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Abstract: For the accretion flow in extremely low-luminosity active galactic nuclei, such as our
Galactic center (Sgr A*) and M 87, the collisional mean-free path of ions may be much larger than its
gyroradius. In this case, the pressure parallel to the magnetic field is different from that perpendicular
to the field; therefore, the pressure is anisotropic. We study the effects of anisotropic pressure on
the dynamics of accretion flow by assuming the flow is radially self-similar. We find that in the case
where the outflow is present, the radial and rotational velocities, the sound speed, and the Bernoulli
parameter of the accretion flow are all increased when the anisotropic pressure is taken into account.
This result suggests that it becomes easier for the accretion flow to generate outflow in the presence
of anisotropic pressure.

Keywords: accretion; accretion disks; black hole physics; hydrodynamics; quasars; supermassive
black holes

1. Introduction

According to the temperature of the gas, black hole accretion disk/flow can be divided into two
groups, namely cold accretion disk and hot accretion flow. There are many numerical simulations
studying thin disks. One of the hot topics being studied by simulations is jet launching from a thin disk
(e.g., Casse and Keppens [1,2]; Zanni et al. [3,4]; Sheikhnezami et al. [5]; Sheikhnezami and Fendt [6,7]).
The acceleration of jets from a thin disk is also being studied by analytical works (e.g., Takahashi et
al. [8]). Simulations also studied relativistic thin disks (e.g., De Villiers and Hawley [9,10]; Gammie
et al. [11]; Noble et al. [12]; Sadowski et al. [13]). Hawley et al. [14] gave a very extensive review for
accretion disks.

Observations show that most of the galactic nuclei in the local universe are very dim (Ho [15] and
the references therein). Radiatively inefficient hot accretion flows operate in these sources (Narayan
and Yi [16]; see the reviews by Ho [15] and Yuan and Narayan [17]). Hot accretion flows also operate
in the quiescent and hard states of black hole X-ray binaries (Done et al. [18]; Qiao and Liu [19];
Gilfanov [20]; Zhang et al. [21]; Yan and Yu [22]; see the review by Yuan and Narayan [17]). The
temperature of the gas in the hot accretion flow almost equals the virial temperature. In the innermost
region, the gas can have a temperature of approximately 1011 K (Yuan and Narayan [17]). The density
is very low and depends on the mass accretion rate. In the accretion flow in the Galactic center, in the
innermost region, gas density is approximately 10−18g/cm3.

Recently, numerical simulations found that strong outflow can be launched in hot accretion flows
(e.g., Yuan et al. [23,24]; Narayan et al. [25]; Li et al. [26]; Bu et al. [27]; Bu et al. [28,29]). The
properties of outflow from hot accretion flows have also been studied by analytical works (Xue and
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Wang [30]; Akizuki and Fukue [31]; Bu et al. [32]; Li and Cao [33]; Jiao and Wu [34]; Begelman [35];
Wu et al. [36]; Gu [37]; Cao [38]; Ghasemnezhad and Abbassi [39]; Kumar and Gu [40]). Observations
of low-luminosity active galactic nuclei and a hard state of black hole X-ray binaries showed indirect
evidence that strong outflow can be launched in hot accretion flows (e.g., Crenshaw and Kraemer [41];
Cheung et al. [42]; Homan et al. [43]; Ma et al. [44]; Park et al. [45]). Outflows can interact with the
interstellar medium surrounding the active galactic nuclei (AGNs). Outflows can push away the gas
surrounding the AGN, which will decrease the black hole accretion rate and affect the star formation
rate (Ostriker et al. [46]; Ciotti et al. [47,48]; Weinberger et al. [49,50]; Yuan et al. [51]; Yoon et al. [52];
Bu and Yang [53]).

