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Abstract: Electromagnetism in spacetime can be treated in terms of an analogue linear dielectric
medium. In this paper, we discuss the gravitational analogue of the linear magnetoelectric effect,
which can be found in multiferroic materials. While this is known to occur for metrics with
non-zero mixed components, we show how it depends on the choice of spatial formalism for the
electromagnetic fields, including differences in tensor weight, and also on the choice of coordinate
chart. This is illustrated for Langevin–Minkowski, four charts of Schwarzschild spacetime, and two
charts of pp gravitational waves.
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1. Introduction

In a linear dielectric medium, polarisation and magnetisation depend linearly on electric and
magnetic fields, respectively. However, it is also possible for a magnetic field to induce polarisation,
and for an electric field to induce magnetisation. In the following form, this is known as the linear
magnetoelectric effect (cf. Landau and Lifshitz [1]),

Pi = ε0χ
ij
e Ej + αijHj , (1)

µ0Mi = µ0χ
ij
mHj + αjiEj , (2)

where the standard electric and magnetic susceptibilities are denoted by χ
ij
e and χ

ij
m, respectively,

and the magnetoelectric effect is described by αij. The first example of a material with an intrinsic
magnetoelectric effect, Cr2O3, was found by Dzyaloshinskii [2] and Astrov [3]. More recently,
multiferroics such as GaFeO3 were found to exhibit a much stronger magnetoelectric effect.
In particular, Sawada and Nagaosa [4] showed that this gives rise to a Lorentz-type force acting
on light, which yields an optical magnetoelectric effect that can produce polarisation-independent
birefringence of light. For a review of the magnetoelectric material science and energy conditions,
see, e.g., [5].

In this article, we discuss the analogue of the linear magnetoelectric effect for electromagnetism
in curved spacetimes. It is well-known that such an effect occurs for metrics with non-zero mixed
time-space components g0i (e.g., [6,7]), and that this corresponds to a magnetoelectric or moving
medium (see, e.g., [8] for a recent review, and [9] for the metric approach to transformation optics).
Resulting optical effects, such as rotation of the plane of polarisation for rotating spacetimes, have been
studied already in the early literature (e.g., [6,10]), even before the Kerr solution was found (cf. [7];
for a more recent discussion of the gravitational Faraday effect see, e.g., [11,12]). However, since the
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electric and magnetic susceptibilities and the magnetoelectric effect in Equations (1) and (2) are spatial,
they depend on the definition of the spatial electromagnetic fields. However, this definition can be
done in several ways, resulting in a subtle difference between tensor fields and tensor density fields.

Thus, the main purpose of the present article is to clarify this dependence by explicitly
computing and comparing the gravitational magnetoelectric effects αij for different choices of spatial
electromagnetic fields, and coordinate charts, which can, of course, capture a moving medium as well.
We begin by reviewing two choices of spatial formalism in Section 2, followed by the identification
of the corresponding gravitational magnetoelectric effects, in addition to the relative permittivities
and permeabilities, in Section 3. This shows that, irrespective of the formalism considered, the relative
permittivities equal the relative permeabilities.

Moreover, while the gravitational magnetoelectric effect is well-known for rotating spacetimes
such as the Kerr, as mentioned above, it is perhaps surprising that it also occurs for suitable charts of
the static Schwarzschild, and even Minkowski spacetime. Thus, we discuss the implications for the
rotating Langevin form of Minkowski, four coordinate charts of the Schwarzschild spacetime, and two
charts of pp gravitational waves in Section 4, to exhibit explicitly the dependence of these quantities
on the choice of spatial formalism and of chart. Finally, we conclude in Section 5.

Throughout the paper, we use Greek indices for spacetime and Latin indices for space, apply
Einstein’s convention for summing over repeated indices, and employ the metric signature (−,+,+,+).
We also use Levi–Civita symbols in three-space, as totally antisymmetric tensor densities with
ε123 = 1, ε123 = 1 as usual. Regarding units, we set Rømer’s constant (the speed of light)
c = (ε0µ0)

− 1
2 = 1. With this choice, it may be noted that the components of the magnetoelectric effect

αij, having dimension TL−1 in SI units, are dimensionless similar to the susceptibilities. Moreover,
[E] = [B] and [D] = [H].

