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Abstract: Based on the analytical solution of accelerating relativistic viscous fluid hydrodynamics
and Buda–Lund model, the pseudorapidity distributions of the most central Pb+Pb and Xe+Xe
collisions are presented. Inspired by the CNC model, a modified energy density estimation formula
is presented to investigate the dependence of the initial energy density estimation on the viscous
effect. This new energy density estimation formula shows that the bulk energy is deposited to the
neighboring fluid cells in the presence of the shear viscosity and bulk viscosity. In contrast to the
well-known CNC energy density estimation formula, a 4.9% enhancement of the estimated energy
density at the LHC kinematics is shown.
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1. Introduction

Relativistic hydrodynamics is one of the most useful tools to investigate the space-time evolution
and transport properties of the quark-gluon plasma (QGP) produced in high-energy heavy-ion
collisions [1,2]. Besides numerical simulations, analytical solutions with simplified initial conditions are
also useful in understanding the properties of this strongly coupled quantum chromodynamics (QCD)
matter, such as the famous Hwa–Bjorken solution [3,4], Gubser solution [5], CGHK solution [6], CCHK
solution [7], CNC solution [8,9], CKCJ solutions [10], and other interesting solutions [11–13]. In this
paper, based on the well-known Buda–Lund model [14], an analytical solution of accelerating viscous
relativistic hydrodynamics [15] is applied to investigate the final hadron pseudorapidity distribution
and the energy density estimation. The charged particle pseudorapidity distributions (dN/dηp) for
the most central

√
sNN = 2.76 TeV Pb+Pb collisions [16],

√
sNN = 5.02 TeV Pb+Pb collisions [17]

and
√

sNN = 5.44 TeV Xe+Xe collisions [18] are presented. Based on this hydrodynamic model with
longitudinal accelerating flow effect, the longitudinal acceleration parameters (λ) are extracted from
those experimental systems. Based on the CNC (Csörgő, Nagy, Csanád.) energy density estimation
model [8,9] and its new results [10,19], a possible relationship between the energy density estimation
and viscosity effect is also investigated.

This paper is organized as follows: in Section 2, we describe the hydrodynamic solutions and
calculate the pseudorapidity densities. In Section 3, the energy density estimation and its viscosity
dependence are investigated. A summary and discussion are given in Section 4.
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2. Pseudorapidity Distribution from Hydrodynamics

The basic formulation of relativistic hydrodynamics can be found in the literature [20,21]. In this
paper, we consider a system with net conservative charge (µi = 0). The flow velocity field is normalized
to unity, uµuµ = 1 and the metric tensor is chosen as gµν = diag(1, − 1, − 1, − 1).

Equations of hydrodynamics can be described by the following conservation laws

∂µ(nuµ) = 0, ∂µTµν = 0, (1)

where the first one is the continuity equation of conserved charges and the second one is the
energy-momentum conservation equations. n is a conserved charge and Tµν is the energy-momentum
tensor. In the Landau frame, the energy-momentum tensor Tµν of the fluid, in the presence of viscosity,
can be expressed as

Tµν = εuµuν − P∆µν + Πµν. (2)

In this expression, uµ is the velocity field, ε is the energy density, P is the pressure, Πµν = πµν − ∆µνΠ
is the viscous stress tensor with Π the bulk pressure and πµν the stress tensor [20]. The projector
∆µν = gµν − uµuν satisfies ∆µνuν = 0. Please note that an Equation of State (EoS) is needed for the
above conservation equations. For that, ε = κP is frequently used with a constant κ value.

The simplest way to satisfy the second law of thermodynamics (entropy must always increase
locally) is to impose the linear relationships between the thermodynamic forces and fluxes (in the
Navier–Stokes limit [20,21]),

Π = −ζθ, πµν = 2ησµν, (3)

where the bulk viscosity ζ and the shear viscosity η are two positive coefficients. Please note that
throughout this work we denote the shear viscosity as η, the space-time rapidity as ηs and the particle
pseudorapidity as ηp.