There are some extremely low accretion rate accretion flows. For example, the accretion rate of
the accretion flow in the Galactic center (Sgr A*) is 2× 10−3LEdd/c2 = 1021g/s, with LEdd and c being
the Eddington luminosity and the speed of light, respectively. The other example is the accretion
flow in the M87 galaxy. The accretion rate of the accretion flow in M87 is 1.8× 1025g/s (Yuan and
Narayan [17]). In these extremely low accretion rate hot accretion flows, such as the accretion flow
in the Galactic center (Sgr A*) and M87, the Coulomb collision mean free paths of both electrons and
ions are much larger than the typical length-scale of the accretion flows, ∼GM/c2, where G and M are
the gravitational constant and black hole mass, respectively (Tanaka and Menou [54]; Johnson and
Quataert [55]; Foucart et al. [56]). At first glance, magneto-hydrodynamic (MHD) approximations
cannot be applied to these plasmas, and we should solve the distribution function of both ions and
electrons. However, particle-in-cell simulations show that the wave–particle interactions can effectively
increase the collision rate between particles (Kunz, Schekochihin, and Stone [57]; Riquelme, Quataert,
and Verscharen [58]; Sironi and Narayan [59]). The plasmas in these extreme low accretion rate
accretion flows are just weakly collisional. For the weakly-collisional plasmas, the non-ideal effects can
be treated as perturbations relative to an ideal fluid, by the inclusion of anisotropic thermal conduction
and anisotropic pressure (Foucart et al. [56]).

In weakly-collisional accretion flows, anisotropic thermal conduction is important and along the
magnetic field lines (Parrish and Stone [60]; Sharma, Quataert, and Stone [61]; Bu, Yuan and Stone [62]).
Thermal conduction can transport thermal energy from the inner (hotter) to the outer (cooler) regions.
Previous works showed that at large radii, the gas temperature can be increased to be above the
virial temperature. Strong outflows can be launched, and the black hole mass accretion rate can be
significantly decreased (Bu et al. [63]).

As introduced above, in weakly-collisional accretion flows, one should include an anisotropic
pressure as perturbations to an ideal fluid. In weakly-collisional accretion flows, the ions collision
mean free path can be much larger than its gyroradius. For example, the ions’ mean free path in the
accretion flow in the Galactic center (Sgr A*) is ∼1017cm (Tanaka and Menou [54]). If we assume that
magnetic pressure is 0.1-times the gas pressure, we will have that ions gyro-radius is∼4×106cm (Bu et
al. [63]). In these systems, pressure parallel to the magnetic field is different from that perpendicular to
the magnetic field (Quataert et al. [64]; Sharma et al. [65]; Chandra et al. [66]). The pressure anisotropy
can be modeled by an anisotropic viscosity with respect to magnetic field lines (Balbus [67]; Islam and
Balbus [68]). In Wu et al. [69], the effects of anisotropic pressure on properties of hot accretion flows
were studied. We note that in that paper, only a very weak magnetic field was considered, and the
magnetic pressure was at least four orders of magnitude smaller than the gas pressure. They found
that when magnetic fields are extremely weak, Maxwell stress is negligibly small. Anisotropic pressure
can transfer angular momentum, and a hot accretion flow can be formed. Furthermore, they found
very weak outflow.

Currently, it is quite difficult to measure or even to constrain the strength of the magnetic field.
Among the existing methods, the Faraday rotation measure (RM) can provide the integration of
electron density and magnetic field along the line of sight. RM combined with spectrum can roughly
give magnetic field strength. For example, the RM of Sgr A*, together with the radio-up to-millimeter
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spectrum, constrains the magnetic field strength in the accretion flow to be 20 Gauss at 10 Schwarzschild
radii (Yuan et al. [70]).

