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Brookhaven National Laboratory are presented.
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1. Introduction

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) is one of the
two remaining operating hadron colliders in the world, and the first and only polarized p+p collider. BNL
is located in the center of the roughly 200 km long maximum 40 km wide island (named Long Island),
and appears on the map as the white circle which is the berm containing the Relativistic Heavy Ion Collider
(RHIC). BNL is 100 km from New York City in a region which nurtures science with Columbia University
and the Bronx High School of Science indicated (Figure 1). Perhaps more convincing is the list of the many
Nobel Prize winners from New York City High School graduates (Figure 2) which does not yet include one
of this years Nobel Prize winners in Physics, Arthur Ashkin who graduated from James Madison High
school in 1940 and Columbia U. in 1947.
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Figure 1. NASA infra-red photo of Long Island and the New York Metro Region from space. RHIC is the
white circle to the left of the word BNL. Manhattan Island in New York City, ∼100 km west of BNL, is also
clearly visible on the left side of the photo, with Columbia U. and Bronx Science High School indicated.
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Class Name of laureate University

1947 Leon N. Cooper[1] Physics 1972 Brown University

1950 Sheldon Glashow[1][2] Physics 1979 Columbia University

1950 Steven Weinberg[1] Physics 1979 Cornell University

1949 Melvin Schwartz[1][3] Physics 1988 Columbia University

1966 Russell Hulse[1][4] Physics 1993 Princeton University

1966 H. David Politzer[1] Physics 2004 California Institute of Technology

1941 Roy Glauber[1][5] Physics 2005 Harvard University

1959 Robert Lefkowitz[6] Chemistry 2012 Columbia University

1939 Stanley Cohen[15] Medicine 1986 Vanderbilt University

1940 Robert Solow[16] Economics 1987 Massachusetts Institute of Technology

1943 Martin Lewis Perl[17] Physics 1995 University of Michigan

1947 Gary Becker[18] Economics 1992 University of Chicago

1941 Joshua Lederberg[19][20] Medicine 1958 Rockefeller University

1954 Roald Hoffmann[20][21] Chemistry 1981 Cornell University

1944 Robert Fogel[20][22] Economics 1993 Cornell University

1963 Richard Axel[20][23] Medicine 2004 Columbia University

1933 Arthur Kornberg[31] Medicine 1959 Stanford University

1943 Paul Berg[31] Chemistry 1980 Stanford University

1933 Jerome Karle[31][32] Chemistry 1985 City College of New York

1935 Richard Feynman[33][34] Physics 1965 California Institute of Technology

1948 Burton Richter[34][35] Physics 1976 Stanford University

4 Stuyvesant High School, 
Manhattan, New York City, NY

3 Abraham Lincoln High School,
Brooklyn, New York City, NY

3 Far Rockaway High School, 
Queens, New York City, NY

Number of laureates by secondary school Award and year

8 The Bronx High School of Science,
Bronx, New York City, NY

4 James Madison High School,
Brooklyn, New York City, NY

1942 Baruch Blumberg[34] Medicine 1976 University of Pennsylvania

1933 Herbert A. Hauptman[45] Chemistry 1985 City College of New York

1933 Julian Schwinger[45] Physics 1965 Harvard University

1936 Kenneth Arrow[45] Economics 1972 City College of New York

1954 Arno Penzias Physics 1978 City College of New York

1922 George Wald Biology 1987 Harvard University

2 Erasmus Hall High School,  
Brooklyn, New York City, NY

1919 Barbara McClintock[52] Medicine or 
Physiology

1983 Cold Spring Harbor Laboratory

1944 Eric Kandel[53] Medicine or 
Physiology

2000 Columbia University

2 Hastings High School (New York) 1951 Edmund S. Phelps Economics 2006 Columbia University

Hastings High School (New York) 1962 Robert C. Merton Economics 1997 MIT Sloan School of Management

1967 Frank Wilczek[57] Physics 2004 University of Chicago 
Princeton University

1967 Alvin Roth[58] Economics 2012 Columbia University Stanford University

1941 Rosalyn Sussman Yalow[45] Medicine and 
Physiology

1977 Hunter College

1933 Gertrude B. Elion[45] Medicine and 
Physiology

1988 Duke University

1 Manual Training HS, Brooklyn NY 1916 Issidor Isaac Rabi Physics 1944 Columbia University

1 DeWitt Clinton HS, Bronx, NY 1931 Robert Hofstadter Physics 1961 Stanford University

1 James Monroe High School, Bronx NY 1939 Leon Max Lederman Physics 1988 Columbia University

1 New Trier High School,  Winnetka, Illinois 1938 Jack Steinberger[90] Physics 1988 Columbia University

1 Regis High School, Manhattan, New York 
City, NY

1957 John O'Keefe Medicine 2014 City College of New York McGill 
University

2 Walton High School,  
Bronx, New York City, NY

3 Townsend Harris High  School,
Queens, New York City, NY originally 
Manhattan, New York City, NY

2 Brooklyn Technical High  School,
Brooklyn, New York City, NY

2 Martin Van Buren High School,
Queens, New York

3 Far Rockaway High School, 
Queens, New York City, NY

Figure 2. From Wikipedia (edited), Physicists in blue and Roald Hoffman a classmate of mine
from Columbia.

There also have been many discoveries and Nobel Prizes at BNL (Figure 3).
In particular, Leon Lederman, who made many discoveries at BNL (Figure 4), died this year (2018)

at the age of 96. Leon was the most creative and productive high energy physics experimentalist of his
generation as well as the physicist with the best jokes. He was also my PhD thesis Professor. For more
details, see https://physicstoday.scitation.org/do/10.1063/PT.6.4.20181010a/full/.

https://physicstoday.scitation.org/do/10.1063/PT.6.4.20181010a/full/
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Figure 3. Selected Discoveries and Nobel Prizes at BNL, arrow points to QGPdiscovery..
Leon Lederman died this year at the age of 96�
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Nobel to Fitch&Cronin for CP violation�
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Nevis Cyclotron-parity violation in �
muon decay Nobel to Lee and Yang�

1957�

Upsilon�
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DrellYan�
p+U-->�+�-+X�
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Leon was the most creative and productive high-energy physics experimentalist of his generation 
and also the physicist with the best jokes. He was also my PhD thesis Professor�

The muon neutrino discovered �
 at BNL--Nobel Prize in 1988�

Figure 4. Discoveries by Leon Lederman and close associates at Columbia University.

2. Why RHIC Was Built: To Discover the Quark Gluon Plasma (QGP)

Figure 5 shows central collision particle production in the PHENIX and STAR detectors, which were
the major detectors at RHIC.

At the startup of RHIC in the year 2000, there were two smaller more special purpose detectors
PHOBOS and BRAHMS, as shown in Figure 6, which finished data taking in 2005.
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Discovery of the QGP: Why RHIC was built 
The surprise is that it is a perfect liquid�
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Figure 5. View along the beam direction of tracks of charged particles from central collision events in
Au+Au collisions in the PHENIX and STAR detectors at RHIC.Brookhaven National Laboratory (BNL)�

HFBR��
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RHIC�

AGS�

PHENIX�

STAR�
PHOBOS�

BRAHMS�

Figure 6. View of RHIC location from the air. The positions of the four original detectors, PHENIX, STAR
PHOBOS and BRAHMS are indicated as well as the AGS (with three Nobel Prizes shown in Figure 3).