2. Spacetime as a Medium

2.1. Constitutive Tensor Density

Electromagnetism in a linear medium can be described by the field tensor Fµν and

Gαβ =
1
2

χαβγδFγδ , (3)

where χαβγδ is called the constitutive tensor density (e.g., Post [13], Chapter 6), which characterises the
properties of the medium and has area metric symmetries

χαβγδ = χγδαβ , χαβγδ = −χβαγδ , χαβγδ = −χαβδγ . (4)

Constitutive relations of the form in Equation (3) have a long history, occurring already in Bateman’s
discussion of Kummer’s quartic surface [14], and are the subject of premetric electrodynamics
(e.g., [15]). For a discussion of area metric electromagnetism and more general tensorial backgrounds,
see, e.g., [16]. Note also that the symmetries in Equation (4) imply that

Gµν = 2
δ

δFµν

∫
d4x L where L =

1
8

χαβγδFαβFγδ . (5)

Then Maxwell’s equations in the absence of charges and currents are

∂[αFβγ] = 0 , (6)

∂βGαβ = 0 . (7)
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Now, if the medium is simply a vacuum spacetime with Lorentzian metric gµν, as we assume from
now on, the constitutive tensor density is (cf. Post [13], Chapter 9)

χαβγδ =
√
−g
(

gαγgβδ − gαδgβγ
)

, (8)

where g = det gµν. Since Fµν and Gµν are antisymmetric, in four spacetime dimensions they
have six independent components each, corresponding to the Ei, Bi fields, and the Di and Hi
fields, respectively, in space. However, there are different choices for this spatial slicing, yielding
eventually different identifications of the analogue model properties. In the following, we consider
two important examples.

2.2. Zero Weight Formalism

First, we review the formalism used by Frolov and Shoom [17] in the context of spinoptics,
drawing on earlier work by Torres del Castillo and Mercado-Pérez [18]. In this case, the metric of
three-space is defined according to

γij = −
gij

g00
+ aiaj , (9)

where
ai = −

g0i
g00

, (10)

and the spacetime line element takes the form

ds2 = −g00

(
−(dt− aidxi)2 + γijdxidxj

)
. (11)

For static spacetimes with g0i = 0, the spatial metric γij reduces to the optical metric. This optical
metric is defined as the Riemannian metric in three-dimensional space whose geodesics are spatial
light rays, by Fermat’s principle. In the case of stationary metrics with g0i 6= 0, spatial light rays
obeying Fermat’s principle are not geodesics of the Riemannian metric γij, but of a Randers–Finsler
optical geometry. Indeed, the Randers data can be read off immediately from Equation (11) as γij and ai,
and can be converted to the data defining the corresponding Zermelo problem. For a detailed description
of this optical geometry see, e.g., [19]. It may also be noted that the metric in Equation (9) is invariant
under both signature change and conformal transformation gµν 7→ Ω2gµν. Furthermore, given that
gijgjk = δk

i and defining γij such that
γijγ

jk = δk
i (12)

as well, one finds that components of the inverse spacetime metric in terms of the spatial metric are
given by

g00 = −
γijaiaj − 1

g00
, g0i = −

γijaj

g00
, gij = − γij

g00
. (13)

Furthermore, note that,

g = det gµν = g00 det(gij − gi0g−1
00 g0j) = −g4

00γ , (14)

by applying a standard rule for block matrices. Note also that the three-dimensional Levi–Civita
symbols are tensor densities, which are related to the totally antisymmetric tensors according to

εijk =
eijk√

γ
, εijk =

√
γeijk , (15)
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where γ = det γij. Now, the spatial components of the electromagnetic fields are defined as

Ei = Fi0 , a covector field, (16)

Bi =
1
2

eijkFjk , a vector field, (17)

Di = ε0(−g00)
2F0i , a vector field, (18)

Hi =
1
2

eijk H jk =
1
2

µ−1
0 (−g00)

