R) diagrams are calculated by solving the Tollmann—-Oppenheimer—Volkoff
(TOV) equations. We show how sensitive the mass-radius relation is to differences in the bosonic sector.
The dependence of particular properties of compact stars (maximum mass and radius) is presented,
influenced by different saturation parameters of the symmetric nuclear matter.

2. The Extended o-w in the Mean Field Approximation

Here, we apply the most common mean field model of the dense nuclear matter, formulating the
extended o-w model [22,23] with the Lagrange-function taken from Refs. [20,24],

L= N¢¥ (id —my + 800 — guip) ¥ + %0’ (82 - m(zr) o—U(o) — %www”” + %miwz, 1)
where ¥ is the fermionic nucleon field, N = 2 is the number of nucleons, and my;, m,, and m,, are the
nucleon, sigma, and omega masses, respectively, for the usual scalar and vector fields. We introduced
the wy, = d,wy — dywy, and the Yukawa coupling corresponding to the c—nucleon and w-nucleon
interactions is given by g, and g,. We denote the general bosonic interaction terms with U;(0),
which can have thee different forms as the considered modified model cases for certain i,

U3 = )\30’3,
u4 = )\404/ (2)
Uszy = )\3(73 + )\4(74.

In the mean field (MF) approximation, the kinetic terms are zero for the mesons and only
the fermionic path integral has to be calculated at finite chemical potential and temperature.
We consider here the symmetric nuclear matter to be in equilibrium, which includes the baryon
number conservation. Taking this into account, the standard procedure was applied minimizing the
free energy of the infinite symmetric nuclear matter at the zero temperature limit, where, for the proton
(np) and neutron (n,,), the number of densities are equal, such as the proper chemical potentials, ),
and yy,,, respectively:

np = ny — Hp = Yn = J. ®)

After applying this for all three cases in Equation (2) and substituting them into Equation (1),
the numerical solution can be obtained after parameter fitting.



Universe 2019, 5, 153 30f10

3. Parameter Fitting in the Extended o-w Model

As the general procedure, all the models’ considered cases in Equation (2) need to fit to the
nucleon saturation data found in e.g., Refs. [20,25]. In parallel to the effective mass, we introduced the
definition of the Landau mass

kr

JoE
mp = — with U = k

oF = oK (4)

7
k=kp

where k = kr the Fermi-surface and E is the dispersion relation of the nucleons. The Landau mass
(mp) and the effective mass (im*) are not independent in relativistic mean field theories,

mL:\/k%—Hﬂ*z. ()

This is the reason why the Landau mass and the effective mass of the nucleons can not be fitted
simultaneously in the models we consider [25]. In this paper, we deal with this problem in the
following way. We fit all of the models two times: using the effective mass value from Table 1 and one
calculated from Equation (5) to reproduce the Landau mass value from Table 1.

Table 1. Nuclear saturation parameter data, from Refs. [20,25].

Parameter Value Unit
Binding energy, B —16.3 MeV
Saturation density, 1 0.156 fm—3

Nucleon effective mass, m* 0.6 my  MeV
Nucleon Landau mass, m;  0.83my MeV
Incompressibility, K 240 MeV

If the models with Us and Uy type interaction terms are used, then there are not enough free
parameters to fit the data in Table 1. In these cases, the nucleon effective mass, saturation density,
and binding energy are fitted and the compression modulus is a prediction, given by

2 2

(e/n) = 922 (e/n), ©)

0
_ 12
K=k 32

Fak2

which has a simple connection to the thermodynamical compressibility at the saturation density 7.
In the case of Usy, all four parameters can be fitted simultaneously, and there is another way to
incorporate data regarding both Landau and effective mass. For this model, we consider a third fit,
where the value of the effective mass is chosen in a way that minimizes the error coming from not
fitting the two types of masses correctly. Technically, this value of the effective mass minimized the x>

of the fit, with value
mopt = 0.6567 my ~ 616 MeV . (7)

Since the incompressibility is different for the model cases with different interaction terms,
we compared them in Table 2. For model cases with Uz and Uy, there are two fits, for Landau and
effective mass that produce different incompressibility values because they do not have enough
free parameters to fit the correct value. However, for Usy, there are enough parameters to fit the
incompressibility, so it has the same value for all three fits: for the Landau mass, for the effective mass
and for the optimal mass. As Table 2 presents incompressibility values for U3 with Landau fit, it is quite
close and the U4 results provide the best fit with the saturation nuclear matter parameters in Table 1.
These models differ in their predictions for higher densities of nuclear matter, which complicates the
description of the compact star interior.



Universe 2019, 5, 153 4 0f 10

Table 2. The obtained incompressibility values in different model cases and fits.