2.1. The First Major RHIC Experiments

The two major experiments at RHIC were STAR (Figure 7), which is still operating, and PHENIX
(Figure 8), which finished data taking at the end of the 2016 run.
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STAR Detector

Quark Matter 2018, Venice, Italy Zhenyu Ye for STAR Collaboration 2

• Tracking and PID (full 2!)
TPC: " < 1
TOF: " < 1
BEMC: " < 1
EEMC: 1 < " < 2
HFT (2014-2016): " < 1
MTD (2014+): " < 0.5

• MB trigger and event 
plane reconstruction
BBC: 3.3 < " < 5
EPD (2018+): 2.1 < " < 5.1
FMS: 2.5 < " < 4
VPD: 4.2 < " < 5
ZDC: 6.5 < " < 7.5

• On-going/future upgrades 
iTPC  (2019+): " < 1.5
eTOF (2019+):−1.6 < " < −1
FCS    (2021+): 2.5 < " < 4
FTS    (2021+): 2.5 < " < 4

TPCMTDMagnet BEMC BBCEEMC TOF VPD

Zhenyu Ye

HFT ZDC

Figure 7. STAR is based on a normal conductor solenoid with Time Projection Chamber for tracking, an EM
Calorimeter, Vertex detector and µ detector behind the thick iron yoke.

•� PHENIX was a special
purpose detector designed and 
built to measure  rare processes 
involving leptons and photons at 
the highest luminosities.�
�� possibility of zero magnetic field on axis �
��minimum of material in aperture 0.4% Xo�
�� EMCAL RICH e± i.d. and lvl-1 trigger�
•� � �0 separation up to pT ~ 25 GeV/c�
•� EMCAL and precision TOF for h± pid �

Comparison to scale 
with a wedge of CMS 
Last PHENIX run was 2016�

Figure 8. As indicated on the figure, PHENIX is a special purpose detector for electrons and photons but also
measures charged hadrons and notably π0 → γ + γ at mid-rapidity and muons in the forward direction.

2.2. The New Major RHIC Experiment sPHENIX

sPHENIX is a major improvement over PHENIX with a superconducting thin coil solenoid which
was surplus from the BABAR experiment at SLAC and is now working at BNL and has reached its full
field (Figure 9).
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sPHENIX	SC-Magnet	Test	(off-MIE)	

May	23-25,	2018	 sPHENIX	DOE-SC	CD-1/3A	Review	

Magnet	Test	set-up	prior	to	closing	the	flux	return	

SC-Magnet	ramped	and	held	at	
105%	Full	Current		

	
		

The	SC-Magnet	has	last	been	operated	10	years	ago	and	
has	since	been	moved	from	SLAC	to	BNL.	
The	full	current	cold	test	in	Jan-Feb	2018	tested:	
•  Magnet	Integrity	
•  The	Power	Supply	to	be	used	by	sPHENIX	
•  The	Quench	ProtecRon	and	Magnet	controls	that	will	be	

used	by	sPHENIX	
•  The	new	extension	to	the	cryo	chimney	

10	

4830	A	max	

Figure 9. BABAR superconducting solenoid now in operation at BNL.

The design of the sPHENIX experiment is moving along well (Figure 10) with a notable addition of a
hadron calorimeter based on the iron return yoke of the solenoid.

	sPHENIX	MIE			

6/5/2018	 10	sPHENIX	Collabora7on	Mee7ng	

To counting house 

The conceptual design of sPHENIX is based on 3 principles: 
•  Design a detector to meet the Science Mission of 

measurements of Jets and Upsilons in RHIC environment 
•  Maximize cost effectiveness and utilize modern 

technologies where appropriate (SiPM, fast TPC readout) 
•  Build on existing $20M+ PHENIX infrastructure    

Figure 10. Conceptual design of sPHENIX with major features illustrated.

sPHENIX has been approved by the U. S. Department of Energy (DoE) as a Major Item of Equipment
(MIE) with the schedule of critical decisions shown in Figure 11a, and the planned multi-year RHIC runs
indicated in Figure 11b. The present sPHENIX collaboration and its evolution is shown in Figure 12.
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a)

Critical Decision Level 1 MIE Schedule 
Milestone Schedule Date

CD-0, Approve Mission Need 9/27/2016

CD-1/3A, Approve Alternative Selection and Cost Range. 

Long Lead Procurements
Q4 FY 2018

CD-2/3, Approve Performance Baseline Q4 FY 2019

CD-4, Approve Project Completion Q1 FY 2023

b)

sPHENIX DOE-OPA CD-1/3A ReviewMay 23-25, 2018

Multi-year run plan for sPHENIX

• Guidance from ALD to think in terms of a multi-year run plan 
• Consistent with language in DOE CD-0 “mission need” document
• Incorporates BNL C-AD guidance on luminosity evolution 
• Incorporates commissioning time in first year

Minimum bias Au+Au at 15 kHz for |z| < 10 cm:

47 billion (Year-1) + 96 billion (Year-2) + 96 billion (Year-3) = Total 239 billion events

For topics with Level-1 selective trigger (e.g. high pT photons), one can sample within |z| < 10 cm a total of 550 billion events.

11

Figure 11. (a) DoE Critical Decision Schedule; and (b) multi-year run plan for sPHENIX.

sPHENIX DOE-OPA CD-1/3A ReviewMay 23-25, 2018

sPHENIX collaboration evolution
Augustana University
Banaras Hindu University
Baruch College, CUNY
Brookhaven National Laboratory
CEA Saclay
Central China Normal University
Chonbuk National University
Columbia University
Eötvös University
Florida State University
Georgia State University
Howard University
Hungarian sPHENIX Consortium
Insititut de physique nucléaire d’Orsay
Institute for High Energy Physics, Protvino
Institute of Nuclear Research, Russian 
Academy of Sciences, Moscow
Institute of Physics, University of Tsukuba
Iowa State University
Japan Atomic Energy Agency
Joint Czech Group
Korea University
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Lehigh University
Los Alamos National Laboratory
Massachusetts Institute of Technology
Muhlenberg College
Nara Women’s University
National Research Centre "Kurchatov 
Institute"
National Research Nuclear University "MEPhI"
New Mexico State University
Oak Ridge National Laboratory
Ohio University
Petersburg Nuclear Physics Institute
Purdue University
Rice University
RIKEN

RIKEN BNL Research Center
Rikkyo University
Rutgers University
Saint-Petersburg Polytechnic University
Stony Brook University
Temple University
Tokyo Institute of Technology
Universidad Técnica Federico Santa María
University of California, Berkeley
University of California, Los Angeles
University of California, Riverside
University of Colorado, Boulder
University of Debrecen
University of Houston
University of Illinois, Urbana-Champaign
University of Jammu
University of Maryland
University of Michigan
University of New Mexico
University of Tennessee, Knoxville
University of Texas, Austin
University of Tokyo
Vanderbilt University
Wayne State University
Weizmann Institute

Yale University
Yonsei University

Santa Fe, Dec ’17

BNL, June ‘16

GSU (Atlanta), Dec ‘16

Rutgers, Dec’15

BNL, June ‘17

Next meeting: BNL, June ‘18

Figure 12. List of the sPHENIX collaboration members in June 2018 together with photos showing the
evolution since December 2015. Dave Morrison (BNL) and Gunther Roland (MIT) are spokespersons.
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2.3. Following RHIC in U.S. Nuclear Physics: the Electron Ion Collider (EIC)

Statement by Brookhaven Lab, Jefferson Lab, and the Electron-
Ion Collider Users Community on National Academy of Sciences 
Electron-Ion Collider (EIC) Report 
July 24, 2018

On July 24, 2018, a National Academy of Sciences (NAS) committee issued a report of its findings and
conclusions related to the science case for a future U.S.-based Electron-Ion Collider (EIC) and the
opportunities it would offer the worldwide nuclear physics community.