2eijkFjk, a covector field. (19)

Spatial duals are defined with respect to γ, thus Hi = γijHj and

Hij = γiaγjb Hab = µ−1
0 γiaγjb(−g00)

2Fab

= µ−1
0 (Fij + Eiaj − Ejai) . (20)

With these definitions, Maxwell’s equations take the following form: from Equation (6), one obtains,

∂i(
√

γBi) = 0 , (21)

∂0(ln
√

γ)Bi + ∂0Bi + eijk∇jEk = 0 , (22)

where ∇i refers to the covariant derivative with respect to γij, and we have used that fact that

eijk∇jEk =
εijk
√

γ
∂jEk . (23)

The other set (Equation (7)) of Maxwell’s equations yields,

∂i(
√

γDi) = 0 , (24)

∂0(ln
√

γ)Di + ∂0Di − eijk∇j Hk = 0 , (25)

using Equation (14) and

∂j

(√
γ(−g00)

2Fij
)
= ∇j

(√
γ(−g00)

2Fij
)
=
√

γ∇j

(
(−g00)

2Fij
)
= µ0

√
γeijk∇j Hk. (26)

Notice that, with these definitions, the standard form of the spatial Maxwell’s equations is recovered for
stationary spacetimes where ∂0(ln

√
γ) = 0. Moreover, one finds the following constitutive relations,

Ei = γijEj = γijgjµg0νFµν

= −(g00)
2F0i − g00g0jFij = ε−1

0 Di + µ0eijkajHk

= ε−1
0 (Di + eijkaj Hk) , (27)

since, of course, ε0µ0 = 1 in our choice of units. In addition,

Hi = µ−1
0 (Bi − eijkajEk) . (28)

To summarise, all spatial electromagnetic fields are defined as vector or covector fields, that is, having
zero tensor weight, and the constitutive relations in Equations (27) and (28) are vector field equations.
We now consider a somewhat different prescription.
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2.3. Unit Weight Formalism

The second spatial formalism reviewed here was used, e.g., by Plebanski [6] and Volkov, Izmest’ev
and Skrotskii [20], defining a spatial metric γ̃ij which is conformally related to γij of Equation (9),

γ̃ij = −g00γij = gij −
g0ig0j

g00
, (29)

with its inverse denoted by γ̃ij. As with Equation (9), this metric is invariant under sign change and
conformal transformation of the spacetime metric. By the same token as above, we find the following
components of the inverse metric,

g00 = γ̃ijaiaj +
1

g00
, g0i = γ̃ijaj , gij = γ̃ij , (30)

where ai = −
g0i
g00

as before, but we also define

gi = −g0i = −γ̃ijaj . (31)

Furthermore, note that,
g = g00γ̃ . (32)

The electromagnetic field components are now defined as follows,

Ẽi = Fi0 , a covector field, (33)

B̃i =
1
2

εijkFjk , a vector density field, (34)

D̃i = ε0G0i , a vector density field, (35)

H̃i =
1
2

µ−1
0 εijkGjk , a covector field (the

√
γ̃ cancel). (36)

Now, given these definitions, Maxwell’s Equation (6) becomes

∂i B̃i = 0 , (37)

∂0B̃i + εijk∂jẼk = 0 , (38)

and Equation (7) is given by,

∂iD̃i = 0 , (39)

∂0D̃i − εijk∂j H̃k = 0 . (40)

Comparing with the standard spatial Maxwell’s equations as well as the definitions of Section 2.2,
it may be noted that divergences here are not with respect to the spatial metric γ̃ij. Nevertheless, they are
appealing for their formal identity with the standard flat space set of Maxwell’s equations in
vector notation.

Regarding the constitutive relations, one obtains the following relationships whose more detailed
derivation can be found in Appendix A,

ε−1
0 D̃i + µ0εijkajH̃k = −

√−g
g00

γ̃ikẼk , (41)

and also

− µ0

√−g
g00

γ̃iaH̃a = −εijkajẼk + B̃i . (42)
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To summarise, unlike the previous case, only some of the spatial electromagnetic fields are defined as
tensors (electric and magnetic covector fields) but some as tensor densities (electric displacement and
magnetic induction vector density fields). The constitutive relations in Equations (41) and (42) are thus
equations of vector density fields of weight +1. Thus, we call this the unit weight formalism in contrast
to the zero weight formalism of Section 2.2.

