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Abstract: In this work, we discuss the dense matter equation of state (EOS) for the extreme range
of conditions encountered in neutron stars and their mergers. The calculation of the properties of
such an EOS involves modeling different degrees of freedom (such as nuclei, nucleons, hyperons,
and quarks), taking into account different symmetries, and including finite density and temperature
effects in a thermodynamically consistent manner. We begin by addressing subnuclear matter
consisting of nucleons and a small admixture of light nuclei in the context of the excluded volume
approach. We then turn our attention to supranuclear homogeneous matter as described by the
Chiral Mean Field (CMF) formalism. Finally, we present results from realistic neutron-star-merger
simulations performed using the CMF model that predict signatures for deconfinement to quark
matter in gravitational wave signals.
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1. Introduction

The first detection of gravitational waves from the neutron-star-merger GW170817 [1],
has generated considerable interest in the equation of state (EOS) of matter created in such extreme
events. In these events, temperatures of tens of MeV are expected to be generated over regions that
vary in density by several orders of magnitude. Therefore, it is imperative to adopt EOS descriptions in
which the symmetries and degrees of freedom change according to the local temperature and density
conditions of the system. From the point of view of merger simulations, it is important to use a small
grid for the simulation to capture the complexity of the event.

In this work, we present a compilation of former works that treated separately the low- and
high-density regimes expected to be formed in neutron-star mergers. First, we discuss an extension
of the excluded volume (EV) approach, which takes into consideration light nuclei beyond the usual
α-particle in the subnuclear regime. Here, the EOS of Akmal, Pandharipande, and Ravenhall (APR)
is used as the underlying description for interacting nucleons. Second, for the description of the
supranuclear regime, we discuss the Chiral Mean Field (CMF) formalism, in which the hadronic
degrees of freedom include both nucleons and hyperons. For sufficiently high temperature and/or
density, the CMF model incorporates a first-order phase transition to deconfined quark matter.
The merger simulations of this work are performed using a covariant general-relativistic description of
hydrodynamics coupled to a fully general-relativistic spacetime evolution. The numerical grid in the
simulation achieves the highest resolution of 250 m covering the two stars and a total extent of 1500 km.
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2. Subnuclear Density

In this section, we discuss the subnuclear density region, which we take to be n . 0.1 fm−3.
Besides density, thermodynamic variables also depend on temperature T and electron fraction
Ye = ne/n, the latter being equal to baryonic charge fraction Yc = ΣBQini/n due to the charge
neutrality requirement. In this regime, a uniform phase of nucleonic matter would be mechanically
(spinodally) unstable, which would give rise to a negative compressibility. Although this instability
shrinks in size with increasing isospin asymmetry (lower electron/charge faction), it does not disappear
for small temperatures. As a solution to the problem, an inhomogeneous phase must be included in
the formalism. In our case, it consists (in addition to nucleons and electrons) of light nuclear clusters.
As a result, the mechanical instability is lifted for T ≥ 8 MeV. At lower temperatures, mechanically
stable configurations must necessarily include heavy nuclei (A > 4) and/or pasta phases.

In the EV approach, the α-particles and other light nuclei (3H, and 3He, and 4He) are assumed to be
structureless and their interactions with “outside” nucleons are taken into account by treating them as
rigid spheres of constant volume. This treatment accounts only for repulsive interactions, the attractive
ones being deemed small. The total free energy density can be decomposed as F = Fb + Fe + Fγ,
where the different terms stand for baryon, electron, and photon contributions. The baryon contribution
consists of a nuclear contribution given by non-interacting Boltzmann gases and an “outside” nucleon
contribution given by the APR EoS.

The APR EOS is a Skyme-like parametric fit [2] to the microscopic calculations of Akmal and
Pandharipande [3], where the NN interaction is described by the Argonne-18 2-body potential,
a modified Urbana-IX 3-body potential (so that the binding energy of isospin-symmetric nuclear matter
is −16 MeV), and a 2-body relativistic boost potential. The Argonne-18 potential is a high precision
fit to the Nijmegen scattering database, such that it reproduces phase shifts and scattering lengths.
The Urbana-IX describes 2-pion exchange and includes phenomenological in-medium modifications
(involving ∆ isobars) to the 2-body interaction. The boost potential is a correction to the 2-body potential
when the interaction is observed in a frame other than the rest-frame of the nucleons. The expectation
value of the ground state corresponding to the total potential is determined by variational chain
summation techniques using a variational wave-function consisting of a symmetrized product of
pair-correlation operators acting on the Fermi gas wave-function. As a result, isospin-symmetric
nuclear matter equilibrium bulk properties other than nsat and E/A(nsat) are predictions of the model,
instead of quantities to which it is fitted.