We solved the conservation equations ∂µTµν = 0 in the Rindler coordinates and obtained
a perturbative analytical solution of the relativistic viscous hydrodynamics with a longitudinally
accelerating flow with constant shear viscosity to entropy density ratio and constant bulk viscosity
to entropy density ratio (see detailed derivations in Ref. [15]). This analytical solution describes a
finite size plasma produced in heavy-ion collision and is obtained from viscous hydrodynamics in the
so-called Rindler coordinates by demanding rotational invariance around z and existing longitudinal
pressure gradient along the beam direction.

The perturbative solution expression from the Ref. [15] is

uµ = (cosh ληs, 0, 0, sinh ληs), (4)

T(τ, ηs) = T0

(τ0

τ

) 1+λ∗
κ
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(5)

here T0 is the temperature at the proper time τ0, τ is a coordinate at proper time, ηs is the space-time
rapidity, λ = (1 + λ∗) controls the longitudinal acceleration, R0 is the Reynolds number and R−1

0 =
Πd

T0τ0
, and Πd ≡

(
ζ
s +

4η
3s

)
[20]. The profile of T(τ, ηs) is a (1+1) dimensional scaling solution in (1+3)

dimensions and it contains not only acceleration but also the viscosity dependent terms now, and
the ηs dependence is of the Gaussian form . Please note that when λ∗ = 0 and R−1

0 = 0, one obtains
the same solutions as the ideal hydrodynamics [4]. When λ∗ = 0 and R−1

0 6= 0, one obtains the first
order Bjorken solutions [20]. If λ∗ 6= 0 and R−1

0 = 0, one obtains a special solution which is consistent
with case (c) in the CNC solutions in [8,9]. Furthermore, the temperature profile (5) implies that for
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a non-vanishing acceleration λ∗, the cooling rate is larger compared to the ideal case. Meanwhile, a
non-zero viscosity makes the cooling rate smaller than that of the ideal case.

Based on the Buda–Lund model and Cooper-Frye formula, the pseudorapidity distribution is
calculated as follow [15]

dN
dηp

= N0

∫ +∞

−∞
dηs

∫ +∞

0
dpT

√
1− m2

m2
T cosh2 y
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× exp
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1
5

ζ
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])
,

(6)

where N0 is the normalization parameter, mT =
√

p2
T + m2 is the transverse mass, pT is the transverse

momentum, m is the particle mass, ηp is the pseudorapidity of the final hadron, y is the rapidity of the

final particle, and we have the relationship: y = 1
2 ln

√
m2+p2

T cosh2 ηp+pT sinh ηp√
m2+p2

T cosh2 ηp−pT sinh ηp
.

3. Relationship between the Energy Density Estimation and Viscous Effect

As given in Bjorken’s paper [4], the phenomenological formula of the initial energy density
estimation εBj is

εBj =
1

S⊥τ0

d〈E〉
dηp

=
〈E〉

S⊥τ0

dN
dy

∣∣∣∣
y=y0

, (7)

where S⊥ is area of the thin transverse slab at midrapidity. For the most central collisions of identical
nucleii, the transverse area can be approximated as S⊥ = πR2, with R being the nuclear radius,
R = 1.18A1/3 fm. 〈E〉 is the average energy of final particle, y0 is the middle rapidity τ0 is the proper
time at thermalization. This energy density was traditionally estimated by Bjorken as τ0 = 1fm/c,
though the exact value of τ0 is still a matter of debate. The volume element is dV = (R2π)τdηs, where
dηs is the space-time rapidity element corresponding to the slab S⊥. The energy content in this slab
is dE = 〈mt〉dN, with 〈mt〉 =

√
〈pT〉2 + m2 from the π±, K±, p and p̄ average transverse momenta

at midrapidity.
Based on the CNC energy density formula [8,9], for accelerationless, boost-invariant Hwa–Bjorken

flow [3,4], the initial and final state space-time rapidities ηs are on the average equal to the hadron
rapidity y. Thus, for a longitudinal accelerating flow, one must take:

εcorr = εBj
dy

dη
f
s

dη
f
s

dηi
s
= εBj(2λ− 1)

(
τf

τ0

)λ−1
, (8)

where the upscript i and f indicate the initial state and final state, λ = λ∗ + 1.
In addition, inspired by the recent CNC results [8,9,19], for the ideal flow, the formula of the initial

energy density with the pressure evolution taken into account is:

εCNC
corr = εBj(2λ− 1)

(
τf

τ0

)λ−1 (τf

τ0

)(λ−1)(1− 1
κ )

, (9)

here λ is the longitudinal acceleration parameter, κ is a constant from the EoS, τf is the freeze-out
proper time.

For a viscous fluid, because the shear viscous tensor and bulk viscous pressure affect the pressure
gradient (Equation (5)), the bulk energy is deposited to the neighboring fluid cells, which results in a
system energy loss (or the so-called dissipative part in the midrapidity final yield). As one can see in
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Equation (7), the initial energy density is calculated from the final state charged particle multiplicity
from experiments at the midrapidity. Based on the final state spectrum (see Equation(6)), one finds
that the viscosity effect reduces the particle multiplicity in the midrapidity ( dN

dy

∣∣∣
y=y0

) because of the

viscosity effect. In other words, if we take into account the viscosity effect for the energy density
estimation from the midrapidity experimental data, the total energy at final state is lower than that in
the initial state. Such dissipative effect can be calculated from Equation (5) and the EoS. Because of
such difference, the energy density estimation based on the ideal fluid method would be lower than
the viscous fluid method. Based on the above analysis, a possible energy density estimation, which
considers the presence of accelerating flow effect and the viscous effect, can be presented as follows:

εviscous
corr = εBj(2λ− 1)

(
τf

τ0

)λ−1 (τf

τ0

)(λ−1)(1− 1
κ )
[

1 +
(2λ− 1)R−1

0
κ − 1

(
1−

(
τ0

τf

) κ−λ
κ )]κ+1

, (10)

where the square brackets term represents the enhancement from the viscosity (based on the
thermodynamical evolution). From above expression, one can find: (a) if λ > 1 and viscosity
ratio ζ/s = η/s = 0.0, it returns to the CNC energy density estimation Equation (9), (b) if λ→ 1 and
viscosity ratio ζ/s = η/s = 0.0 (or R−1

0 = 0.0), it returns to the Bjorken energy density estimation
Equation (7).

We present the numerical results for the pseudorapidity density and the energy density
estimation in the Figure 1. In the left panel of Figure 1, the solid curves show the calculated
pseudorapidity distribution. The normalization factor is determined from the most central multiplicity
dN/dηp(ηp = η0) with the parameters η/s=0.16 [22], ζ/s=0.015 [23]. The freeze-out temperature is
Tf = 140 MeV. For simplicity, κ ≈ 7 is assumed to be a constant in this study [24], m=220± 20 MeV
is an approximate average mass of the final charged particle (π±, K±, p±) and it is calculated by a
weighted average from the published experimental data [16]. The freeze-out proper time is chosen as
τf = 8 fm. The rescatterings in the hadronic phase and the decays of hadronic resonance into stable
hadrons are not included here. The acceptable integral region for each space-time rapidity in the model
is −5.0 ≤ ηs ≤ 5.0 ( where the perturbative condition λ∗ηs �1 is satisfied). We then extracted the
longitudinal acceleration parameters λ for 2.76 TeV Pb+Pb, 5.02 TeV Pb+Pb and 5.44 TeV Xe+Xe, the
most central colliding systems without modifying any extra independent parameters. The values of λ

for different colliding systems are listed in Table 1.
Having achieved a good description of the pseudorapidity distribution for Pb+Pb and Xe+Xe