The magnetic stress for angular momentum transfer is induced by turbulence driven by
magnetorotational instability (Balbus and Hawley [71,72]). The stress is BrBφ/(4π) ∼ B2, with Br and
Bφ being the radial and toroidal components of the magnetic field, respectively. The viscous coefficient
(α1) is stress divided by gas pressure. Therefore, we have α1 ∼ B2/p, with p and B being the gas
pressure and magnetic field, respectively. Observations of some accretion systems indicate that the
viscosity coefficient α1 ∼ 0.1 (see King et al. [73] and the references in that paper). Since α1 ∼ B2/p,
such a value of α implies that the magnetic pressure is approximately 1/10-times the gas pressure.
The magnetic field is not significantly weak compared to the gas pressure. The effects of anisotropic
pressure in hot accretion flows with a relatively strong magnetic field have not been studied previously.
In this work, we study the effects of pressure anisotropy (or anisotropic viscosity) on the properties of
hot accretion flows in this case. We set the magnetic pressure to be 0.1-times the gas pressure.

In Section 2, we will describe the basic equations and assumptions. In Section 3, we will present
the results. We discuss and summarize our results in Section 4.

2. Basic Equations and Assumptions

We study time-steady and axisymmetric (∂/∂t = ∂/∂φ = 0) accretion flows in cylindrical
coordinates (r, φ, z). The basic equations describing accretion are as follows,

dρ

dt
+ ρ∇ · v = 0, (1)

ρ
dv
dt

= −∇p− ρ∇Φ +
1

4π
(∇× B)× B +∇ · T +∇ ·Π (2)

ρ

(
de
dt
− p

ρ2
dρ

dt

)
= qvis − qrad ≡ f qvis (3)

qvis = qvis,1 + qvis,2 (4)

In the equations, ρ is the gas density, v is velocity, e is gas specific internal energy, Φ is the
gravitational potential, qvis is the heating rate of the gas, and qrad represents the radiative cooling rate.
For hot accretion flows, the radiative cooling is not important. For simplicity, we assume that qrad = 0
and f = 1. In this paper, we use the Newtonian potential. d/dt = ∂/∂t + v · ∇.

Numerical simulations found that the magnetic field in an accretion flow/disk can be decomposed
into a large-scale ordered component and a turbulent component (e.g., Machida et al. [74]; Hirose et
al. [75]; Bai and Stone [76]). In Equation (2), we use B to represent the large-scale ordered magnetic field
component. Simulations showed that the main body of the accretion flow is governed by a toroidal
magnetic field (see Figure 6 in Hirose et al. [75]). In this paper, we assume that the large-scale ordered
magnetic field has only the toroidal component (Bφ). Following Lovelace et al. [77], we assume that Bφ

is an odd function of z.
Bφ = B0

z
H

, B0 = Bφ |z=H (5)

Bφ |z=H= −Bφ |z=−H (6)

H is the half-thickness of the accretion flow. The large-scale magnetic field only has a toroidal
component, and we assume axisymmetry; therefore, the divergence-free condition of the magnetic
field is satisfied. We note that for the strongly-magnetized accretion flow (MAD disk, Narayan et
al. [25]), a substantial poloidal field is present. We plan to study accretion flow with the poloidal
magnetic field in the future.



Universe 2019, 5, 89 4 of 14

In Equation (2), the term ∇ · T represents the angular momentum transfer by the turbulent
magnetic field component. For the stress T, we use the usual α description,

T = ρν1r
dΩ
dr

(7)

In this equation, ν1 = α1c2
s /ΩK. cs is sound speed; ΩK is the Keplerian angular velocity; Ω is

the angular velocity of the gas. Numerical simulations showed that the dissipation heating mainly
comes from the magnetic reconnection associated with the turbulent magnetic field (Hirose et al. [78]).
In Equation (4), we use qvis,1 = −TdΩ/dr to represent the heating due to the magnetic reconnection
due to the turbulent component of the magnetic field.

Following Chandra et al. [66], we use anisotropic viscous stress tensor Π to model the effects of
ion pressure anisotropy (see also Braginskii [79]),

Π = −3ρν2

[
bb : ∇v− ∇ · v

3

] [
bb− I

3

]
(8)

where b is the unit vector in magnetic field direction, and I is the unit tensor. bb is a dyadic tensor
defined as,

bb =


b1b1 b1b2 b1b3

b2b1 b2b2 b2b3

b3b1 b3b2 b3b3

 (9)

and bb : ∇v = ∑i bibi(∇v)ii + ∑i 6=j bibj(∇v)i,j
In Equation (8),

ν2 = α2c2
s /ΩK (10)

We use α2 to denote the strength of anisotropic pressure. In this paper, the magnetic field only has
a toroidal component. Correspondingly, the anisotropic pressure only has three non-zero components,

Πrr = Πzz = −1
2

Πφφ = −ν2ρr2

3
d
dr

(vr

r2

)
(11)

In Equation (4), the term qvis,2 = −Π : ∇v represents the heating by the work done by
anisotropic pressure.