Given the definitions of these two formalisms, we are now ready to state and compare the
corresponding gravitational magnetoelectric effects.

3. Gravitational Magnetoelectric Effect

Using the spatial electromagnetic fields, one can rewrite Equations (1) and (2) as follows,

Di = ε0εijEj + αijHj , (43)

Bi = µ0µijHj + αjiEj , (44)

and take this to define the relative permittivity εij, the relative permeability µij, and the linear
magnetoelectric effect αij. Now, turning first to zero weight formalism of Section 2.2 and comparing
Equation (43) with a recast Equation (27), that is,

Di = ε0γijEj − eikjak Hj , (45)

and Equation (44) with a recast Equation (28), that is,

Bi = µ0γijHj + eikjakEj , (46)

one finds, using Equation (13),
εij = µij = γij = −g00gij (47)

or, in other words, electric and magnetic susceptibilities that are vanishing and are
position-independent,

χ
ij
e = 0 = χ

ij
m . (48)

The magnetoelectric effect can now also be read off, using Equation (10),

αij = eijkak = −eijk g0k
g00

, (49)

which, in this case, is found to be an antisymmetric tensor with zero tensor weight.
Next, consider the unit weight formalism discussed in Section 2.3, again using tildes to distinguish

fields from the first case. Now, by comparing Equation (43) with a rewritten Equation (41), that is,

D̃i = −ε0

√−g
g00

γ̃ijẼj − εikjak H̃j , (50)

where we have used again that ε0µ0 = 1, and Equation (44) with a rewritten Equation (42), that is,

B̃i = −µ0

√−g
g00

γ̃ijH̃j + εikjakẼj , (51)

we see that, using Equation (30),

ε̃ij = µ̃ij = −
√−g
g00

γ̃ij = −
√
−g

gij

g00
. (52)
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Thus, compared with Equation (47), the medium is still impedance-matched, with relative
permittivity and permeability being equal. However, these are now tensor densities of weight +1.
Finally, the corresponding magnetoelectric effect is

α̃ij = εijkak = −εijk g0k
g00

, (53)

which now becomes an antisymmetric tensor density of weight +1, in contrast to Equation (49).
Before moving on to applications, we close this section with some general remarks. First, notice

that the relative permittivities and permeabilities defined by Equation (47) as well as Equation (52)
are invariant under change of spacetime signature, that is invariant under gµν 7→ −gµν. They are also
invariant under Weyl rescalings of the metric, that is gµν 7→ Ω2gµν. Both symmetries also hold for
the magnetoelectric effect as defined by Equation (49), but for Equation (53) we only have invariance
under signature change.

4. Applications

4.1. Minkowski-Langevin

Our first example is the Minkowski spacetime in Langevin form, that is, in a rotating frame as
used to derive the Sagnac effect. Starting from Minkowski in cylindrical polar coordinates,

ds2 = −dt2 + dρ2 + ρ2dϕ2 + dz2 , (54)

then with ϕ = ϕ̃ + ωt, where ω is an angular speed, one obtains the Langevin form

ds2 = −
(

1− ρ2ω2
)(

dt− ρ2ω

1− ρ2ω2 dϕ̃

)2

+ dρ2 +
ρ2

1− ρ2ω2 dϕ̃2 + dz2 . (55)

In this frame, the zero weight formalism yields

εij = µij =
(

1− ρ2ω2
)  1 0 0

0 1−ρ2ω2

ρ2 0

0 0 1

 . (56)

for the relative permittivity and permeability, using Equation (47), and

αij = ρω
(

1− ρ2ω2
)  0 0 −1

0 0 0
1 0 0

 . (57)

for the magnetoelectric effect, from Equation (49). By contrast, the unit weight formalism gives

ε̃ij = µ̃ij =
ρ

1− ρ2ω2

 1 0 0

0 1−ρ2ω2

ρ2 0

0 0 1

 . (58)

and

α̃ij =
ρ2ω

1− ρ2ω2

 0 0 −1
0 0 0
1 0 0

 . (59)
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by applying Equations (52) and (53), respectively, to Equation (55). These non-vanishing
magnetoelectric effects even for a flat spacetime illustrate the importance of the choice of frame. This
will be seen even more clearly in the following, by considering four different charts for Schwarzschild.