The committee’s report—commissioned by the U.S. Department of Energy (DOE)—comes after 14 months of
deliberation and meetings held across the U.S. to gather input from the nuclear science community. The
report’s conclusions include the following:

The committee concludes that the science questions regarding the building blocks of matter are
compelling and that an EIC is essential to answering these questions. 

The answers to these fundamental questions about the nature of the atoms will also have implications for
particle physics and astrophysics and possibly other fields. 

Because an EIC will require significant advances and innovations in accelerator technologies, the impact
of constructing an EIC will affect all accelerator-based sciences. 

In summary, the committee concludes that an EIC is timely and has the support of the nuclear science
community. The science that it will achieve is unique and world leading and will ensure global U.S.
leadership in nuclear science as well as in the accelerator science and technology of colliders.

The first BNL EIC design in 2014 is shown in Figure 13. The 2018 JLab and BNL EIC designs are
shown in Figures 14 and 15.
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Detector II

Detector I

Energy Recovery Linac,
1.32 GeVCoherent 

Electron Cooler
Polarized 

Electron Source

electrons

hadrons

From AGS

Beam Dump

100 meters

FFAG Recirculating Electron Rings ERL Cryomodules

1.3-5.3 GeV

6.6-21.2 GeV

Cost estimates�
BNL $755.9M�
NSAC $1.5B�

Figure 13. The 2014 cost estimate: BNL $755.9M; Temple NSAC subcommittee cost estimate $1.5B.

Future Plans for EICsJin  Huang <jihuang@bnl.gov> 15

eRHIC Concept, BNL, NY

JLEIC Concept, Jefferson Lab, VA

DOI: 10.1140/epja/i2016-16268-9 
Simplified based on work of M. Klein, R. Ent, U. Klein

Figure 14. JLab EIC Concept. Temple committee cost estimate also $1.5B but no new accelerator
technology required.
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eRHIC design progress 2017�
Injector �
Linac�
3 GeV�

Polarized Electron Source,�
Pre-Injector�
and Accumulator�

Injector �
Loops�

Storage Ring�
5-18 GeV�

Design Choice Validation Review 
April 5-6, 2017 Ferdinand Willeke 

National Academy of Sciences: US based electron ion collider Science Assessment 2/1/17-7/31/18  
Figure 15. BNL eRHIC design progress 2017. Temple committee cost estimate $1.5B.

The two new designs of the JLab (JLEIC) and BNL (eRHIC) both satisfy the Temple committee cost
estimate of $1.5B, but R&D of the novel first BNL design is not idle.

Research and Development (R&D) for an Improved Less Expensive BNL Machine Is Ongoing

BNL and Cornell are in the process of experiments studying an energy recovery linac ERL (Figure 16a).
Figure 16b is the main Linac cryo module made from superconducting RF cavities. Figure 16c is a return
loop made from fixed-field alternating-gradient (FFAG) optics made with permanent Halbach magnets to
contain four beam energies in a single 70 mm-wide beam pipe, designed and prototyped at Brookhaven
National Laboratory (BNL).
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a)

exceedingly power-hungry because the beam is essentially discarded after each use. This forces linacs to
operate at an extremely low current compared to ring accelerators, which in turn limits the data rate (or
luminosity) delivered to an experiment. On the other hand, in a collider ring there is a limit to the focusing of the
bunches at an interaction point as each bunch has to survive the potentially disruptive collision process on
each of millions of turns. Bunches from a linac have to collide only once and can, therefore, be focused to
aggressively collide at a higher luminosity.

Linacs could outperform circular machines for light-source and collider applications, but only if they can be
operated with higher currents by not discarding the energy of the spent beam. Energy-recovery linacs (ERLs)
fill this need for a new accelerator type with both linac-quality bunches and the large currents more typical of
circular accelerators. By recovering the energy of the spent beam through deceleration in superconducting
radio-frequency (SRF) cavities, ERLs can recycle that energy to accelerate new bunches, combining the dense
beam of a linear accelerator with the high current of a storage ring to achieve significant RF power savings.

A new facility called CBETA (Cornell-Brookhaven ERL Test Accelerator) that combines some of the best traits
of linear and circular accelerators has recently entered construction at Cornell University in the US. Set to
become the world’s first multi-turn SRF ERL, with a footprint of about 25 × 15 m, CBETA is designed to
accelerate an electron beam to an energy of 150 MeV. As an additional innovation, this four-turn ERL relies on
only one return loop for its four beam energies, using a single so-called fixed-field alternating-gradient return
loop that can accommodate a large range of different electron energies. To further save energy, this single
return loop is constructed from permanent Halbach magnets (an arrangement of permanent magnets that
augments the magnetic field on the beam side while cancelling the field on the outside).

CBETA floor plan.

Small Accelerator Promises Big Returns | BNL Newsroom https://www.bnl.gov/newsroom/news.php?a=212802

2 of 7 5/21/18, 6:04 PM

b)

 

This article by Georg Hoffstaetter and Rick Ryan of Cornell University originally appeared in the CERN Courier. For more
information about Brookhaven Lab’s role in this work, contact: Karen McNulty Walsh, kmcnulty@bnl.gov, 631-344-8350.

Small Accelerator Promises Big Returns
Under construction in the US, the CBETA multi-turn energy-recovery linac will pave
the way for accelerators that combine the best of linear and circular machines

March 16, 2018

The main linac cryomodule.

When deciding on the shape of a particle accelerator, physicists face a simple choice: a ring of some sort, or a
straight line? This is about more than aesthetics, of course. It depends on which application the accelerator is
to be used for: high-energy physics, advanced light sources, medical or numerous others.

Linear accelerators (linacs) can have denser bunches than their circular counterparts, and are widely used for
research. However, for both high-energy physics collider experiments and light sources, linacs can be

Small Accelerator Promises Big Returns | BNL Newsroom https://www.bnl.gov/newsroom/news.php?a=212802

1 of 7 3/19/18, 11:13 AM

c)
Members of the team testing a fixed-field, alternating-gradient beam transport line made with permanent magnets at Brookhaven
Lab's Accelerator Test Facility (ATF), left to right: Mark Palmer (Director of ATF), Dejan Trbojevic, Stephen Brooks, George
Mahler, Steven Trabocchi, Thomas Roser, and Mikhail Fedurin (ATF operator and experimental liaison).

Harmonic field correction is achieved by an elegant invention first used in CBETA: in order to overcome the
magnetisation errors present in the NdFeB blocks and to produce magnets with 10–3 field accuracy, 32 to 64
iron wires of various lengths are inserted around the magnet bore, with lengths chosen to minimise the lowest
18 multipole harmonics.

A multi-turn test ERL was proposed by Cornell researchers following studies that started in 2005. Cornell was
the natural site, given that many of the components needed for such an accelerator had been prototyped by
the group there. A collaboration with BNL was formed in the summer of 2014; the test ERL was called CBETA
and construction started in November 2016.

CBETA has some quite elaborate accelerator elements. The most complex components already existed before
the CBETA collaboration, constructed by Cornell’s ERL group at Wilson Lab: the DC electron source, the SRF
injector cryomodule, the main ERL cryomodule, the high-power beam stop, and a diagnostic section to map out
six-dimensional phase-space densities. They were designed, constructed and commissioned over a 10-year
period and hold several world records in the accelerator community. These components have produced the
world’s largest electron current from a photo-emitting source, the largest continuous current in an SRF linac
and the largest normalized brightness of an electron bunch.

