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Abstract: We look at the current practice of analyzing the magnitude–redshift relation from the
data on Type Ia supernovae. We show that, if the main aim of such analysis were to check the
validity of a cosmological model, then the recently advanced arguments do not serve the purpose.
Rather, the procedure followed tells us only about the statistical significance of the internal parameters
used in the model, whereas the model itself is tacitly assumed to give a good fit to the data. A statistical
assessment of the procedure is given and it is argued that given the growing data, the validity of
the cosmological model should be checked first rather than the spread of any internal parameters.
In passing we also discuss some aspects of the Milne model in the light of the present test.
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1. Introduction

Supernovae of Type Ia (SNeIa hereafter) are transient phenomena involving powerful
thermonuclear explosions of carbon–oxygen white dwarfs [1]. The peak luminosity of a typical
SNeIa is generally as high as the combined luminosity of around 109 suns. Thus, owing to their large
luminosities, the SNeIa can be observed up to very high redshifts. Moreover, the intrinsic scatter in the
peak luminosity of the normal SNeIa is small, and their spectra and light curves are very homogeneous.
Another important property of SNeIa is that they are detected in all types of galaxies. The frequency of
their occurrence in a galaxy like ours is of the order of a few per century. These are the key features that
make SNeIa the best distance indicators (standard candles) and hence excellent tools for cosmological
probes, particularly in measuring the expansion rate of the universe and discriminating one history of
the universe from another [2,3].

Given a theoretical model of the universe, it is possible to predict a magnitude (m)–redshift
(z) relation. This can be compared with the corresponding observed relation facilitated by an ideal
standard candle. The χ2-test is the most frequently used test for this purpose. Since in recent years
high quality data on SNeIa have become available, such a test would no doubt have provided an
observational check on cosmological models.

Unfortunately, however, a recent trend in the analysis of SNeIa data departs from the standard
practice of executing a quantitative assessment of a cosmological theory—the expected primary goal
of the observations [4,5]. Instead of using the data to directly test the considered model, the new
procedure tacitly assumes that the model gives a good fit to the data, and limits itself to estimating the
confidence intervals for the parameters of the model and their internal errors. The important purpose
of testing a cosmological theory is thereby vitiated.
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This issue has been addressed in the following from the point of view of a statistician. It appears
that only after checking whether the considered model is consistent with the data for viable values
of its free parameters should one proceed further to estimate the parameters of the model and their
uncertainties. An independent observational verification of the standard cosmological model is also
warranted by the highly speculative nature of its main ingredients: dark matter and dark energy.

We have also tried to clear up, in passing, a misunderstanding related to Milne’s model, which has
recently crept into the literature.

2. A Brief Overview of SNeIa Cosmology

Prior to the late 1990s, the standard models of cosmology used to be the simplest homogeneous
and isotropic solutions of Einstein’s equations, i.e., the Friedmann–Lemaître-Robsertson–Walker
(FLRW) universe:

H2 +
kc2

S2 =
8πG

3
ρ (1)

q =
4πG
3H2

(
ρ +

3p
c2

)
(2)

which1 are obtained by solving the Einstein field equation Gµν = (−8πG/c4)Tµν for the
Robertson–Walker (R-W) line element

ds2 = c2dt2 − S2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)

]
. (3)

The models based on Equations (1) and (2) predict that the observed luminosity l of a celestial
object, for instance an SNIa, observed at a redshift z ≡ S0/S− 1 (the subscript zero denotes the value
of the quantity at the present epoch2), should be [6]

l =
L

4πd2
L

(4)

where L is the absolute luminosity of the SNIa, and its luminosity distance dL is given by [6,7]

dL = (1 + z)S0 r1 (5)

where r1, the coordinate distance of the observed SNIa, can be calculated by integrating the
metric (3), giving
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)
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∫ z

0

dz′

H(z′)

)
, when k = −1.

(6)

Equations (1) and (2) show that the expansion of the universe should be slowing down with time
for the normal matter with ρ > 0, p ≥ 0. We were then taken aback when a team led by Saul Perlmutter

1 Here H ≡ Ṡ/S is the Hubble parameter with S being the scale factor of the homogeneous-isotropic universe (the “over-dot”
represents derivative with respect to the cosmic time t), q ≡ −S̈/(SH2) is the deceleration parameter, k = ±1, 0 is the
curvature parameter of the R-W spacetime, ρ, p are respectively the density and pressure of the cosmic matter, and c, G are
respectively the speed of light in vacuum and the Newtonian constant of gravitation.

2 The present value of the scale factor S0 can be calculated, for different values of k, from Equation (1) in terms of ρ0 and H0

giving S0 = cH−1
0

√
k/(Ωm − 1), where Ωm ≡ ρ0/ρc is the present density of the universe in the unit of critical density

ρc ≡ 3H2
0 /(8πG).
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and another one led by Adam Riess and Brian Schmidt noticed that more than 50 distant SNeIa appear
significantly fainter for their measured redshift than predicted by the then standard cosmology [8–10].
Since then over 1200 high-redshift SNeIa with increasing precision have been observed, which confirm
this result [11].