Figure 1, shows a comparison of EV with virial expansion results for npα matter. The virial
approach includes bound and continuum state corrections to the ideal gas results for thermal
variables [4]. It is model-independent, as experimental phase-shift data are used as input for the
theory. The pressure is obtained from the partition function Q according to P = T/V logQ and it is
expressed in terms of the fugacities zi, (i = α, n, p) and the 2nd virial coefficients b2, which are simple
integrals involving thermal weights and elastic scattering phase shifts. As expected, there are fewer α

particles at lower lepton fractions (blue vs. red curves). The APR/EV approach predicts significantly
lower α-particle populations at large densities relative to the virial approach (solid vs dashed curves).
This is a consequence of only repulsive interactions being included in the EV approach, which is not
the case in the virial approach. In the latter, owing to the lack of sufficiently high-energy data such that
the nuclear hard-core is resolved, the α-nucleon interaction is predominantly attractive. The sudden
disappearance of the α particles causes a change in slope in the baryonic component of thermodynamic
quantities. In the case of lower temperatures, this causes a non-monotonic behavior in the baryonic
component of thermodynamic quantities. The non-monotonic behavior is smoothed out when other
light nuclei are considered (see Ref. [5] for more details).

The mass fractions of the various light nuclear clusters, as calculated by applying the EV approach
to the APR EOS, are presented in the left panels of Figures 2 and 3 for temperatures of 5 MeV and
10 MeV, respectively. These are determined by a combination of the charge and baryon number
conservation laws, the binding energy of each type of nucleus, and local conditions (n, Ye, T).
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The density at which a particular species vanishes is primarily controlled by the EV vi assigned
to it. In this instance, we are using the corresponding experimentally determined charge radii. Note,
however, that this choice is by no means compulsory. For example, in Ref. [6], vα was obtained
by calculating the effective interaction range consistent with an optical potential fitted to neutron-α
scattering data. Moreover, the presence of heavy nuclei (not taken into account here) will also affect
the relative particle concentrations.
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Figure 1. α-particle mass fraction Xα = 4nα/n as a function of baryon density for different electron
fractions at T = 10 MeV shown for the APR/excluded volume and virial approaches.

The right panels of Figures 2 and 3 show the contributions of light nuclei, nucleons, and electrons
to the total pressure. Being that the light nuclei are treated as non-interacting gases, their pressures are
given by classical ideal gas expressions, Pi = niT , modulated by EV factors. The latter act significantly
only at the higher end of the density range considered here and cause the populations of the light
nuclei to decline. Please note that electronic contributions dominate at higher densities and even more
so as Ye increases (lower panels). The negative slope in the total pressure around 0.03 fm−3 in the
bottom right panel of Figure 2 is related to the spinodal instability of purely nucleonic matter (and,
therefore, the nuclear liquid-gas phase transition) which is more pronounced at lower temperatures
and for more isospin-symmetric configurations. This unphysical behavior is not present in the bottom
right panel of Figure 3. Even though the APR liquid-gas critical temperature of about 18 MeV has not
been reached in this case, mainly due to electrons, and to a lesser extend to the light nuclei, the total
pressure remains monotonically increasing at 10 MeV temperature.
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Figure 2. Mass fraction Xi = Aini/n (left) and pressure (right) as a function of baryon density for
different electron fractions at T = 5 MeV shown for the APR/EV approach. The subscripts d ,τ, 3, α, e,
and o correspond to contributions from deuterons, tritons, 3He, alpha particles, electrons and outside
nucleons (nucleons not bound in nuclei). The total mass fraction (=1) and total pressure are given by
Xtot and Ptot, respectively.
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Figure 3. Mass fraction Xi = Aini/n (left) and pressure (right) as a function of baryon density for
different electron fractions at T=10 MeV shown for the APR/EV approach. The subscripts d ,τ, 3, α, e,
and o correspond to contributions from deuterons, tritons, 3He, alpha particles, electrons and outside
nucleons (nucleons not bound in nuclei). The total mass fraction (=1) and total pressure are given by
Xtot and Ptot, respectively.
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3. Supranuclear Density