Setting records

Small Accelerator Promises Big Returns | BNL Newsroom https://www.bnl.gov/newsroom/news.php?a=212802

5 of 7 5/21/18, 6:04 PM

Figure 16. (a) CBETA (Cornell-Brookhaven Energy Recovery Linac (ERL)); (b) Main Linac cryo module;
and (c) FFAG permanent loop return loop.

3. RHIC Future Run Plan (Figure 17) and and the Present RHIC Run in 2018 (Figure 18)

3.1. 2018 RHIC Run Is 40Zr96 + 40Zr96 and 44Ru96 + 44Ru96, Why?

To determine whether the separation of charges in the flow, v2, of π+ and π− shown in Figure 19
is due to a new phenomenon called the Chiral Magnetic Effect (Figure 20a), the 2018 measurements are
made with collisions of Zr+Zr and Ru+Ru, which have the same number of nucleons but different electric
charges (Figure 20b). If the effect is larger in Ru+Ru with stronger charge and magnetic field compared
to Zr+Zr with the same number of nucleons, it would indicate that the charge asymmetry is a magnetic
effect, possibly the Chiral Magnetic Effect.
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Zimanyi School 2018�

Years Beam Species and Science Goals New Systems 

2014
Au+Au at 15 GeV  
Au+Au at 200 GeV 
3He+Au at 200 GeV

Heavy flavor flow, energy loss, 
thermalization, etc.        
Quarkonium studies 
QCD critical point search

Electron lenses 
56 MHz SRF  
STAR HFT 
STAR MTD 

2015-16

p�+p� at 200 GeV  
p�+Au, p�+Al at 200 GeV 
High statistics Au+Au 
Au+Au at 62 GeV ?

Extract �/s(T) + constrain initial 
quantum fluctuations        
Complete heavy flavor studies  
Sphaleron tests 
Parton saturation tests

PHENIX MPC-EX 
STAR FMS preshower 
Roman Pots 
Coherent e-cooling test 

2017 p�+p� at 510 GeV Transverse spin physics 
Sign change in Sivers function

2018 No Run Low energy e-cooling install. 
STAR iTPC upgrade 

2019-20 Au+Au at 5-20 GeV (BES-2) Search for QCD critical point and onset
of deconfinement   

Low energy e-cooling 

2021-22 Au+Au at 200 GeV
p�+p�, p�+Au at 200 GeV

Jet, di-jet, �-jet probes of parton 
transport and energy loss mechanism 
Color screening for different quarkonia 
Forward spin & initial state physics       

sPHENIX  
Forward upgrades ?

 � 2023 ? No Runs Transition to eRHIC 

BNL’s ��
�����	�
�����

isobars

2022-23

d+Au @ 200, 62, 39, 20 GeV

�������������������������������

�������������
��

�
������	�������
������
������������������

�
��

2017 still works in 2018 

Coherent e-cooling final 

2024-26 Factor of 10 increase Au+Au 

Factor of 4 increase p+p 
Complete above measurements 

This color is sPHENIX proposed run plan 

Figure 17. RHIC run plan 2014–2023 (2026?).

Figure 18. The 2018 RHIC run schedule.
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30-40%   Au+Au200 

Figure 19. From Article in the BNL news 8 June 2015.

a) b)

Figure 20. (a) Schematic of A+A collision; and (b) sketch of the stronger magnetic (B) field in Ru+Ru.

3.2. Vorticity: An Application of Particle Physics to the QGP

It was observed at FERMILAB [1] that forward Λ were polarized in p+Be collisions, where the
proton in the Λ → p + π− decay is emitted along the spin direction of the Λ. In the A+A collision
(Figure 21a), the forward going beam fragments are deflected outwards so that the event plane and the
angular momentum Ĵsys of the QGP formed can be determined. STAR claims that the Λ polarization, PΛ, is
parallel to the angular momentum Ĵsys of the QGP everywhere so that the vorticity ω = kBT(PΛ +PΛ)/h̄
can be calculated, a good exercise for the reader to see if you can get the ω ∼ 1022/s which is 105

times larger than any other fluid [2]. Another interesting thing to note is that the largest vorticity is at
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√sNN = 7.6− 19 GeV where the CERN fixed target experiments measure. Does this mean that their fluid
(with minimal if any QGP) is also perfect?

STAR team receives secretary’s achievement award for vorticity in 2018 (Figure 22).
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Brookhaven National Laboratory search 

  Print

By Allison Gasparini  |  Monday, September 10, 2018

STAR Team Receives Secretary's Achievement Award
Recognition for role in enabling discovery of fastest swirling matter at U.S. Department
of Energy Office of Science user facility for nuclear physics research

Members of the STAR team at the awards ceremony (l to r): William Christie, Zhangbu Xu, Victor Perevoztchikov,
Dmitry Arkhipkin, Paul Sorensen, Energy Secretary Rick Perry, Jerome Lauret, James Dunlop, Gene Van Buren, Rachel Nieves,
Flemming Videbaek, Robert Scheetz, Michael Poat, Dmitri Smirnov. Not shown: Elke-Caroline Aschenauer, Wayne Betts, Leslie
Bland, Timothy Camarda, Zilong Chang, Lidia Didenko, Oleg Eyser, Salvatore Fazio, Yuri Fisyak, Wlodek Guryn, Levente Hajdu,
John Hammond, Jiangyong Jia, Hongwei Ke, Alexander Kiselev, Jeffery Landgraf, Alexei Lebedev, Jeong-Hun Lee, Tonko Ljubicic,
Rongrong Ma, Liz Mogavero, Akio Ogawa, Brian Page, Robert Pak, Lijuan Ruan, John Scheblein, Bill Schmidke, Rahul Sharma,

News Home News & Feature Archive

Home RHIC Science News Images Videos For Scientists

STAR Team Receives Secretary's Achievement Award https://www.bnl.gov/rhic/news2/news.asp?a=13110&t=today

1 of 4 11/2/18, 4:36 PM
Figure 22. STAR receives an award for vorticity in 2018.

4. The Search for the Quark Gluon Plasma at RHIC

High energy nucleus–nucleus collisions provide the means of creating nuclear matter in conditions of
extreme temperature and density, the Quark Gluon Plasma QGP (Figure 23). At large energy or baryon
density, a phase transition is expected from a state of nucleons containing confined quarks and gluons to a
state of “deconfined” (from their individual nucleons) quarks and gluons covering a volume that is many
units of the confinement length.
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Figure 23. Sketch of nucleus–nucleus collision producing a QGP.

4.1. Anisotropic (Elliptical) Transverse Flow—An Interesting Complication in all A+A Collisions (Figure 24)

Erice 2008	 M. J. Tannenbaum   10/48  	
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Figure 24. Sketch and definitions of elliptical flow, v2.

Figure 25 shows that Elliptical flow (v2) exists in all A+A collisions measured. At very low √sNN , the
main effect is from nuclei bouncing off each other and breaking into fragments. The negative v2 at larger√sNN is produced by the effective “squeeze-out” (in the y direction) of the produced particles by slow
moving minimally Lorentz-contracted spectators, which block the particles emitted in the reaction plane.
With increasing √sNN , the spectators move faster and become more contracted so the blocking stops and
positive v2 returns.