collisions, we move on to the calculation for the initial energy density. In Figure 1 right panel, the color
bar shows the correction factor εcorr/εBj as a function of the ratio of freeze-out time and thermalization
time (τf /τ0) for λ and viscosity ratio ζ/s and η/s. The value of initial energy density is not calculated
here, and we will present detailed discussion of this interesting problem in the near future as we did
in Refs. [19,25]. Based on Equation (9), we found that the viscous effect results in an almost 4.9%
enhancement for the energy density estimation when τf /τ0 = 8. The correction factors εcorr/εBj are
presented in Table 1 for different colliding systems.

Table 1. Parameters from hydrodynamic results in the text.

√
sNN System dn

dηp
|ηp=ηp0 λ εCNC

corr /εBj εviscous
corr /εBj

2.76 TeV Pb+Pb 1615 ± 39.0 1.035 ± 0.003 1.225 ± 0.022 1.285 ± 0.022
5.02 TeV Pb+Pb 1929 ± 47.0 1.032 ± 0.002 1.204 ± 0.012 1.263 ± 0.015
5.44 TeV Xe+Xe 1167 ± 26.0 1.030 ± 0.003 1.190 ± 0.021 1.248 ± 0.022
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Figure 1. (Left): Pseudorapidity distribution from our model calculation (solid curves) compared
to the LHC experimental data [16–18]. The black curves represent the pseudorapidity distribution
for
√

sNN = 2.76 TeV Pb+Pb collisions,
√

sNN = 5.02 TeV Pb+Pb collisions and
√

sNN = 5.44 TeV
Xe+Xe collisions. (Right): the correction factor εcorr/εBj as a function of the ratio of freeze-out time
and thermalization time (τf /τ0) for different λ and shear viscosity ratio η/s, bulk viscosity ratio ζ/s.
The black dashed line is the result of Bjorken model, while the red band is the result that include the
viscosity effect enhancement (Equation(10)), and the blue band is the result from Equation (9). The band
width comes from the uncertainty of λ (−1.030 ≤ λ ≤ 1.035). For the viscous fluid, the viscosity ratio is
assumed to be constant [22,23] here and the statistical analysis of viscosity ratio is not discussed here.

4. Conclusions and Discussion

In conclusion, the pseudorapidity densities and the viscosity dependence of the energy density
estimation are presented in this paper based on an accelerating viscous hydro model and the
experimental data for the Pb+Pb collisions and Xe+Xe collisions at the LHC energy region.

From the perturbative solution, one finds that the flow is generally decelerated due to the
viscosity from the hydro solution, meanwhile, the longitudinal accelerating effect of the flow-element
compensates for the decrease of pressure gradient. Those two opposite behaviors affect the
thermodynamic evolution of the strong coupling QCD matter. Furthermore, from the final state
expression and a good description of the experimental data at the LHC, one sees that the final state
hadron spectrum is sensitive to the longitudinal flow effect. Simple modifications to the energy density
estimation are proposed based on such two opposite behaviors, too. In contrast to the Bjorken model
and CNC model, the viscosity effect results in a tiny enhancement for the energy density estimation.
Detailed calculation of the energy density for different systems will be studied in next step.

In addition, it is also worth noting that we have made many simplifying assumptions in our
hydrodynamic model, since our goal is only to show which longitudinal flow effect can be used
to describe the pesudorapidity densities and to give a reasonable description for viscous effects
dependence of the initial energy density estimation. For a more realistic study based on or beyond
this study, the following physical effects are important and should be taken into account: the EoS,
viscosity dependence ( especially the bulk viscosity ratio taken from SU(3) pure-glue lattice which is of
large uncertainty about which there are recently suggestions that the full QGP value may actually be
significantly larger than the lattice QCD results), freeze-out hypersurface calculation, resonance decay,
and rescatterings in the hadronic phase and so on. Those important effects and conditions should be
studied in our future research.
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