For densities larger than n ∼ 0.1 fm−3, matter is too dense for nuclei of any type to form and,
thus, consists of uniformly distributed nucleons and electrons. On one hand, effective field theory
has already enabled first-principle calculations of isospin-symmetric and asymmetric matter with
systematic corrections. On the other, continuing beyond n ∼ 0.3 fm−3 to encompass the central
densities of neutron stars is precluded in these methods, as the perturbative expansion parameter
reaches uncomfortably large values (see Ref. [7] for a recent review of the topic). Phenomenological
approaches based on non-relativistic potential models with contact and finite-range interactions have
long been used to explore the EOS at supranuclear densities, the advantage of these models being
that calculations are relatively easier than first-principle calculations. However, higher-than-two-body
interactions, found necessary to fit constraints offered by laboratory data on nuclei at near-nuclear
densities, can render these EOS’s acausal at large density due to the lack of Lorentz invariance in a
non-relativistic approach. These higher-than-two-body interactions correspond to terms in the energy
density which vary as nσ with σ > 2. At sufficiently high densities, they will dominate all other
contributions including the thermal parts and lead to superluminal behavior (cs/c)2 ' σ− 1 > 1.

As a solution to this problem, relativistic Dirac-Brueckner-Hartree-Fock [8–11] and mean
field-theoretical [12] models are used at supranuclear densities, as they and their extensions are
inherently Lorentz invariant and, thus, preserve causality. We choose to work with the CMF model,
which is based on a nonlinear realization of the SU(3) sigma model [13]. This framework incorporates
chiral symmetry and its restoration at large densities and temperatures, as predicted in QCD. Being
that hadrons and quarks in the CMF model interact via meson exchange in a chirally invariant manner,
the various particle masses originate from interactions with the medium. The model in this specific
parametrization is in agreement with standard nuclear and astrophysical constraints [14,15], as well
as lattice QCD and perturbative QCD [16,17]. In particular, in the limit of zero-temperature and
zero-angular momentum, it predicts a maximum mass of 2.1 M� for a hadronic star and 2.0 M� when
quarks are included.

This approach allows for the existence of soluted quarks in the hadronic phase and soluted
hadrons in the quark phase at finite temperature. However, quarks (hadrons) will always give the
dominant contribution in the quark (hadron) phase, and the two phases can be distinguished by
their approximate order parameters, e.g., the chiral condensate σ for chiral symmetry restoration or
the field Φ for deconfinement (named in analogy with the Polyakov loop). This inter-penetration of
quarks and hadrons (that increases with temperature) provides a physically effective description and
is indeed required to achieve the crossover transition known to take place at small chemical potential
values [18]. The left panel of Figure 4 contains the QCD phase diagram (modified from Ref. [19])
resulting from the CMF model and illustrates these features. The right panel in Figure 4 shows the
neutron-star matter EOS (assuming charge neutrality and chemical equilibrium) at zero temperature
calculated from the CMF model. It can be seen that if the local charge neutrality condition is relaxed
to a global charge neutrality condition, a mixed phase appears. In the following, we are not going to
allow for such relaxation (equivalent to considering a large surface tension between the phases) to
study the maximum effect the phase transition can have in binary mergers. We are also going to use a
neutrino-leakage scheme to evolve the charge fraction of matter, which will allow us to go beyond the
initially chemically equilibrated data.
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Figure 4. Left: QCD Phase diagram resulting from the CMF model. The lines represent first-order
transitions. The circles mark the critical end-points. Isospin-symmetric matter refers to zero isospin
and strangeness constraints, while neutron-star matter stands for charged neutral matter in chemical
equilibrium. The shaded regions exemplify some of the different regimes that can be described within
the model. Right: EoS for star matter at T = 0 under different charge neutrality conditions calculated
with the CMF model.

The neutron-star-merger simulations [20] discussed next are performed using the
Frankfurt/IllinoisGRMHD code (FIL) [21–24] including weak-interactions via the neutrino-leakage
scheme [25–27]. The binaries are initially placed at a distance of 45 km in quasi-circular orbit and
perform around five orbits before the merger. These simulations include two setups with equal-mass
neutron stars with a combined total mass of M = 2.8 and 2.9 M�. For each of these systems, two
identical scenarios were simulated either employing the standard CMF EOS, where quarks and a strong
first-order PT are included, or a purely hadronic variant, in which the quarks are artificially suppressed.

