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Abstract: The covariant formulation of teleparallel gravity theories must include the spin connection,
which has 6 degrees of freedom. One can, however, always choose a gauge such that the spin connection
is put to zero. In principle this gauge may affect counting of degrees of freedom in the Hamiltonian
analysis. We show for general teleparallel theories of gravity, that fixing the gauge such that the spin
connection vanishes in fact does not affect the counting of degrees of freedom. This manifests in the
fact that the momenta of the Lorentz transformations which generate the spin connection are fully
determined by the momenta of the tetrads.
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1. Introduction

General relativity (GR) has successfully passed a huge amount of experimental tests, which probe
the nature of gravity, up to today. Despite this success there are still many open questions associated
with our understanding of gravity. Firstly, general relativity is highly non-renormalizable, so it cannot
be formulated as a quantum field theory in the same way as it is done for the other fundamental
forces, and thus can not directly be embedded into the standard model of particle physics. Secondly,
there is strong evidence for inflation. To describe this, one is led to either introduce an extra field
(like the inflaton) in the early universe or modify the laws of gravity. The latter gives a better fit
to the data [1]. Thirdly, there are tensions in cosmological data, such as the value of the Hubble
constant [2,3], which need to be explained. Furthermore, the standard model of cosmology is based on
the ΛCDM model, whose main ingredients are cold dark matter particles and a cosmological constant
as dark energy, to explain the dark sector of our universe. However, also this model faces some issues,
where the biggest issue probably is the smallness of the cosmological constant.

In order to deal with the aforementioned issues, modified theories of gravity have been studied.
Most are based on the formulation of general relativity in terms of the Levi-Civita connection,
which is induced by a spacetime metric. However, general relativity has other equivalent formulations,
based on connections that are not induced by the metric. One of these is called “symmetric teleparallel
equivalent of general relativity” (STEGR) and uses a flat (no curvature) and torsion free connection
with non-metricity (∇gµν 6= 0). Another is called “teleparallel equivalent of general relativity” (TEGR)
and employs a flat metric compatible connection with torsion. The Lagrangian of STEGR is given
by the so-called non-metricity scalar Q, while the Lagrangian of TEGR by the so-called torsion
scalar T. These reformulations of Einstein’s theory of general relativity are sometimes referred as
“the geometrical trinity” [4].
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Due to the experimental success of general relativity we need to formulate modified theories
of gravity such that they are compatible with experimental tests on solar system scales. That is,
they should not deviate too much from general relativity on these scales. Since general relativity can
equivalently be formulated in different geometries, we have the freedom to choose which geometry
we want to formulate modified theories of gravity in. After modifying general relativity, the modified
theories will in general be in-equivalent.

For example, popular modifications of general relativity are to consider functions of the defining
Lagrangian. In the three different formulations this amounts to consider as Lagrangian either f (R),
where R is the Ricci scalar of the Levi-Civita connection, f (T) or f (Q), which lead to non-equivalent
theories. The reason for this is that they differ by a boundary term, which can no longer be completely
neglected when a function is acting on the original GR, STEGR or TEGR Lagrangian.

In this work we will consider the Hamiltonian analysis of modified theories of gravity in the
teleparallel framework. The Hamiltonian analysis gives the number of degrees of freedoms in a theory.
However, in the so-called f (T) theories of gravity disputing results have been found for this number.
Where it was claimed in [5,6] that the theory has 5 degrees of freedom. More recent work, on the
contrary, found that f (T) has 3 degrees of freedom [7]. The aforementioned works were, however,
done in a gauge where the spin connection is put to zero, which is not the covariant formulation of
teleparallel gravity [8,9]. We show in this work, for general covariant teleparallel theories, that the
spin connection momenta are determined by the tetrad momenta .

In Section 2 we display the most general teleparallel gravity theories we consider in this article.
Section 3 is devoted to derive the conjugate momenta, and to show that the gauge fixing does not
affect the counting of numbers of degrees of freedom. A concrete example is provided in Section 4
with an explicit expression for the Hamiltonian. Finally, discussion and concluding remarks are made
in Section 5.

We use the following conventions. Greek indices µ, ν, ρ... denotes global coordinate indices which
are raised and lowered with the metric gµν, capital Latin indices denotes Lorentz indices raised and
lowered with the Minkowski metric ηAB, and small Latin indices are spatial indices and 0 denotes
the temporal index. The Minkowski metric ηAB is taken to be diag (−1, 1, 1, 1). Brackets [] denote
dependence on the explicit variables and their derivatives.