2.1. Vertical Integrated Equations

In this paper, we use several parameters (ξ1, ξ2, ξ3; see the definitions below) to characterize
the properties of outflows. We assume that the z component of gas velocity is zero. We also assume
that the gas is vertically isothermal. The temperature or sound speed is only a function of r. At
a fixed radius, the gas temperature or sound speed does not change with height. We vertically
integrate Equations (1)–(3) to obtain one-dimensional equations. In the presence of outflow, the
vertically-integrated mass conservation Equation (1) will be as follows,

Ṁ(r) = ṁrs+1/2 (12)

ṁ is constant. The parameter s is in the range −1/2 ≤ s ≤ 1/2 (see the explanation below).
In the presence of outflow, the equations describing inflow are given in Xie and Yuan [80].

The radial momentum equation is,
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vr
dvr

dr
+

1
2πrΣ

dṀ(r)
dr

(vr,w − vr)

=
v2

φ

r
− GM

r2 −
1
Σ

d(Σc2
s )

dr
− 1

4πΣ

(
1
3

d
dr

(HB2
0) +

2
3

B2
0

r
H

)

+
2
3

vr

r2

(
ν2ρ +

d
dr

(rν2ρ)

)
− 1

3r
d
dr

(
rν2ρ

dvr

dr

)
(13)

In this equation, Σ is the surface density and defined as Σ = 2ρH. In Equation (13), vr,w is
the radial velocity of outflow. When the radial velocity of outflow is different from that of inflow,
radial momentum will be taken away from or deposited into inflow by the outflow. Correspondingly,
the inflow velocity will be changed. The first, second, and third terms on the right-hand side of
Equation (13) are centrifugal, gravitational, and gas pressure gradient forces, respectively. The fourth
term is the Lorentz force due to the large-scale ordered magnetic field. The last two terms are the forces
of divergence of anisotropic pressure (∇ ·Π in Equation (2)).

The azimuthal momentum equation is,

1
r

Σvr
d
dr

(rvφ) +
1

2πr
dṀ(r)

dr
(vφ,w − vφ)

=
1
r2

d
dr

(
α1Σc2

s r4

vK

dΩ
dr

)
(14)

In this equation, vK =
√

GM
r is the Keplerian rotational velocity. vφ,w is the rotational velocity

of outflow. If the rotational velocity of outflow is different from that of inflow, angular momentum
will be taken away from or deposited into the inflow by the outflow. Correspondingly, the angular
momentum of inflow will be changed. The term on the right-hand side is the angular momentum
transfer by the turbulent magnetic field (∇ · T in Equation (2)).

We define a parameter β to describe the strength of the large-scale ordered magnetic field,

β =
B2

0/8π

ρc2
s

(15)

The gas in the vertical direction achieves static equilibrium, and the z−component of gravitational
force is balanced by gas pressure gradient and magnetic pressure gradient forces,

GM
r3 H2 = (1 + β)c2

s (16)

We note that the force of divergence of anisotropic pressure (∇ ·Π in Equation (2)) only exists in
the radial momentum equation. This is because the anisotropic pressure only has the Πrr, Πzz, Πφφ

components. Anisotropic pressure cannot transfer angular momentum, because its Πrφ component is
zero.