4.2. Flow Also Exists in Small Systems and Is Sensitive to the Initial Geometry

Figure 26 shows that flow exists in small p+Au, d+Au, 3He+Au systems with preliminary sensitivity
of v3 to the initial geometry. Figure 27 (Top) shows that v2 is about the same in all three systems
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but v3 is much larger in 3He+Au, clearly indicating the sensitivity of flow to the initial geometry
of the collision. Figure 27 (Bottom) shows that there is mass ordering in the flow which is strong
evidence for hydrodynamics in these small systems. The solid red and dashed blue lines represent
hydrodynamic predictions. These hydrodynamical models, which include the formation of a short-lived
QGP droplet, provide the best simultaneous description of the measurements, strong evidence for the
QGP in small systems.
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Figure 25. Values of elliptical flow (v2) as a function of
√

sNN from all A+A collision measurements.
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FIG. 3. | Measured vn(pT ) in three collision systems compared to models. a, Measured vn(pT ) in the 0-5% most
central p+Au collisions compared to models. b, Measured vn(pT ) in the 0-5% most central d+Au collisions compared to models.
c, Measured vn(pT ) in the 0-5% most central 3He+Au compared to models. Each point in a-c represents an average over pT

bins of width 0.2 GeV/c to 0.5 GeV/c; black circles are v2, black diamonds are v3. The solid red (dashed blue) curves in a-c
represent hydrodynamic predictions of vn from sonic (iEBE-VISHNU). The solid green curves in a-c represent initial-state
momentum correlation postdictions of vn from MSTV.

model and the same specific ⌘/s strongly supports the
hydrodynamic picture.

The hydrodynamic calculations shown in Fig. 3 use ini-
tial conditions generated from a nucleon Glauber model.
However, initial geometries with quark substructure do
not significantly change the "2 and "3 values for high
multiplicity p/d/3He+Au collisions [32, 33] and thus the
hydrodynamic results should be relatively insensitive to
these variations.

While we have focused on hydrodynamical models
here, there is an alternative class of models that also
translate initial spatial eccentricity to final state par-
ticle azimuthal momentum anisotropy. Instead of hy-
drodynamic evolution, the translation occurs via parton-
parton scattering with a modest interaction cross section.
These parton transport models, for example A Multi-
Phase Transport (ampt) Model [34], are able to capture
the system ordering of vn at low-pT in small systems [35],
but fail to describe the pT dependence and overall mag-
nitude of the coe�cients for all systems resulting in a
p-value consistent with zero when compared to the data
shown here. We have additionally analyzed ampt follow-
ing the identical PHENIX event plane method and find
even worse agreement with the experimental data.

While the initial geometry models for the d+Au and
3He+Au are largely constrained by our detailed under-
standing of the 2- and 3-body nucleon correlations in the
deuteron and 3He nuclei, respectively, the distribution of
deposited energy around each nucleon-nucleon collision
site could result in an ambiguity between the allowed
ranges of the ⌘/s and the broadening of the initial distri-
bution, as pointed out in Ref. [13]. However, a broader

distribution of deposited energy results in a significant
reduction of the "2 values and an even greater reduc-
tion of "3, with by far the largest reduction in the p+Au
system. Here again, the simultaneous constraints of the
elliptic and triangular flow ordering eliminates this am-
biguity.

Our experimental data also rule out the initial-state
correlations scenario where color domains are individu-
ally resolved as the dominant mechanics for creating v2

and v3 in p/d/3He+Au collisions. After our results be-
came publicly available, a new calculation was presented
in Ref. [37], hereafter referred to as MSTV, where the or-
dering of the measured vn values matches the experimen-
tal data. This calculation posits that gluons from the Au
target do not resolve individual color domains in the pro-
jectile p/d/3He and interact with them coherently, and
thus the ordering does not follow Eq. 4. The calculations
are shown in Fig. 3, and yield a p-value for the MSTV
calculations of v2 and v3 for the three collision systems of
e↵ectively zero, in contradistinction to the robust values
found for the hydrodynamic models. Another key state-
ment made by MSTV – that in the dilute-dense limit the
saturation scale Q2

s is proportional to the number of pro-
duced charged particles – is questionable [38], but also
leads the MSTV authors to make a clear prediction that
the v2 will be identical between systems when selecting
on the same event multiplicity. Shown in Fig. 4 are the
previously published d+Au (20-40%) and p+Au (0-5%)
v2 where the measured mean charged particle multiplic-
ities (dNch/d⌘) match [36]. The results do not support
the MSTV prediction of an identical v2 for these two sys-
tems at the same multiplicity, while the di↵erences in v2
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particularly for d+Au and 3He+Au collisions. Above
the crossing point, supersonic, and iebe-vishnu pre-
dict nearly flat ratios, while ampt describes the ratio of
the v2 values, but not their individual magnitudes. These
di↵erences may be attributed to the di↵erent hadroniza-
tion mechanisms (e.g. - if recombination is included) in
the models.

The observation of a mass-dependent v2 strengthens
the case for associating small-system collectivity with
the expansion of QGP droplets formed in these colli-
sions, where the splitting can be understood in terms
of the presence of a common radial flow field with
anisotropic modulations driven by initial geometry. How-
ever, the theoretical calculations presented in this pa-

per provide several alternative explanations of how the
azimuthal anisotropies for di↵erent particle species may
occur. For instance, in kinetic transport, parton scatter-
ing translates initial geometry into final state momentum
anisotropy, but it does not account for the observed mass
splitting. Instead, this feature has been shown to arise
solely from the hadronic rescattering stage where di↵er-
ent hadrons have di↵erent inelastic cross sections [24].
There is more hadronic rescattering in 3He+Au and
d+Au compared with p+Au for these central collisions
because they have a higher particle density. It is inter-
esting that this conclusion based on ampt regarding the
contribution of the hadronic rescattering stage is oppo-
site to that reached using viscous hydrodynamics [18].

Figure 27. (Top) v2 and v3 in in 0–5% central (a) p+Au, (b) d+Au, (c) 3He+Au collisions at
√

sNN =
200 GeV [4]. (Bottom) v2 Pions/v2 Protons in 0–5% central (a) p+Au, (b) d+Au, (c) 3He+Au collisions at√

sNN = 200 GeV [5].

4.2.1. It Takes Two Color Strings for Collectivity—Nagle, J.; et al. [6]

This is an answer to the interesting question of the minimal conditions for collectivity in small systems.
For the case of e+e− collisions in Figure 28 utilizing the AAMPT framework and a single color

string, the results indicate only a modest number of parton–parton scatterings and no observable
collectivity signal.
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Figure 28. A fundamental point about QCD and the string tension between the q and q̄.

However, a simple extension to two color strings (Figure 29), which represent a simplified geometry
in p+p collisions, predicts finite long-range two-particle correlations (known as the ridge) and a strong v2

with respect to the initial parton geometry.
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Figure 29. Additional special case—two Strings.
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4.2.2. A Fundamental Point about QCD and the String Tension

Unlike an electric or magnetic field between two sources which spreads over all space, in QCD as
proposed by Kogut and Susskind [7] the color flux lines connecting two quarks or a q − q̄ pair as in
Figure 28 are constrained in a thin tube-like region because of the three-gluon coupling. Furthermore, if
the field contained a constant amount of color-field energy stored per unit length, this would provide a
linearly rising confining potential between the q− q or q− q̄ pair.

This led to the Cornell string-like confining potential [8], which combined the Coulomb 1/r
dependence at short distances from vector-gluon exchange with QCD coupling constant αs(Q2), and a
linearly rising string-like potential, with string-tension σ,

V(r) = −αs

r
+ σr (1)

which provided confinement at large distances (Equation (1)). Particles are produced by the string
breaking (fragmentation) .