4.2. Schwarzschild Spacetime

4.2.1. Schwarzschild Coordinates

Since the Schwarzschild metric gij in Schwarzschild coordinates with line element

ds2 = −
(

1− 2m
r

)
dt2 +

dr2

1− 2m
r

+ r2
(

dθ2 + sin2 θdφ2
)

(60)

is manifestly static, g0i = 0, we find immediately from Equations (49) and (53) that the gravitational
magnetoelectric effect vanishes for both spatial formalisms, αij = 0 = α̃ij. In the case of the former
with zero weight, the relative permittivity and permeability given by Equation (47) are

εij = µij =

(
1− 2m

r

) 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 . (61)

and, in the latter case with unit weight, Equation (52) yields

ε̃ij = µ̃ij =
r2| sin θ|
1− 2m

r

 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 . (62)

Comparison of Equations (61) and (62) shows that the two spatial formalisms give rise to different
relative permittivities and permeabilities, even in the asymptotic Minkowski regime.

4.2.2. Null Cone Coordinates

Next, we turn to null cone coordinates, focusing on advanced Eddington–Finkelstein coordinates
in which Schwarzschild is, of course, no longer manifestly static. Given the coordinate transformation,

dt = dv− dr
1− 2m

r
, (63)

the line element in Equation (60) now takes the form

ds2 = −
(

1− 2m
r

)
dv2 + 2drdv + r2(dθ2 + sin2 θdφ2) , (64)

and we can apply the two formalisms in this chart, with x0 = v. Then, the zero weight spatial
formalism yields the following expressions for the relative permittivity and permeability according to
Equation (47),

εij = µij =

(
1− 2m

r

) 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 , (65)
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and the corresponding gravitational magnetoelectric effect in Equation (49) is

αij =

(
1− 2m

r
)2

r2| sin θ|


0 0 0
0 0 1

1− 2m
r

0 − 1
1− 2m

r
0

 . (66)

By contrast, for unit weight, Equation (52) implies that the relative permittivity and permeability is

ε̃ij = µ̃ij =
r2| sin θ|
1− 2m

r

 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 , (67)

while the gravitational magnetoelectric effect (Equation (53)) now becomes

α̃ij =
1

1− 2m
r

 0 0 0
0 0 1
0 −1 0

 . (68)

Thus, comparing Equation (61) with Equation (65) and Equation (62) with Equation (67), we
conclude that the relative permittivities and permeabilities of the two spatial formalisms are identical
for Schwarzschild coordinates and advanced Eddington–Finkelstein coordinates. Moreover, it is
interesting that the gravitational magnetoelectric field, which vanishes in Schwarzschild coordinates,
is non-vanishing for advanced Eddington–Finkelstein. However, the expressions differ in the two
formalisms: for zero weight, Equation (66), the effect vanishes for r → ∞; by contrast, for unit weight,
Equation (68), the effect tends to a constant at radial infinity.

We conclude this section with a remark on Kruskal coordinates. Introducing both advanced and
retarded null coordinates v, w, then instead of Equation (64) we have

ds2 = −
(

1− 2m
r

)
dvdw + r2(dθ2 + sin2 θdφ2) , (69)

and recasting this line element with t = 1
2 (v + w) and x = 1

2 (v + w), we see that the 2-space θ =

const., φ = const. is conformally Minkowski. Thus, the metric is diagonal in the chart (t, x, θ, φ),
and consequently no magnetoelectric effect occurs.