The energy equation is,

vr

γ− 1
dc2

s
dr
− vrc2

s
ρ

dρ

dr
+

1
2πrΣ

dṀ(r)
dr

(ew − e)

=
α1c2

s r3

vK

(
dΩ
dr

)2
+

1
3

α2c2
s

vK
r5
(

d
dr

(vr

r2

))2
(17)

γ is the ratio of the specific heats, which varies from the relativistic value 4/3 to the typical monatomic
gas value 5/3. In this paper, we set γ = 4/3. We find that the results are not sensitive to the value of γ.
ew is the specific internal energy of outflow. If the specific internal energy of outflow is different from
that of inflow, internal energy will be taken away from or deposited into the inflow by the outflow.
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Correspondingly, the internal energy of inflow will be changed. The first term on the right-hand side
is the heating due to the reconnection of turbulent magnetic field (qvis,1 in Equation (4)). The second
term on the right-hand side is the heating due to the work done by anisotropic pressure (qvis,2 in
Equation (4)).

We parameterize the outflow properties. We assume that the velocities of outflow are proportional
to those of inflow, with vr,w = ξ1vr and vφ,w = ξ2vφ. The specific internal energy of outflow is
proportional to that of inflow, with ew = ξ3e.

2.2. Self-Similar Assumptions

Following Narayan and Yi [16], we set the following radially self-similar assumptions,

vr = −c1α1vK

vφ = c2vK

c2
s = c3v2

K (18)

The radial velocity vr ∝ r−1/2. The mass accretion rate Ṁ ∝ r2ρvr ∝ ρr3/2. If outflow is absent,
the mass accretion rate will be a constant with radius, and we will have ρ ∝ r−3/2. When outflow is
present, the mass accretion rate will decrease with decreasing radius. Numerical simulations found
that when outflow is present, the density profile is very shallow ρ ∝ r−Γ, with 1/2 ≤ Γ ≤ 3/2 (Stone et
al. [81]). The surface density Σ = 2ρH. For hot accretion flows, the scale height of the flow is roughly
equal to the radius H ∼ r. Therefore, we have Σ = Σ0r−Γ+1 = Σ0rs. Σ0 is a constant. The parameter
s = −Γ + 1 is in the range −1/2 ≤ s ≤ 1/2. s = −1/2 corresponds to the case where outflow is absent.

Using Equation (18), the momentum Equations (13) and (14), and the vertical static equilibrium
Equation (16) reduce to,

−1
2

α2
1c2

1 −
1
2
(1 + 2s)(ξ1 − 1)α2

1c2
1 =

c2
2 − 1− (s− 1)c3 −

1
3

β(s + 1)c3 −
5
6
(2 + s)α1α2c1c3 (19)

c1 − (1 + 2s)(ξ2 − 1)c1 = 3(1 + s)c3 (20)

H/r =
√
(1 + β)c3 (21)

The energy Equation (17) becomes,

c1

[
1

γ− 1
+ (s− 1)

]
+ c1

[
(s + 1

2 )(ξ3 − 1)
γ− 1

]
=

9
4

c2
2 +

25
12

c2
1α1α2 (22)

For given values of α1, α2, ξ1, ξ2, ξ3, s, β, Equations (19), (20), and (22) are a closed set of equations
c1, c2, and c3, which will determine the dynamics of the accretion flow.

3. Results

In this paper, we set β = 0.1 and α1 = 0.1. We focused on studying the effects of anisotropic
pressure. For a hot accretion flow, the gas temperature was too high such that gas was fully ionized.
Observationally, it is very hard to detect outflow directly through the absorption line. There is only
some indirect evidence that outflow should be present for a hot accretion flow (Wang et al. [82]; Ma
et al. [44]; Park et al. [45]). The properties (velocity, temperature) of outflows cannot be given by
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observations. Numerical simulations give us the properties of outflows. The values of ξ were mainly
from numerical simulations’ results (Yuan et al. [23]).