4.3. The Latest Discovery Claims “Flow” in Small Systems Is From the QGP How Did We Find the QGP in the
First Place?

4.3.1. J/ψ Suppression, 1986

In 1986, T. Matsui and H. Satz [9] said that due to the Debye screening of the color potential in a QGP,
charmonium production would be suppressed since the c-c̄ could not bind. With increasing temperature,
T, in analogy to increasing Q2, the strong coupling constant αs(T) becomes smaller, reducing the binding
energy, and the string tension, σ(T), becomes smaller, increasing the confining radius, effectively screening
the potential [10]

V(r) = −4
3

αs

r
+ σr → −4

3
αs

r
e−µDr + σ

(1− e−µDr)

µD
(2)

where µD = µD(T) = 1/rD is the Debye screening mass. For r < 1/µD, a quark feels the full color
charge, but, for r > 1/µD, the quark is free of the potential and the string tension, effectively deconfined.
The properties of the QGP cannot be calculated in QCD perturbation theory but only in Lattice QCD
Calculations [11].

J/ψ suppression eventually didn’t work because the free c and c̄ quarks recombined to make
J/ψ’s [12]. See Alice publication [13].

4.3.2. Jet Quenching by Coherent LPM Radiative Energy Loss of a Parton in the QGP, 1997

In 1997, Baier, Dokshitzer, Mueller, Peigne, Schiff and Zakharov (BDMPSZ) [14] said that the energy
loss from coherent Landau–Pomeranchuk–Migdal (LPM) radiation for hard-scattered partons exiting the
QGP would result in an attenuation of the jet energy and a broadening of the jets (Figure 30).

As a parton from hard-scattering in the A+B collision exits through the medium, it can radiate a gluon;
and both continue traversing the medium. It is important to understand that “Only the gluons radiated
outside the cone defining the jet contribute to the energy loss”. In the angular ordering of QCD [15],
the angular cone of any further emission will be restricted to be less than that of the previous emission and
will end the energy loss once inside the jet cone. This does not work in the QGP so no energy loss occurs
only when all gluons emitted by a parton are inside the jet cone. In addition to other issues, this means
that defining the jet cone is a big issue—so watch out for so-called trimming.
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Figure 30. Jet Cone of an outgoing parton with energy E [14].

4.4. BDMPSZ: The Cone, the Energy Loss, Azimuthal Broadening, Is the QGP Signature

The energy loss of the outgoing parton, −dE/dx, per unit length (x) of a medium with total length L,
is proportional to the total four-momentum transfer-squared, q2(L), and takes the form:

−dE
dx
' αs〈q2(L)〉 = αs µ2 L/λmfp = αs q̂ L

where µ, is the mean momentum transfer per collision, and the transport coefficient q̂ = µ2/λmfp is the
four-momentum-transfer-squared to the medium per mean free path, λmfp.

Additionally, the accumulated momentum-squared,
〈

p2
⊥W
〉

transverse to a parton traversing a length
L in the medium is well approximated by〈

p2
⊥W

〉
≈ 〈q2(L)〉 = q̂L .

5. Jet Quenching at RHIC, the Discovery of the QGP

The energy loss of an outgoing parton with color charged fully exposed in a medium with a large
density of similarly exposed color charges (i.e., a QGP) from Landau–Pomeranchuk–Migdal (LPM)
coherent radiation of gluons was predicted in QCD by BDMPSZ [14].

Hard scattered partons (Figure 31a) lose energy going through the medium so that there are fewer
partons or jet fragments at a given pT . The ratio of the measured semi-inclusive yield of, for example,
pions in a given A+A centrality class divided by the semi-inclusive yield in a p+p collision times the
number of A+A collisions 〈Ncoll〉 in the centrality-class is given by the nuclear modification factor, RAA
(Figure 31b), which equals 1 for no energy loss.
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dE
dx

= −C2α s q̂ L

CollisionalRadiative

Toward quantitative measurement of
basic medium properties: q-hat

q̂ =
����±���� at RHIC�
�.��±�.�� at LHC

⎧
⎨
⎩

JET Collaboration
Phys. Rev. C 90 (2014) 014909

QGP @ RHIC is more strongly 
coupled than QGP@ LHC.

Partons lose energy going through the
medium so that there are fewer 
partons or jet fragments at a given pT.
The ratio of measured AA to scaled pp
cross section for no effect is:!

€

RAA (pT ) =
d2NAA

π /dpTdyNAA
inel

TAA d2σ pp
π /dpTdy

q

First QCD-based prediction BDMPSZ c. 1997	

Hard scattered partons lose energy 
going through the medium so that 
there are fewer partons or jet 
fragments at a given pT The ratio of 
measured AA to scaled pp cross 
section which=1for no energy loss is:!

RAA (pT ) =
d 2NAA

π / pTdpTdyNAA
inel

NcollAA d 2Npp
π / pTdpTdyNpp

inel
Lots of evidence for jet Quenching, 
discovered at RHIC for π0 and h±!

PHENIX  PRL 88, 022301 (2002) >1000 cites	 <Ncoll> is the number of collisions	Figure 31. (a) Hard quark–quark scattering in an A+A collision with the scattered quarks passing through
the medium formed in the collision; and (b) nuclear modification factor RAA(pT).
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PHENIX discovered jet quenching of hadrons at RHIC in 2001 [16] (Figure 32). Pions at large pT > 2
GeV/c are suppressed in Au+Au at √sNN =130 GeV compared to the enhancement found at the CERN
SpS at √sNN =17 GeV. This is the first regular publication from a RHIC experiment to reach 1000 citations.

RHIC (PHENIX) result on the suppression of high transverse 
momentum particles in high-energy gold-gold collisions was featured on 
the cover of  Physical Review Letters (14 January 2002) and in the                
Physics Focus (21 December 2001) article on the web: 
http://focus.aps.org/v8/st34.html 

Brookhaven Science Associates 
U.S. Department of Energy 

Figure 32. (left) Hadron suppression RAA in Au+Au at
√

sNN = 130 GeV by PHENIX at RHIC compared to
enhancement at

√
sNN = 17 GeV in Pb+Pb at the CERN SpS; and (right) plot is from the cover of PRL [16].

5.1. Status of RAA in Au+Au at √sNN = 200 GeV

Figure 33 shows the suppression of all identified hadrons, as well as e± from c and b quark decay,
with pT > 2 GeV/c measured by PHENIX until 2013. One exception is the enhancement of protons for
2 < pT < 4 GeV/c, which are then suppressed at larger pT . Particle Identification is crucial for these
measurements since all particles behave differently. The only particle that shows no-suppression is the
direct single γ (from the QCD reaction g + q→ γ + q) which shows that the medium produced at RHIC is
the strongly interacting QGP since γ rays only interact electromagnetically.
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Figure 33. Published PHENIX measurements of RAA with references.

5.2. Recent Measurements to Test the Second BDMPSZ Prediction

(1) The energy loss of the outgoing parton, −dE/dx, per unit length (x) of a medium with total length
L, is proportional to the total four-momentum transfer-squared, q2(L), and takes the form:

−dE
dx
' αs〈q2(L)〉 = αs µ2 L/λmfp = αs q̂ L

where µ, is the mean momentum transfer per collision, and the transport coefficient q̂ = µ2/λmfp is the
four-momentum-transfer-squared to the medium per mean free path, λmfp.

(2) Additionally, the accumulated momentum-squared,
〈

p2
⊥W
〉

transverse to a parton traversing a
length L in the medium is well approximated by〈

p2
⊥W

〉
≈ 〈q2(L)〉 = q̂ L 〈q̂L〉 =

〈
k2

T

〉
AA
−
〈

k′2T
〉

pp
. (3)

Although only the component of
〈

p2
⊥W
〉
⊥ to the scattering plane affects kT (Figure 34), the azimuthal

broadening of the di-jet is caused by the random sum of the azimuthal components
〈

p2
⊥W
〉

/2 from each
outgoing di-jet or

〈
p2
⊥W
〉
= q̂ L.