2. Generalized Theories of Teleparallel Gravity

The fundamental variables for teleparallel gravity theories are the tetrads (or vierbeins) θA, and for
the covariant formulation a curvature-free spin-connection ωA

B is needed [8,9]. In local coordinates
these variables can be expressed as

θA = θA
µdxµ, eA = eA

µ∂µ,

ωA
B = ωA

Bµ

[
ΛC

D

]
dxµ = ΛA

Cd
(

Λ−1
)C

B = ΛA
C∂µ

(
Λ−1

)C
Bdxµ,

(1)

where ΛA
B are Lorentz matrices. Any Lorentzian metric can be expressed in terms of tetrads by the

following relations

gµν = gµν

(
θA

µ

)
= ηABθA

µθB
ν, gµν = ηABeA

µeB
ν. (2)

The torsion components expressed in tetrad fields and the spin connection are

Tρ
µν = eA

ρTA
µν[θ

A
µ, dθA

µ, ΛA
B, dΛA

B] = 2eA
ρ
(

∂[µθA
ν] + ωA

B[µθB
ν]

)
(3)

We can write a generic action made from the Torsion components Tρ
µν and the metric (which

depend on the tetrad fields) as
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S
[
θA

µ, ΛC
D
]
=
∫

d4xL
[
θA

µ, ΛC
D
]
=
∫

d4x |θ| f (gστ , Tρ
µν), (4)

where |θ| := det(θA
µ) which is the normal volume element (

√−g in metric formalism). This is the
most general teleparallel gravity theory in 4 dimensions without introducing extra fields, and without
breaking local Lorentz invariance, with all derivatives being of first order and coming from the torsion
components, and includes the theories discussed in [10]. The analysis can easily be extended to higher
dimensions. In order to derive the conjugate momenta and make a canonical Legendre transformation
to the Hamiltonian, we make use of the 3 + 1 decomposition analogous to [11]. In this decomposition
we have

gµν =

[
−α2 + βiβjhij βi

β j hij

]
, gµν =

− 1
α2

βi

α2

βj

α2 hij − βi βj

α2

 . (5)

The indices i, j, ... are spatial and run from 1 to 3 and are raised and lowered with the induced
metric hij, i.e., βi = βjhij. For the tetrad fields (which are canonical variables for teleparallel gravity
theories) we have

θA
0 = αξA + βiθA

i, (6)

where ξA are components of the normal vector n to the x0 = const hypersurfaces in the dual tetrad
basis [12]

n = ξAeA, ξ A = −1
6

εA
BCDθB

iθ
C

jθ
D

kεijk. (7)

The components ξ A further satisfy

ηABξAξB = ξAξA = −1, ηABξAθB
i = ξAθA

i = 0. (8)

Furthermore, the dual tetrads and the induced metric can be expressed as

eA
0 = − 1

α
ξA, eA

i = θA
i + ξA

βi

α
, hij = ηABθA

iθ
B

j. (9)

For readability we sometimes suppress metrics which raises or lowers indices, even when indices

are at non-canonical positions. For example θA
i = ηABhijθB

j 6= eA
i = θA

i + ξA
βi

α .

3. Conjugate Momenta

To derive the conjugate momenta we note that time derivatives always appear in Tρ
0i = −Tρ

i0 =

eA
ρTA

0i due to the antisymmetric property of the torsion components Tρ
00 = 0. Time derivatives act

on tetrad fields θA
i and Lorentz matrices ΛA

B and explicitly it reads

TA
0i = ∂0θA

i + ΛA
C∂0

(
Λ−1

)C
BθB

i − ∂iθ
A

0 −ΛA
C∂i

(
Λ−1

)C
BθB

0. (10)

One immediately finds that time derivatives never act on temporal tetrads (θA
0) nor lapse and

shifts (α, β). They only act on the spatial tetrads θA
i and Lorentz matrices ΛA

B. Hence, the conjugate
momenta only need to be defined for these variables. The conjugate momenta with respect to the
spatial tetrad fields are defined by

πA
i :=

∂L
∂∂0θA

i
= |θ| ∂ f

∂Tµ
0j

∂Tµ
0j

∂∂0θA
i
= |θ|eA

µ ∂ f
∂Tµ

0i
. (11)
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Since the Lorentz matrices only have 6 independent components, we introduce an auxiliary
antisymmetric field which preserves the Lorentz symmetries and thus also those of the spin connection

aAB := ηACωC
B0 = ηC[AΛC

|D|∂0

(
Λ−1

)D
B] ⇔ ∂0ΛA

B = aCDηA[DΛC]
B. (12)