4.2.3. Painlevé–Gullstrand Coordinates

Let us now consider Schwarzschild in Painlevé–Gullstrand coordinates, which are defined for a
freely falling observer such that Equation (60) takes the form

ds2 = −
(

1− 2m
r

)
dt̃2 + 2

√
2m
r

dt̃dr + dr2 + r2
(

dθ2 + sin2 θdφ2
)

. (70)

Now, on the one hand, the relative permittivities and permeabilities in the zero weight case with
Equation (47) yielding

εij = µij =

(
1− 2m

r

) 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 , (71)
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and the unit weight case with Equation (52) giving

ε̃ij = µ̃ij =
r2| sin θ|
1− 2m

r

 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 , (72)

are again the same as for Schwarzschild coordinates and for advanced Eddington–Finkelstein
coordinates, respectively. On the other hand, the gravitational magnetoelectric effects for
Painlevé–Gullstrand are

αij =

(
1− 2m

r
)2

r2| sin θ|


0 0 0

0 0 1
1− 2m

r

√
2m
r

0 − 1
1− 2m

r

√
2m
r 0

 (73)

in the zero weight formalism (Equation (49)), and

α̃ij =


0 0 0

0 0 1
1− 2m

r

√
2m
r

0 − 1
1− 2m

r

√
2m
r 0

 (74)

in the unit weight formalism (Equation (53)). While Equations (73) and (74) are again non-zero,
unlike in Schwarzschild coordinates, they differ from the corresponding effects in advanced
Eddington–Finkelstein coordinates. However, it may be noted that the gravitational magnetoelectric
effect vanishes for both spatial formalisms, Equations (73) and (74), in the Minkowski limit r → ∞,
unlike the previous case.

4.2.4. Kerr–Schild Coordinates

In Kerr–Schild coordinates, the spacetime metric is expressed as

gµν = ηµν + lµlν , (75)

where lµ is null with respect to the Minkowski metric ηµν. Defining lµ = ηµνlν, the inverse of the
metric is

gµν = ηµν − lµlν , (76)

so that lµ is also null with respect to gµν. It also follows that det gµν = −1 in Kerr–Schild coordinates.
Thus, they are a form of Cartesian coordinates for spacetime in which the metric equals its linear
approximation1.

In fact, if we define T = v − r with v from the advanced Eddington–Finkelstein coordinates,
then the Schwarzschild metric in Equation (60) is expressed in Kerr–Schild form in Equation (75) with

lµ =

√
2m
r

(
1,

x
r

,
y
r

,
z
r

)
, (77)

1 In the language of Feynmann graphs [21] in this gauge, there is just a single non-vanishing tree graph.
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where r2 = x2 + y2 + z2, and, changing to polar coordinates, the line element becomes

ds2 = −dT2 + dr2 + r2(dθ2 + sin2 θdφ2) +
2m
r
(dT + dr)2 . (78)

One can now derive the relative permittivity and permeability in the zero weight formalism, to find

εij = µij =

(
1− 2m

r

) 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 , (79)

from Equation (47), and in the unit weight formalism,

ε̃ij = µ̃ij =
r2| sin θ|
1− 2m

r

 1− 2m
r 0 0

0 1
r2 0

0 0 1
r2 sin2 θ

 . (80)

from Equation (52). The magnetoelectric effects in Equations (49) and (53) are

αij =

(
1− 2m

r
)2

r2| sin θ|

 0 0 0
0 0 2m

r
0 − 2m

r 0

 , (81)

and

α̃ij =
1

1− 2m
r

 0 0 0
0 0 2m

r
0 − 2m

r 0

 , (82)

respectively. Once again, we see that the relative permittivities and permeabilities in this chart are
identical to their counterparts in the charts discussed before, but the corresponding magnetoelectric
effects are different. In the case of Painlevé–Gullstrand coordinates, the magnetoelectric effect may
be attributed to the fact that one is using a coordinate system adapted to an ingoing congruence of
time-like geodesics, each of zero kinetic energy. By contrast, in the case of Kerr–Schild coordinates,
the congruence is null and aligned along the ingoing principal null direction of the Weyl tensor.