3.1. Accretion Flow without Outflow

In this subsection, we focus on the case where outflows are absent. In this case, the parameter
s = −1/2. We show the results in Figure 1. The top-left panel plots radial infall velocity (in units
of Keplerian velocity) as a function of the strength of anisotropic pressure (α2). The top-right panel
plots rotational velocity (in units of Keplerian velocity) as a function of the strength of anisotropic
pressure (α2). The lower panel plots sound speed (in units of Keplerian velocity) as a function of the
strength of anisotropic pressure (α2). The viscous coefficient α1 was set to be 0.1. The ratio of magnetic
to gas pressure β was set to be 0.1. For the self-similar solution, at any radii, the ratio of velocities
to Keplerian velocity was constant. In the figure, we plot the ratio of velocities to Keplerian velocity;
therefore, the results (velocities plotted in the top-left panel of Figure 1) can be applied at any radii.

−2 −1.5 −1 −0.5 0
log10(α2)

−1.220

−1.215

−1.210

−1.205

−1.200

−1.195

lo
g 1

0(
αc

1
≡

−
v r
/v

k)

−2 −1.5 −1 −0.5 0
log10(α2)

−0.204

−0.202

−0.200

−0.198

lo
g 1

0(
c 2

≡
v ϕ
/v

k)

−2 −1.5 −1 −0.5 0
log10(α2)

−0.198

−0.196

−0.194

−0.192

−0.190

−0.188

−0.186

lo
g 1

0(
√
c3

≡
c s
/v

k)

Figure 1. The properties of the accretion flow when outflow is absent (s = −1/2). The top-left panel
plots radial infall velocity (in units of Keplerian velocity) as a function of the strength of anisotropic
pressure (α2). The top-right panel plots rotational velocity (in units of Keplerian velocity) as a function
of the strength of anisotropic pressure (α2). The lower panel plots sound speed (in units of Keplerian
velocity) as a function of the strength of anisotropic pressure (α2). The viscous coefficient α1 was set to
be 0.1. The ratio of magnetic to gas pressure β was set to be 0.1.

The last term on the right-hand side of the radial momentum Equation (19) is the force of
divergence of anisotropic pressure. It is clear, when s = −1/2, that the force is negative; this force
points towards the central black hole. Therefore, from the top-left panel of Figure 1, we see that
with the increase of strength of anisotropic pressure, the radial infall velocity of the accretion flow
increases. If outflow is absent, viscosity due to turbulent magnetic field is the only mechanism
for angular momentum transfer (see Equations (14) and (20)). The inward advection of angular
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momentum by inflowing gas is balanced by the outward angular momentum transportation by
viscosity. With the increase of radial infall velocity, the inward advection of angular momentum flux
increases (see Equation (20)). Correspondingly, the outward angular momentum flux also needs to
increase. The increase of outward angular momentum flux can be realized by increasing the sound
speed (see Equation (20)), because the viscosity T is proportional to c2

s . Therefore, with the increase
of strength of anisotropic pressure, the sound speed (or gas temperature) becomes bigger. From the
energy Equation (22), we see that the viscous heating (first term on the right-hand side) and heating
due to work done by anisotropic pressure (second term on the right-hand side) are balanced by the
advection of energy by the inflow (first term on the left-hand side). With the increase of c1, heating due
to work done by anisotropic pressure increases faster than the increase of energy advection. Therefore,
in order to keep the accretion flow stable, the viscous heating term needs to decrease with an increase
of c1. Therefore, with an increase of α2, the rotational velocity decreases.

From Figure 1, we see that with the increase of α2, both the radial infall velocity and sound speed
increase. Comparing the top-left and lower panels, we see that the infall velocity is always smaller than
the sound speed by one order of magnitude at any given value of α2. Therefore, the infall velocity is
sub-sonic. We assume that magnetic pressure is 10-times smaller than gas pressure. Correspondingly,
the Alfvenic velocity is smaller than gas sound speed by a factor of 3.3. Therefore, the gas infall velocity
is sub-Alfvenic.