The conjugate momenta of the independent components of the Lorentz matrices are hence
represented by

π̂AB :=
∂L

∂aAB
= |θ| ∂ f

∂Tµ
0i

∂Tµ
0i

∂aAB
= −πC

iηC[BθA]
i. (13)

This can be realized from

∂L
∂aAB

=
∂L

∂∂0ΛCD

∂∂0ΛC
D

∂aAB
=

∂L
∂Tµ

0i

∂Tµ
0i

∂∂0ΛCD

∂∂0ΛC
D

∂aAB

= − ∂L
∂Tµ

0i

∂Tµ
0i

∂∂0θC
j

[
θD

j

(
Λ−1

)F
D

]
∂∂0ΛC

F
∂aAB

= −|θ| ∂ f
∂Tµ

0i
eC

µ

[
θD

i

(
Λ−1

)F
D

]
ηC[BΛA]

F.

(14)

The conjugate momenta πA
i and π̂AB are hence manifestly algebraically related to each other.

This means that we need to add Equation (13) as a Lagrange multiplier. Furthermore, it can be
cumbersome to express the velocities into their conjugate momenta, but for new general relativity
it has been shown how this can be done [11]. To simplify we perform a transformation in which
the spin connection vanishes and show that this transformation in this gauge is consistent with the
constraints in the covariant formulation. This transformation is done by introducing new field variables
(α̃, β̃i, θ̃A

i, Λ̃A
B) so that θ̃A

i = θB
i
(
Λ−1)A

B, α̃ = α, β̃ = β, and Λ̃A
B = ΛA

B. It follows that ãAB = aAB,
g̃µν = gµν, ˜|θ| = |θ| and that T̃ρ

µν = ẽA
ρ∂[µ θ̃A

ν]. Furthermore,

L̃ = ˜|θ| f̃ (gστ , Tρ
µν) = ˜|θ| f (g̃στ , T̃ρ

µν) = |θ| f (gστ , T̃ρ
µν), (15)

which manifestly is independent of the Lorentz matrices ΛA
B. From this transformation we find that

the conjugate momenta transforms as

π̃A
i =

∂L̃
∂∂0θ̃A

i
= πB

iΛB
A,

ˆ̃πAB =
∂L̃

∂aAB
= πC

iηC[BθA]
i + π̂AB.

(16)

Inverting these formulas gives

πA
i = π̃B

i
(

Λ−1
)B

A,

π̂AB = ˆ̃πAB − π̃D
i
(

Λ−1
)D

CηC[BΛA]
E θ̃E

i.
(17)

Applying Equation (13) to Equation (16) shows that ˆ̃πAB = 0 in the Weitzenböck gauge, and they
are hence pure gauge degrees of freedom as expected from [8,9]. A vital point is now to show that the
gauge fixing is imposed consistently with the constraints. Hence, we need to show that { ˆ̃πAB, H̃} ≈ 0.
The transformed Hamiltonian is defined as

H̃ = π̃A
i∂0θ̃A

i + ˆ̃πAB ãAB +
ˆ̃πλAB ˆ̃πAB − L̃ + primary constraints, (18)
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where primary constraints need to be added (which differ from different theories). Looking at the
transformation behaviors of each term it is hence clear that { ˆ̃πAB, H} ≈ 0. The gauge fixing is hence
consistent with the constraints and can not in any way affect the counting of degrees of freedom for
teleparallel gravity theories.

4. New General Relativity

One interesting class of teleparallel gravity theories is the so-called “new general relativity” theory
introduced in [13]. In this section we derive the Hamiltonian for “new general relativity” as was
done in [11]. In this section we work in the Weitzenböck gauge motivated by the preceding sections.
Furthermore, we drop all ˜ for readability. Assume that we want a teleparallel theory defined by
Equation (4) and only consider terms quadratic in the torsion components Tρ

µν without introducing
parity violating terms. Then the action looks like

SNGR =
∫

d4x|θ|
(
c1Tρ

µνTρ
µν + c2Tρ

µνTνµ
ρ + c3Tρ

µρTσµ
σ

)
. (19)

After a 3 + 1 decomposition it is found that

LNGR =

√
h

2α
TA

i0TB
j0Mi j

A B +

√
h

α
TA

i0TB
kl

[
Mi l

A Bβk + 2αhil
(

c2ξBθA
k + c3ξAθB

k
)]