From the values of RAA observed at RHIC (after 12 years), the JET Collaboration [17] has found that
q̂ = 1.2± 0.3 GeV2/fm at RHIC, 1.9± 0.6 at LHC at an initial time τ0 = 0.6 fm/c; however, nobody has yet
measured the azimuthal broadening predicted. Before proceeding, one has to know the meaning of kT
defined by Feynman, Field and Fox [18] as the transverse momentum of a parton in a nucleon (Figure 34).
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Figure 34. Sketch of a di-jet looking down the beam axis. The kT from the two jets add randomly
and are shown with one kT perpendicular to the scattering plane, which makes the jets acoplanar in
azimuth, and the other kT parallel to the trigger jet, which makes the jets unequal in energy. in addition,
xE = pTa cos(π− ∆φ)/pTt. The formula for calculating kT from di-hadron correlations is given in Ref. [19].

5.2.1. The Key New Idea of
〈

k′2T
〉

pp
Instead of

〈
k2

T
〉

pp in Equation (3)

The di-hadron correlations of pTa with pTt (Figure 34) are measured in p+p and Au+Au collisions.
The parent jets in the original Au+Au collision as measured in p+p will both lose energy passing through
the medium but the azimuthal angle between the jets should not change unless the medium induces
multiple scattering from q̂. Thus, the calculation of k′T from the di-hadron p+p measurement to compare
with Au+Au measurements with the same di-hadron pTt and pTa must use the value of x̂h and 〈zt〉 of
the parent jets in the A+A collision. The variables are xh ≡ pTa/pTt, x̂h ≡ p̂Ta/ p̂Tt, 〈zt〉 ≡ pTt/ p̂Tt, where,
e.g., pTt is the trigger particle transverse momentum and p̂Tt means the trigger jet transverse momentum.

The same values of x̂h and 〈zt〉 in Au+Au and p+p give the cool result [20]:

〈q̂L〉 =
[

x̂h
〈zt〉

]2
[〈

p2
out
〉

AA −
〈

p2
out
〉

pp

x2
h

]
(4)

For di-jet measurements, the formula is even simpler:
(i) xh ≡ x̂h because the trigger and away “particles” are the jets; (ii) 〈zt〉 ≡ 1 because the trigger

“particle” is the entire jet not a fragment of the jet; and (iii)
〈

p2
out
〉
= p̂2

Ta sin2(π − ∆φ). This reduces the
formula for di-jets to:

〈q̂L〉 =
[〈

p2
out

〉
AA
−
〈

p2
out

〉
pp

]
= p̂2

Ta

[〈
sin2(π − ∆φ)

〉
AA
−
〈

sin2(π − ∆φ)
〉

pp

]
(5)

5.2.2. A Test of Equation (5) for 〈q̂L〉
Al Mueller et al. [21] gave a prediction for the azimuthal broadening of di-jet angular correlations for

35 GeV jets at RHIC (Figure 35).
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Fig. 2. Impact of the P T -broadening effects on dijet production at mid-rapidity at the LHC, where we plot the b⊥ × W (b⊥) of Eq. (3) as functions of b⊥ with S(Q , b) in Eq. (5)
and three different values of Q 2

s = 0, 8, 20 GeV2. The Fourier transformation of W (b⊥) would give the imbalance transverse momentum q⃗⊥ = k⃗1⊥ + k⃗2⊥ distributions, where 
k1⊥ and k2⊥ are the leading jet and sub-leading jet transverse momenta. Comparison between the two choices of the leading jet transverse momentum P⊥ = 120, 50 GeV at 
the LHC, respectively.

Fig. 3. P T -broadening effects in Dijet azimuthal angular distributions in central PbPb 
collisions at the LHC.

effects are negligible at the LHC, where the three curves (corre-
sponding to three different choices for Q s) almost lay on top of 
each other. This also explains why the azimuthal angular correla-
tion in dijet productions does not change from pp to A A collisions 
at the LHC for the kinematical region studied in the ATLAS and 
CMS measurements.

Nevertheless, the above conclusions can dramatically change 
when we switch from the LHC to RHIC. First of all, the jet trans-
verse momentum can be brought down to 35 GeV at RHIC, which 
significantly reduces the Sudakov effects due to smaller virtual-

ity Q 2. Furthermore, even for identical jet P T , the Sudakov effects 
are smaller at RHIC energy, since typical x values which enter the 
collinear parton distributions in Eq. (3) are larger.

As shown in Fig. 4, we plot the same distributions for a typi-
cal dijet production at RHIC with 

√
S = 200 GeV. Here, clearly, we 

can see that the medium induced P T -broadening contribution is 
very important in the b ∼ 0.5 GeV−1 region. As a result, significant 
P T -broadening effects can be found in Fig. 4 for RHIC experiments. 
In particular, the P T broadening effects change not only the shape 
but also the magnitude of the dijet azimuthal correlations in heavy 
ion collisions at RHIC. We are looking forward to these measure-
ments in the near future [34].

4. Conclusions

We have performed a systematic study of dijet azimuthal de-
correlation in heavy ion collision to probe the P T -broadening 
effects in the quark–gluon plasma. By taking into account addi-
tional Sudakov effects, we found that at the LHC, the medium 
P T -broadening effects are negligible in the dijet azimuthal angular 
distribution, which is consistent with the observations from the 
ATLAS and CMS experiments. By contrast, we demonstrated that 
the P T -broadening effects can be important at the RHIC energy 
and we should be able to observe it in experiments. Future study 
of this physics at RHIC would provide a unique opportunity to di-
rectly probe the P T -broadening effects and help to identify the 
underlying mechanism for the jet energy loss in relativistic heavy 
ion collisions.

Fig. 4. P T -broadening effects at RHIC: (left) plot of b⊥W (b⊥) as function of b⊥; (right) azimuthal de-correlation for dijet production at RHIC for a leading jet P⊥ = 35 GeV.
Figure 35. Prediction of folded away azimuthal width of 35 GeV/c Jets at RHIC for several values of q̂L.

To check my Equation (5), I measured the half width at half maximum (HWHM), which equals 1.175σ

for a Gaussian, for each curve in Figure 35, and calculated (σ× 35)2 to get
〈

p2
out
〉

for each q̂L, and used
Equation (5) to get 9.6 GeV2 and 21.5 GeV2, respectively, for the 8 GeV2 and 20 GeV2 plots. This is an
excellent result considering that I had to measure the HWHMs in Figure 35 with a pencil and ruler.

5.2.3. How to Calculate q̂L with Equation (4) from Di-Hadron Measurements

The determination of the required quantities is well known to older PHENIXians who have read
Ref. [19] or my book [22] as outlined below:

(A) 〈zt〉 is calculated from the Bjorken parent–child relation and “trigger bias” [23] (cf. Ref. [24]).
(B) The energy loss of the trigger jet from p+p to Au+Au can be measured by the shift in the pT

spectra [25].
(C) x̂h, the ratio of the away-jet to the trigger jet transverse momenta can be measured by the away

particle pTa distribution for a given trigger particle pTt taking xE = xh cos ∆φ ≈ xh = pTa/pTt [19]:

dPπ

dxE

∣∣∣∣
pTt

= N (n− 1)
1
x̂h

1
(1 + xE

x̂h
)n . (6)

5.2.4. Example: x̂h from Fits to the PHENIX Data from Ref. [26]

The fits in Figure 36 work very well, with excellent χ2/dof. However, it is important to notice that the
dashed curve in Au+Au does not fit the data as well as the solid red curve which is the sum of Equation (6)
with free parameters + a second term with the form of Equation (6) but with the x̂h fixed at the p+p value.
It is also important to note that the solid red curve between the highest Au+Au data points is notably
parallel to the p+p curve. A possible explanation is that, in this region, which is at a fraction ≈ 1% of the
dP/dxE distribution, the highest pTa fragments are from jets that do not lose energy in the QGP .
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Figure 36. It to xE distributions for π0 − h correlation in p+p and Au+Au 0–20% central collisions using
Equation (6) with the results indicated: (left) 4 < pTt < 5 GeV/c; and (right) 7 < pTt < 9 GeV/c.