4.3. Gravitational Waves

4.3.1. Baldwin–Jeffery-Rosen Coordinates

As final application, we consider linearly polarised plane (pp) gravitational waves, first in
Baldwin–Jeffery–Rosen2 coordinates. These are defined by a chart xµ = (u, v, xI), with I = 1, 2,
where u, v are null coordinates with respect to the Minkowski metric, such that the spacetime line
element is given by

ds2 = 2dudv + AI J(u)dxIdx J . (83)

Considering gravitational waves travelling in the x-direction, with xI = (y, z) say, we can write

u =
1√
2
(x− t) , v =

1√
2
(x + t) , (84)

2 Usually referred to as Rosen coordinates, however, cf. [22].
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such that Equation (83) becomes

ds2 = −dt2 + dx2 + AI J(u)dxIdx J , (85)

and use this to compute the relative permittivities and permeabilities in the zero weight and unit
weight formalisms, that is,

εij = µij =

 1 0 0
0 (A−1)11 (A−1)12

0 (A−1)21 (A−1)22

 , (86)

from Equation (47), where (A−1)I J is the inverse of AI J , and

ε̃ij = µ̃ij =
√

det A

 1 0 0
0 (A−1)11 (A−1)12

0 (A−1)21 (A−1)22

 , (87)

from Equation (52). It is interesting to note that the corresponding magnetoelectric effects vanish in
both formalisms,

αij = 0 , (88)

α̃ij = 0 , (89)

again from Equations (49) and (53), although the metric in Equation (83) has a mixed term. (The results
in the unit weight formalism, Equations (87) and (89), have already been pointed out in [23].) We now
change chart and find a rather different situation.

4.3.2. Brinkmann Coordinates

In Brinkmann coordinates, xµ = (U, V, X I), with I = 1, 2, where U, V are null with respect to
Minkowski, the line element of a pp gravitational wave is

ds2 = 2dUdV + KI J(U)X I X JdU2 + δI JdX IdX J , (90)

and KI J is symmetric, trace-free and an arbitrary function of its argument U. Again, considering
gravitational waves in the X-direction, with X I = (Y, Z), we put

U =
1√
2
(X− T) , V =

1√
2
(X + T) , (91)

and write
K =

1
2

KI J(U)X I X J (92)

for short. Then, Equation (90) becomes

ds2 = −dT2 + dX2 + dY2 + dZ2 + K(dX− dT)2 (93)

= −(1− K)dT2 − 2KdTdX + (1 + K)dX2 + dY2 + dZ2 . (94)

Comparing Equations (93) and (78), one recognises that in Brinkmann coordinates the metric is of
Kerr–Schild form, and hence equal to its own linearised approximation, a classic result by Xanthopoulos
[24]. For a discussion of the implications of this fact for graviton stability and vacuum polarisation, as
well as the connection with the Carroll group, the reader may wish to consult [23] and references therein.
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Here, we note the relative permittivities and permeabilities of a gravitational wave in Brinkmann
coordinates, which are found to be

εij = µij = (1− K)

 1− K 0 0
0 1 0
0 0 1

 (95)

in the zero weight formalism, and

ε̃ij = µ̃ij =
1

1− K

 1− K 0 0
0 1 0
0 0 1

 (96)

in the unit weight formalism, using Equations (47) and (52) as before. The corresponding
magnetoelectric effects are given by

αij = (1− K)

 0 0 0
0 0 −K
0 K 0

 , (97)

and

α̃ij =
1

1− K

 0 0 0
0 0 −K
0 K 0

 , (98)

using Equations (49) and (53), respectively. First, we note that the magnetoelectric effects are non-zero
for Brinkmann coordinates, unlike Baldwin–Jeffery–Rosen. Moreover, the relative permittivities
and permeabilities in both formalisms reduce to the identity in the Minkowski limit, where
K → 0, in keeping with the Kerr–Schild-type property of Brinkmann coordinates. Similarly, the
magnetoelectric effects tend to zero in this limit, as expected.

5. Concluding Remarks

The gravitational magnetoelectric effect occurs for metrics with non-zero mixed components g0i,
but, since it is spatial, it depends crucially on both the coordinates used, and the definitions of the
spatial electromagnetic fields.