Models Calculation Method K [MeV]

o-w model reference value 563
Uz effective mass fit 437
Us Landau mass fit 247
Uy effective mass fit 482
U, Landau mass fit 334
Uszy x> fits for all 240

4. Properties of Nuclear Matter in the Extended o-w Model

The nuclear properties of the different model cases were compared with all the possible parameter
fits at the equation of state (EOS) level. We used all three types of interaction terms: Us, Uy, and Usy,
and each was considered with two parametrizations corresponding to Landau and effective mass
fits. All results were cross-checked with the original o-w model parameters. In case of the model
characterized by Us, interactions, we used a fit which reproduces Eequation (7).

The energy density, pressure and density were calculated in all of these models. The equation
of states corresponding to these model and fit cases are shown in Figure 1. The results from the
modified o-w model are compared to other equation of state parametrizations from Refs. [26-28]
(solid lines). An important feature of Figure 1 is that different model based EoS parametrizations are
separated based on whether they are parametrized by the Landau (full symbols) or the effective mass
(open symbols). The models which are fitted to reproduce the correct effective mass of nucleons have
smaller energy density at a given pressure. This phenomena becomes more prominent as pressure
increases. It is also important to note that, in a given band, the incompressibility corresponding to
certain equation of states can be very different. For example, in the group that was fitted for the
effective mass in the Us type model, (open rectangles) has the incompressibility K = 247 MeV, but the
Uy type (open circles) has almost double the value, K = 482 MeV.
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Figure 1. Equation of state in different models in comparison to Refs. [26-28].

Similar grouping can be seen in Figure 2 presenting the binding energy B as the function of the
nuclear density n. However, near the minimal B, the value of incompressibility governs the curves
because it determines the curvature of the curves around minimum. Effective mass that fits with
open symbols has a steeper rise with the increasing density, n, while Landau-mass fit curves with
full symbols are wider. We note that, below the saturation density, curves are getting more independent
from the model choice and parameter fits.
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Figure 2. The density dependence of binding energy with the different models and parametrizations.
5. Compact Star Observables from the Effective Models

The Tolman—-Oppenheimer—Volkoff equations provide the general relativistic description of the
compact stars assuming spherically symmetric and time independent space-time structure [20],

) Cenr) [y PO [y 4R [ 26m())

dr r2 e(r) m(r) 7 ! ®)
dm(r) _
e 4rtr?e(r) .

Here, P(r) and ¢(r) are the pressure and energy density as functions of the radius of the star,
G is the gravitational constant while m(r) is the mass of star that is included in a shell with radius
r. To integrate the equations, one needs a connection between P(r) and ¢(r) at given r which is
provided by the nuclear matter equation of state in the form of the relation P(r) = P(e(r)). To start the
integration, one has to choose a central energy density value ¢ for the star as an initial condition.

After solving the Equation (8) using the EoS from the model cases with various fits, the mass (M)
and radius (R) of a compact star with a given energy density can be determined. Results corresponding
to different energy densities in a given model are summarized on a mass-radius M - R diagram on
Figure 3.

The model variants inherited the behaviour as in Figures 1 and 2: the curves are grouped based on
whether or not they parametrized to reproduce the effective mass or Landau mass. Models with smaller
effective mass (open symbols) systematically produce higher maximum mass stars compared to their
parametrization with larger effective mass (Landau mass, with full symbols). Moreover, all models
fitted for the effective mass value in Table 1 produce higher maximum star mass than the ones fitted
for the Landau mass. Since the Landau mass and effective mass are not independent as in Equation (4),
the above statement is equivalent to saying that higher effective mass produces smaller maximum star
mass. This picture is supported by the curve corresponding to the model case parametrized by the
optimal mass in Equation (7), which is the best fit of the model. The maximum star mass in this case is
between the values produced by parametrizations described by smaller and larger effective nucleon
mass. It is interesting to note that parametrizations corresponding to the effective mass and to the
optimal mass value may be ruled out by observations, as they produce much larger maximum star
mass and radius than the most recent measurements and theoretical predictions suggest [29].
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Walecka model + 0% ; m* fit
Walecka model + o*; m_ fit
Walecka model + o3 ; m* fit —=—
Walecka model + o3 ; m| fit —l—
25+ Walecka model + 03 + 0% ; m* fit —A—

Walecka model + 03 + o*; m|_ fit —&—
Walecka model + o3 + % ; mgp fit —%—

N
T

Mass, M [Mgoll

0.5

4 6 8 10 12 14
Radius, R [km]
Figure 3. Mass—radius diagram corresponding to the different parametrizations of the modified o-w
model. The line corresponding to the original o-w model is also drawn for comparison with a red color.

The value of incompressibility in these models seems to influence very little the maximum star
mass; however, at the same time, it has an effect on the compactness by influencing the radius of
the star. Thus, it can be seen in Figure 3 by looking at the curves belonging to the fits with the same
effective mass (Landau mass). In these model cases, all of the parameters are the same as listed in
Table 1 apart from the incompressibility.