3.2. Accretion Flow with Outflow

We first studied the case where the specific velocity and internal energy of outflow are the same
as those of inflow (ξ1 = ξ2 = ξ3 = 1). The results are shown by the blue lines in Figure 2. With the
increase of strength of anisotropic pressure (α2), the infall velocity (c1) increases. The reason is the same
as explained for the case where the outflow is absent. The force of the anisotropic pressure gradient
is negative. Therefore, with an increase of α2, gas infall velocity increases. With the increase of infall
velocity (c1), the sound speed increases. The reason is also the same as in the case where the outflow
is absent, as introduced in the last subsection. We do not explain it again here. We now explain why
the rotational velocity increases with an increase of α2. As introduced above, the viscous heating and
heating due to work done by anisotropic pressure are balanced by the advection of energy by the
inflow (see Equations (17) and (22)). With the increase of c1, the energy advection term increases faster
than the increase of work done by anisotropic pressure. Therefore, in order to keep the accretion flow
stable, the viscous heating term needs to increase with an increase of c1. Therefore, with an increase of
α2, the rotational velocity increases.

Now, we study the cases where the specific velocity and internal energy of outflow are different
from those of inflow. We first study the effects of the discrepancy of the radial velocity between inflow
and outflow. We find that for a reasonable change of values of ξ1, the effects are of minor importance.
This result is consistent with Xie and Yuan [80]. Therefore, for the models described below, we set
ξ1 = 1.

MHD numerical simulation by Yuan et al. [23] has found that the specific angular momentum
of outflow is higher than that of inflow. We study the case where the specific angular momentum of
outflow is higher than that of inflow by setting ξ2 = 1.2. The results are shown in Figure 2 by the yellow
lines. We first focus on the angular momentum Equation (20). In this equation, as introduced above,
the first term on the left-hand side is the angular momentum advection by inflow gas. The second term
on the left-hand side is the angular momentum flux taken away by outflow. The term on the right-hand
side corresponds to the angular momentum outward transportation by viscosity. The inward advection
of angular momentum by gas inflow is balanced by the outward transportation of angular momentum
by both outflow and viscosity. In the model with ξ2 = 1.2, outflow can take away angular momentum,
so the outward flux of angular momentum transported by viscosity (denoted by sound speed c3 in
Equation (20)) becomes smaller. Therefore, with the same value of α2, the sound speed in model
ξ2 = 1.2 is smaller than that in the model ξ2 = 1. With the help of outflow (ξ2 = 1.2), the total outward
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transportation rate of angular momentum by both outflow and viscosity is larger than that in the
case ξ2 = 1. Therefore, the inward advection term of angular momentum (denoted by radial velocity
c1 in Equation (20)) in the model with ξ2 = 1.2 should be larger than that in the model with ξ2 = 1.
Therefore, with the same value of α2, the radial velocity in the model with ξ2 = 1.2 is larger than that
in the model with ξ2 = 1. From the energy Equation (22), with an increase of c1, the energy advection
term increases faster than the increase of work done by anisotropic pressure. Therefore, in order to
keep the accretion flow stable, the viscous heating term (denoted by 9/4c2

2) needs to increase with an
increase of c1. Therefore, with the same value of α2, c2 in the model with ξ2 = 1.2 is larger than that in
the model with ξ2 = 1.

−2 −1.5 −1 −0.5 0
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Figure 2. The properties of the accretion flow when outflow is present (s = 1/2). The top-left panel
plots radial infall velocity (in units of Keplerian velocity) as a function of the strength of anisotropic
pressure (α2). The top-right panel plots rotational velocity (in units of Keplerian velocity) as a function
of the strength of anisotropic pressure (α2). The lower panel plots sound speed (in units of Keplerian
velocity) as a function of the strength of anisotropic pressure (α2). The viscous coefficient α1 was set to
be 0.1. The ratio of magnetic to gas pressure β was set to be 0.1. ξ1 is the ratio of outflow radial velocity
to inflow radial velocity. ξ2 is the ratio of outflow rotational velocity to inflow rotational velocity. ξ3 is
the ratio of outflow sound speed to inflow sound speed. We set ξ1 = ξ3 = 1. The blue and yellow lines
correspond to ξ2 = 1 and ξ2 = 1.2, respectively.