The left panel of Figure 5 shows the meridional plane for the 2.9 M� binary 7.7 ms after the
merger, when the first-order phase transition has already occurred and formed a hot and dense
core inside the hypermassive neutron star. Different subpanels compare simulations performed
with the CMF model allowing for quarks (top subpanels) or artificially suppressing quarks (bottom
subpanels). The top subpanels show that a large quark fraction is only present in the center and outside
ring, where the temperature is high. Please note that in the bottom subpanels, due to the lack of a
first-order PT having taken place, there is no hot central region. This feature is a consequence of the
sudden compactification generated by the very steep first-order phase transition and would have been
significantly less pronounced if a mixture of phases had been included in the EOS.

The right panel of Figure 5 shows which parts of the EOS and the QCD phase diagram are actually
probed between 5 ms and 15 ms after the merger for the low-mass binary remnant. The diamonds show
the evolution of the maximum baryon density, which basically probes the center of the merged object.
The circles show the evolution of the maximum temperature, which probes different regions of the
remnant but, eventually, coincides with the center (when circles and diamonds meet). The continued
emission of GWs and, hence, the induced loss of angular momentum through GWs leads to a
continuous rise of the central density, which ultimately reaches and crosses the boundary of the
first-order PT (gray-shaded area).
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Figure 5. Left: merger simulations performed using the CMF model without (top) and with the
suppression of quarks (bottom) for a high-mass binary at a time shortly before the collapse to a black
hole (figure extracted from Ref. [20]). Right: time evolution of the maximum normalized baryon density
region (diamonds) and maximum temperature region (circles) after the merger for the low-mass binary
using the CMF EoS. The gray-shaded area shows the first-order PT being crossed.

In the right panel of Figure 5, the background color code illustrates the relative fraction of quarks
compared with the total baryonic one throughout the whole phase diagram. Although it is not shown,
the first-order phase transition region will bend left at large temperatures (as indicated in the left
panel of Figure 4) but will eventually disappear reaching the crossover region. The first-order phase
transition appears in the right panel of Figure 5 as a surface because we show the phase diagram as a
function of density and the reason there are points inside the region is (i) due to the way our data was
slightly interpolated in that range and (2) the small but finite resolution of the dynamical time-scale
of the hydrodynamical simulation. The first-order phase transition would correspond to a line if we
had chosen to plot the phase diagram as a function of chemical potential instead. This and other
plots will be discussed in a separate publication. Please note that as discussed in detail in Ref. [20],
the deconfinement phase transition is enough to produce a dephasing in the gravitational wave form
after the merger. This is different from hyperon effects or early quark deconfinement, which should
leave imprints in the waveform already before or immediately after the merger [28–30].

4. Discussion and Outlook

Despite advances made in dense nuclear matter theory, many issues remain unresolved and/or
poorly constrained with attendant uncertainties in simulations of supernovae and binary mergers of
neutron stars. In this work, we explored the effects of light nuclear clusters such as d, 3H, 3He and 4He
on the properties of the EOS at subnuclear densities. Their interactions among themselves and with
nucleons were described in the EV approach. We found that the light cluster relative concentrations are
mostly dependent upon the binding energy of the various species. The volume associated with each
type of nucleus plays a role only at the higher density range of the subnuclear region and characterizes
the population decline of the species at those densities.

We also emphasized that while the EV approach is very useful, it accounts only for repulsive
interactions among nuclei and nucleons. We know that attractive interactions are present from
phase-shift data and their inclusion in a calculation will certainly provide corrections to the system’s
state variables. Nevertheless, we expect that these corrections are likely to be small below densities of
about 0.01 fm−3, as indicated from a comparison with the virial approach.

Considering supranuclear densities, the CMF model represents a very useful tool to study the
influence of different hyperonic and quark degrees of freedom in astrophysical scenarios. This can be
seen, for example, in signatures of deconfinement phase transition predicted to exist in neutron-star
mergers. Although the differences generated by quarks in this case are not large, they will be possible
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to resolve if detected by third-generation GW detectors [31,32], especially in the case that a merger
takes place in a nearby system.

While the CMF approach is suitable to describe matter at supranuclear densities (in the
neutron-star core), another description is needed for subnuclear densities (the crust and the very
low-density regions produced in binary mergers). For the moment, we have matched the CMF EOS to
the nuclear statistical equilibrium description presented in Ref. [33], but we are soon going to connect
it to the EV approach discussed in this proceeding [5]. This complete table will be made publicly
available at CompOSE.
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