5.2.5. Results from STAR π0 − h and γ− h Correlations [27]

Figure 37 is a table of results of my published calculation [20] of 〈q̂L〉 from the STAR data. The errors
on the STAR 〈q̂L〉 here (with the *) are much larger than stated in my published calculation because I made
a trivial mistake, which is corrected here. In addition, the new values of 〈q̂L〉 reflect that Equation (4)
defines 〈q̂L〉 not 〈q̂L〉 /2.

Figure 37. q̂L result table for STAR π0 − h, 12 < pTt < 20 GeV/c 0-20% centrality.

5.3. Some 〈q̂L〉 Results from PHENIX [26]

The away widths from PHENIX π0 − h correlations [26] are shown in Figure 38 with the calculated
q̂L values for π0 − h √sNN = 200 GeV, 20–60% centrality, 5 < pTt < 7 GeV/c shown in Figure 39 and
7 < pTt < 9 GeV/c in Figure 40.
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Figure 38. Away widths from π0 − h correlations as function of partner pT , i.e., pTa, in Au+Au 0–20% and
20–60% and p+p collisions at

√
sNN = 200 GeV for four ranges of trigger pTt indicated [26].

Figure 39. q̂L result table for PHENIX π0 − h, 5 < pTt < 7 GeV/c 20–60% centrality.
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Figure 40. q̂L result table for PHENIX π0 − h, 7 < pTt < 9 GeV/c 20–60% centrality.

5.4. Conclusions

It appears that the method works and gives consistent results for all the q̂L calculations shown
(Figures 37, 39 and 40). In the lowest pTa ∼ 1.5 GeV/c bin, the results are all consistent with the JET
collaboration [17] result, q̂ = 1.2± 0.3 GeV2/fm or q̂L = 8.4± 2.1 GeV2 for L = 7 fm, the radius of an
Au nucleus. However, for pTa > 2.0 GeV/c, all the results are consistent with q̂L = 0. Personally, I
think that this is where the first gluon emitted in the medium was inside the jet cone, so that all further
emissions were also inside the jet cone due to the angular ordering of QCD so that there is no evident
suppression; or that jets with fragments with pT ≥ 3 GeV/c, which are distributed narrowly about the jet
axis, are not strongly affected by the medium [28]. I think that this also agrees with the observation in
Figure 36 that two or three orders of magnitude down in the xE = pTa/pTt distributions the A+A best fit is
parallel to the p+p measurement, which means that these A+A fragments are from jets that have not lost
energy. This is consistent with all the IAA = xAA

E /xpp
E = (pAA

Ta /ppp
Ta )|pTt distributions ever measured (e.g.,

Figures 41 and 42), which decrease with increasing pTa until pTa ≈ 3 GeV/c and then remain constant
because the A+A and p+p distributions are parallel due to no jet energy loss for fragments in this range.
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Fig. 4. Per-trigger yield modification, IAA, on the near side (left) and away side (right) with trigger π0 particle at 8 < ptrig
T < 16 GeV/c for 0–10% Pb–Pb collisions at √

sNN = 2.76 TeV. The data from our previous measurement using di-hadron correlations [40] are slightly displaced for better visibility. The bars represent statistical and the 
boxes systematic uncertainties.

Fig. 5. Per-trigger yield modification, IAA, on the near side (left) and away side (right) with trigger π0 particle at 8 < ptrig
T < 16 GeV/c for 0–10% Pb–Pb collisions at √

sNN = 2.76 TeV. The data are compared to model calculations [60–62] as explained in the text. The bars represent and the boxes systematic uncertainties.

parton recombination for hadronization is used with parameters 
from Ref. [78]. The pQCD calculation [62] is performed at next-to-
leading order (NLO). It uses nuclear parton distribution functions 
for initial-state cold nuclear matter effects, and a phenomeno-
logical model for medium-modified fragmentation functions. The 
evolution of bulk medium is done with a 3 + 1 dimensional ideal 
hydrodynamic model, and the value q̂ is consistent with that of 
the JET collaboration, which was extracted using experimental 
data [79]. The prediction for IAA is only available for the away side, 
and done following Ref. [80].

All calculations are able to qualitatively describe the suppres-
sion of IAA at high passoc

T on the away side, further corroborating 
the idea that the suppression is caused by parton energy loss in 
hot matter. JEWEL and the pQCD calculation do not exhibit an 
increase at low pT, while AMPT quantitatively describes the en-
hancement at the near (except at lowest passoc

T ) and away side. In 
AMPT the low-passoc

T enhancement is attributed to the increase of 
soft particles as a result of the jet-medium interactions. However, 
in particular on the near side for passoc

T > 5 GeV/c AMPT predicts 
a strong suppression of IAA down to about 0.6, which clearly is 
not seen in the data. Also on the away side AMPT tends to under-
predict the IAA for passoc

T > 5 GeV/c. Both defects, which may be 
related to the fact that AMPT was found to overpredict the single-
particle suppression in central Pb–Pb collisions [81], indicate that 
the description implemented in AMPT is not complete.

5. Summary

Two-particle correlations with neutral pions of transverse mo-
menta 8 < ptrig

T < 16 GeV/c as trigger and charged hadrons of 
0.5 < passoc

T < 10 GeV/c as associated particles versus azimuthal 

angle difference "ϕ at midrapidity in pp (Fig. 2) and central 
Pb–Pb (Fig. 3) collisions at √sNN = 2.76 TeV have been measured. 
The per-trigger yields have been extracted for |"ϕ| < 0.7 on the 
near and for |"ϕ−π | < 1.1 on the away side, after subtracting the 
contributions of the flow harmonics, v2 up to v5 (Fig. 3). The per-
trigger yield modification factor, IAA, quantified as the ratio of per-
trigger yields in Pb–Pb to that in pp collisions, has been measured 
for the near and away side in 0–10% most central Pb–Pb colli-
sions (Fig. 4). On the away side, the per-trigger yields in Pb–Pb are 
strongly suppressed to the level of IAA ≈ 0.6 for passoc

T > 3 GeV/c, 
while with decreasing momenta an enhancement develops reach-
ing about 5.2 at lowest passoc

T . On the near side, an enhancement 
of IAA between 1.2 to 1.8 at lowest passoc

T is observed. The data 
are compared to predictions of the JEWEL and AMPT event gen-
erators, as well as a pQCD calculation at next-to-leading order 
with medium-modified fragmentation functions (Fig. 5). All calcu-
lations are able to qualitatively describe the away-side suppression 
at high passoc

T . Only AMPT is able to capture the enhancement at 
low passoc

T , both on near and away side. However, it also under-
predicts IAA above 5 GeV/c, in particular on the near-side. The 
coincidence of the away-side suppression at high pT and the large 
enhancement at low pT on the near and away side is suggestive 
of a common underlying mechanism, likely related to the energy 
lost by high momentum partons. The data hence provide a good 
testing ground to constrain model calculations which aim to fully 
describe jet–medium interactions.
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