+

√
h

α
TA

ijTB
kl β

i
[

1
2

Mj l
A Bβk + 2αhjl

(
c2ξBθA

k + c3ξAθB
k
)]

+ α
√

h 3T.
(20)

Here

Mi j
A B := −2(2c1hijηAB − (c2 + c3)ξAξBhij + c2θA

jθB
i + c3θA

iθB
j), (21)

and

3T := c1ηABTA
ijTB

klhikhjl + c2θA
iθB

jTA
jkTB

ilhkl + c3θA
iθB

jhklTA
ikTB

jl . (22)

The theory is covariant and the spatial derivatives can all be replaced (simultaneously) by
the Levi-Civita covariant derivative Di associated with the induced metric such that Dihjk = 0.
Derivatives on the temporal parts of the tetrads (θA

0) generally do not appear and hence the conjugate
momenta for new general relativity are

α√
h

πA
i =

α√
h

LNGR

∂∂0θA
i
= TB

0j M
i j
A B + TB

kl

[
Mi k

A Bβl + 2αhik
(

c2ξBθA
l + c3ξAθB

l
)]

. (23)

We can now define

SA
i =

α√
h

πA
i +
[

Dk

(
αξB + βmθB

m

)
− TB

kl β
l
]

Mi k
A B − 2αTB

klhik
(

c2ξBθA
l + c3ξAθB

l
)

, (24)

so that SA
i is independent of velocities and Equation (23) can equivalently be written as

SA
i = ∂0θB

j M
i j
A B. (25)

The remaining task is then to invert the Mi j
A B and solve for ∂0θB

j. This is a rather non-trivial
task, and hence, we refer to [11] for details. Here we simply write out the possible primary constraints
and the expression for the Hamiltonian. Existence, or non-existence of primary constraints depend on
the specific values of c1, c2, c3, related to the irreducible components under the rotation group into
vectorial, antisymmetric, symmetric (but trace-free), and trace parts (V ,A,S , T ). We define



Universe 2019, 5, 143 6 of 7

AV = 2c1 + c2 + c3, AA = 2c1 − c2, AS = 2c1 + c2, AT = 2c1 + c2 + 3c3, (26)

and an index I = V ,A,S , T . Putting any of the AI = 0 gives rise to primary constraints.

AV = 0 =⇒ VCi := SA
iξ A = 0, (27)

AA = 0 =⇒ ACij := SA
kθA

[jhi]k = 0, (28)

AS = 0 =⇒ SCij := SA
kθA

(jhi)k −
1
3

SA
kθA

khij = 0, (29)

AT = 0 =⇒ T C := SA
iθA

i = 0. (30)

The important thing to note is that if any of these primary constraints are imposed, they need to
be added as Lagrange multipliers in the Hamiltonian. For new general relativity, the expression for the
Hamiltonian is

H = α
√

h

(
BV
VCi
VCi

4
− BA

ACij
ACij

4
− BS

SCij
SCij

4
− BT

3T CT C
4

− 3T− ξADiπA
i

√
h

)
− βk

(
TA

jkπA
j + θA

kDiπA
i
)
+ Di

[
πA

i
(

αξ A + βjθA
j

)]
,

(31)

where

BI =

{
1

AI
if AI 6= 0

0 if AI = 0.
(32)

This is, however, not the final Hamiltonian. As mentioned before, Lagrange multipliers related
to primary constraints need to be added. Furthermore, the analysis might further provide secondary,
tertiary, etc., constraints after the evaluation of the Poisson brackets. This also needs to be added.

5. Discussion

We showed that for a very general class of teleparallel gravity theories one is allowed to fix the
gauge such that the spin connection vanishes without affecting the counting of degrees of freedom
in the theory. This significantly simplifies the Hamiltonian analysis of teleparallel gravity theories,
assuring that the result does not differ from the covariant formulation. Furthermore, this justifies
previous work where this gauge choice has been implemented in the analysis. Since the Hamiltonian
analysis tends to be very cumbersome, it is highly suggestive to use this result and put the spin
connection to zero in theories covered by this analysis. If one looks at more general teleparallel
gravity theories (for example addition of extra fields or more dimensions, as they are discussed in the
literature [14–16]) one can follow the same approach in order to figure out if the gauge fixing affects
the counting of degrees of freedom.
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Abbreviations

The following abbreviations are used in this manuscript:

GR General relativity
STEGR Symmetric teleparallel equivalent of general relativity
TEGR Teleparallel equivalent of general relativity
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