The specific internal energy of outflow was also found to be higher than that of inflow by
simulations (e.g., Yuan et al. [23]). In Figure 3, we show the results for the flow in which outflow
specific internal energy is higher than that of inflow by the yellow lines. When we calculated the results
shown by yellow lines, we set ξ3 = 1.2. Note that the results shown by blue lines in this figure were



Universe 2019, 5, 89 10 of 14

calculated with ξ1 = ξ2 = ξ3 = 1. They are the same as the results shown by blue lines in Figure 2.
Now, we see the energy Equation (22). The first term on the left-hand side is the advection of energy
by gas inflow. The second term on the left-hand side is the energy taken away by outflow. The two
terms on the right-hand side are heating by viscosity and work done by anisotropic pressure. One
portion of the heating energy is advected to the black hole by gas inflow; the other portion is taken
away by outflow. In the model with ξ3 = 1.2, the energy can be taken away by outflow; therefore,
the energy advection term (denoted by c1 [1/(γ− 1) + (s− 1)]) becomes smaller. Therefore, with the
same value of α2, the radial velocity of inflow (c1) in the model with ξ3 = 1.2 is smaller than that in the
model with ξ3 = 1. From the angular momentum Equation (20), we see that with the decrease of c1,
the sound speed c3 also decreases. Therefore, with the same value of α2, the sound speed (c3) in the
model with ξ3 = 1.2 is smaller than that in the model with ξ3 = 1. With the decrease of sound speed,
gas pressure gradient force in the radial direction decreases. In order to keep a balance of the forces in
the radial direction, the centrifugal force should increase. Therefore, with the same value of α2, the
value of c2 in the model with ξ3 = 1.2 is bigger than that in the model with ξ3 = 1.
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Figure 3. The properties of the accretion flow when outflow is present (s = 1/2). The top-left panel
plots radial infall velocity (in units of Keplerian velocity) as a function of the strength of anisotropic
pressure (α2). The top-right panel plots rotational velocity (in units of Keplerian velocity) as a function
of the strength of anisotropic pressure (α2). The lower panel plots sound speed (in units of Keplerian
velocity) as a function of the strength of anisotropic pressure (α2). The viscous coefficient α1 was set to
be 0.1. The ratio of magnetic to gas pressure β was set to be 0.1. ξ1 is the ratio of outflow radial velocity
to inflow radial velocity. ξ2 is the ratio of outflow rotational velocity to inflow rotational velocity. ξ3 is
the ratio of outflow sound speed to inflow sound speed. We set ξ1 = ξ2 = 1. The blue and yellow lines
correspond to ξ3 = 1 and ξ3 = 1.2, respectively.
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The Bernoulli parameter is usually used to judge whether outflow can escape from the black hole
gravitational potential to infinity. In the magnetized accretion flow with only a toroidal magnetic field,
the Bernoulli parameter is defined as,

Be =
1
2

v2 + h + Φ +
BφBφ

4πρ
(23)

Here, h = γe/ρ is enthalpy. Both the velocity and gas temperature increase with the increase of
the strength of anisotropic pressure (α2). Therefore, the Bernoulli parameter increases with α2. The
result indicates that the presence of anisotropic pressure makes it easier to generate outflow.

4. Conclusions

For an extremely low-accretion rate system, the ion’s mean-free path can be much larger than
its gyroradius, and pressure parallel to the magnetic field is different from that perpendicular to the
magnetic field. In this paper, we study the effects of anisotropic pressure on the dynamics of hot
accretion flows. We find that when outflow is absent, the radial velocity and sound speed increase
with the increase of the strength of anisotropic pressure, the rotational velocity decreases with the
increase of the strength of anisotropic pressure. When outflow is present, the radial velocity, rotational
velocity, and sound speed increase with the increase of strength of anisotropic pressure. Therefore,
in this case, the Bernoulli parameter of the accretion flow increases. This result predicts that when
anisotropic pressure is considered, it becomes easier to generate outflow by hot accretion flows.
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