Here, we have demonstrated explicitly that, depending on these choices, the gravitational
magnetoelectric effect can arise as a tensor (Equation (49)) as well as a tensor density (Equation (53)).
Moreover, although the effect is well-known for rotating spacetimes such as the Kerr, we have shown
that it is also apparent in coordinate charts where the Schwarzschild spacetime is not manifestly static,
such as advanced Eddington–Finkelstein (Equations (66) and (68)), Painlevé–Gullstrand (Equations (73)
and (74)), and Kerr–Schild ( Equations (81) and (82)) coordinates, and even for Minkowski spacetime
in the rotating Langevin frame (that is, Equations (57) and (59)). In addition, for pp gravitational
waves, we have seen that the gravitational magnetoelectric effect can be either vanishing, namely
for Baldwin–Jeffery–Rosen coordinates (Equations (88) and (89)), or non-vanishing, for Brinkmann
coordinates (Equations (97) and (98)). At first glance, this is surprising since there are mixed null terms
in the spacetime line elements of both charts.

We hope that these observations on the gravitational magnetoelectric effect will help to provide
a different perspective, as well as another basis for concrete computations, regarding the rotation
of polarisation under gravity (see, e.g., [25]). Moreover, increasing interest in the optical properties
of gravitational waves (cf. [26]) may benefit from this description as an effective optical medium.
Finally, if suitable translucent multiferroics could be constructed whose permittivities, permeabilities
and magnetoelectric effects mimic their gravitational analogues, they would provide interesting
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gravitational lens models (on constructing metamaterials, see, e.g., [27]). These could model not
only lensing by Kerr black holes but potentially also, as mentioned above, the Schwarzschild lens in
non-static slicings.
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Appendix A

The constitutive relations for the zero weight formalism of Section 2.3 can be derived as follows.
For the displacement, we have

ε−1
0 D̃i =

√
−gg0µgiνFµν

=
√
−g
(

g00gijF0j + g0jgi0Fj0 + g0jgikFjk

)
=
√
−g
(
−g00γ̃ijẼj + gigjẼj + γ̃ijεjkl gk B̃l

)
, (A1)

and the magnetic field is given by

µ0H̃i =
1
2
√
−gεijkgjµgkνFµν

=
1
2
√
−gεijk

(
gj0gkl F0l + gjl gk0Fl0 + gjmgknFmn

)
= −

√
−gεijkγ̃jl gk Ẽl +

1
2
√
−gεijkgjmgknFmn

= −
√
−gεijkγ̃jl gk Ẽl −

g00√−g
γ̃ij B̃j , (A2)

since, using Equation (32),

− g00√−g
γ̃ij B̃j = −1

2
g00√−g

γ̃ijε
jmnFmn = −1

2
g00
√

γ̃√−g
γ̃ijejmnFmn

=
1
2
√
−g00eijkγ̃jmγ̃knFmn

=
1
2
√
−g00

√
γ̃︸ ︷︷ ︸√−g

εijkgjmgknFmn . (A3)

Thus, combining Equations (A1) and (A2),

ε−1
0 D̃i + µ0εijkaj H̃k =

√
−gẼk

−̃γikgjaj + γ̃jkgiaj + gigk − γ̃ikγ̃mnaman︸ ︷︷ ︸
=0

− γ̃ik

g00


− εijkγ̃klaj B̃l

(
−
√−g√

γ̃
+

g00
√

γ̃√−g

)
︸ ︷︷ ︸

=0

, (A4)

again using Equation (32), which yields Equation (41),

ε−1
0 D̃i + µ0εijkajH̃k = −

√−g
g00

γ̃ikẼk . (A5)
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Moreover, Equation (A2) gives rise to Equation (42),

−µ0

√−g
g00

γ̃iaH̃a =
−g

g00
√

γ̃
eabcγ̃iaγ̃kbγ̃jcajẼk + γ̃iaγ̃aj B̃j

= −εijkajẼk + B̃i , (A6)

as required.
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