6. Connection between Maximum Star Mass and Nuclear Parameters

Our results present a strong connection between the nuclear effective mass, m; and maximum
star mass, My,,x M. To further study this phenomena, the model variant with interaction term Usy is
used and presented below. The couplings in the model are calculated to reproduce all values listed in
Table 1 except for the nuclear effective mass and Landau mass that are kept as external parameters.
To study the maximum star mass dependence on the effective nucleon mass, many different fits of
this model are considered all with different values of effective nucleon mass. The M—-R diagrams
corresponding to these parametrizations are calculated, and the maximum star mass is determined in
each case. This procedure makes it possible to determine the dependence of maximum star mass on
nucleon effective mass in this model, if everything else is kept constant. The results are summarized in
Figure 4. The connection between maximum star mass and nucleon effective mass is well described by
a linear connection, which gives the best fit of the numerical data,

My m = 5.896 — 0.005my, )

where M,y M is given in units of Mg,,,, and m is given in MeV.

Although the above equation is derived considering only the model with interaction term Uzy
and taking into account parametrizations that differ only in the value of nucleon effective mass,
it generalizes well and it approximates the maximum star mass corresponding to the other model
variants we consider with very high accuracy. This seems to indicate that the linear connection is a
good approximation regardless of the bosonic interaction term used, and this holds across different
model variants.
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Figure 4. Maximum star mass, M, M (upper panel) and maximum star size, R, p1 (Iower panel) as
a function of the Landau nucleon mass, m; .

These observations are further supported by the connection between the radius of the maximum
mass star (Ry;4x pm) and nuclear Landau mass. This connection also presents strong linear dependence
and holds across all model variants we considered in this paper. The results are shown in Figure 4,
where the plotted linear relation is described by

Ryax M = 21.94 — 0.015m; . (10)

Applying R is given in km units and m;, is given in MeV.

Since besides the nucleon Landau (effective) mass the only parameter that is different in our
model variants is the incompressibility, it is worth studying the relation between incompressibility and
maximum star mass while keeping every other parameter constant. For this end, in the model with
U3, interaction terms, the Landau mass fixed for the value that is listed in Table 1 and the model is
solved to reproduce different values of incompressibility. All these different parametrizations give a
different dense matter equation of states that predict different M—R diagrams and different maximum
mass star parameters, M,y p1. These results are summarized in the panels of Figure 5.

It can be seen in these plots that the the mass and radius of the maximum mass star are insensitive
to the value of the incompressibility. The equations of the best (constant) linear fits are

Mypax M = 1.779 + 0.0008 K,

(11)
Rynax M = 7.870 + 0.0070 K,

where M, M is measured in units of Mg,,;, K in MeV units, and R,y p is in km.

The slope of both linear functions is tiny and even double the K produces only a few percent of
variation in the maximum mass star mass and radius. These results provide a heuristic understanding
of the previous results on the dense matter properties: the maximum mass star radius and mass
depend strongly on nucleon Landau mass, since its dependence on incompressibility is negligible
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compared to how strongly it depends on the value of effective mass and all other parameters are
kept constant.

2ol r r T :
- =% - -~
2 X =X = X
—_x—= X X % - % X
| —

=
3 18
Z
=

16 linear fit: M = 1.779 - 0.00076 K ; S = 0.006 — -
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14+
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K [MeV]
Figure 5. The maximum mass star mass, My, M (upper panel) and radius, R, p (Iower panel)

as a function of the compression modulus, K. The dashed line is the best linear fit, which is plotted
as guidance.

7. Conclusions

We investigate the macroscopical observables of neutron stars with a symmetric dense nuclear
and matter in the interior. We compared three cases with different general bosonic interactions,
and we used variations of the nuclear parameter fit method. We investigated how these bosonic
interactions matter in the nuclear equation of state, and especially how the effective mass and Landau
mass parameters play role in the nuclear potentials. The applied model is neglecting leptonic fields,
and, therefore, there is B-equilibrium. Although we had this simplified theoretical case, such a clean
nuclear environment led us to explore the effects of its parameters on macroscopical observables of a
theoretical compact object.

With variation of these microscopical parameters, we explored the mass-radius groups in the
case of a Schwarzschild neutron star model. We presented that the Landau mass of the nuclear
matter has a definite linear relation to the maximum mass and maximum radius of the neutron star,
considered within the best U4 model case. We also obtained that the effect of the incompressibility
is negligible on these macroscopical parameters, with M,,,x m =~ 1.78 and Ry p = 7.87 within the
regime K =200-400, meaning < 5% variation for both cases.

These results support the idea that the evolution equation of the strongly interacting matter saves
the magnitude of the uncertainty that originated from the microscopical physical parameters, which
appears as deterministic variation of the macroscopical observables as suggested in Refs. [18,19].

Finally, we note that an investigation of the asymmetric nuclear matter version of this study is
ongoing, like in Ref. [30,31]. Our preliminary results suggest that taking into account S-equilibrium
in the asymmetric case does not change much the observed effects, supporting the phenomena
summarized in this paper.
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