This situation is generally explained away by postulating the existence of some unknown
component in the energy budget of the universe, termed as “dark energy”—a smoothly pervasive
component whose pressure is sufficiently negative. For a suitably chosen density of the dark energy
ρDE, its negative pressure enhances the distance dL of the SNeIa so that they may look fainter as in the
observations. Mathematically, this is equivalent to replacing ρ and p in Equations (1) and (2) with

ρ→ ρtotal = ρ + ρDE

p→ ptotal = p + pDE

}
(7)

where the pressure of the dark energy pDE = ωDEρDEc2, with ωDE = ωDE(z) in general,
and ΩDE ≡ ρDE0/ρc. For instance, Equations (1) and (2) are respectively replaced by

H2 = H2
0

[
Ωm(1 + z)3 + ΩDE(1 + z)3(1+ωDE) + (1−Ωm −ΩDE)(1 + z)2

]
(8)

2q =
H2

0
H2

[
Ωm(1 + z)3 + (1 + 3ωDE)ΩDE(1 + z)3(1+ωDE)

]
(9)

in a matter-dominating (over radiation) universe for a constant ωDE and a (covariantly) conserved
matter content. The most favored candidate of dark energy is Einstein’s famous cosmological constant
Λ (for which ωDE = ωΛ = −1), i.e., ρΛ = Λc2/8πG = −pΛ/c2. This would, however, mean an
accelerating expansion of the present universe for suitably chosen ρDE, rather than the old decelerating
one. For instance, for Λ > 4πGρ0/c2, the modified Equation (9) would imply q < 0 at the present epoch.

Although all the SNeIa data are consistent with the cosmological constant Λ, various other models
also fare well with the data, as we can see in Table 1. This has given rise to a plethora of models in
the framework of general relativity (GR), as well as some possible modifications of GR. Theorists may
debate the relative merits of various cosmic-acceleration theories: cosmological constant, dark energy,
alternative gravity, anthropic arguments, etc., but it is ultimately up to the observations to decide
which theory is correct.

Observations usually test the models in two ways: (i) the first one—the Bayesian approach—gives
a relative rather than an absolute measure of how good a theory is, and hence is more appropriate
for comparison between competing models; (ii) the second one—Pearson’s “chi-square (χ2)
test of goodness of fit” or the “weighted least-square fit”—is more commonly used for theory
testing, wherein the observed sample distribution is compared with the χ2-probability distribution
corresponding to the model to be tested. Under this approach, one minimizes χ2 given by
Equation (12) below.
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Table 1. Best-fit parameters of some selected cosmological models fitted to different SNeIa data sets.

Models Ωm ΩDE ωDE (Constant) M q0 χ2 DoF P (%)

(9 high z + 27 low z) MLCS SNeIa from Riess et al. [8] (1998)

ΛCDM 0.15± 1.28 0.60± 1.47 −1 43.31 −0.53 44.0 33 9.5
ΛCDM (Ωtotal = 1) 0.26± 0.10 1−Ωm −1 43.30 −0.60 44.0 34 11.7

ρDECDM (Ωtotal = 1) 0.14± 1.34 1−Ωm −0.79± 1.79 43.31 −0.52 44.0 33 9.5
Milne model 43.35 0 47.1 35 8.3

54 SNeIa from Perlmutter et al. [10] (1999)

ΛCDM 0.79± 0.47 1.40± 0.65 −1 23.91 −1.01 56.9 51 26.6
ΛCDM (Ωtotal = 1) 0.28± 0.08 1−Ωm −1 23.94 −0.58 57.7 52 27.3

ρDECDM (Ωtotal = 1) 0.48± 0.15 1−Ωm −2.10± 1.83 23.91 −1.14 57.2 51 25.7
Milne model 24.03 0 61.5 53 19.8

“Gold Sample” of 157 SNeIa from Riess et al. [12] (2004)

ΛCDM 0.46± 0.10 0.98± 0.19 −1 43.32 −0.75 175.0 154 11.8
ΛCDM (Ωtotal = 1) 0.31± 0.04 1−Ωm −1 43.34 −0.54 177.1 155 10.8

ρDECDM (Ωtotal = 1) 0.49± 0.06 1−Ωm −2.33± 1.07 43.30 −1.28 173.7 154 13.2
Milne model 43.40 0 191.7 156 2.7

“New Gold Sample” of 182 SNeIa from Riess et al. [13] (2007)

ΛCDM 0.48± 0.09 0.96± 0.18 −1 43.36 −0.72 156.4 179 88.7
ΛCDM (Ωtotal = 1) 0.34± 0.04 1−Ωm −1 43.40 −0.49 158.7 180 87.1
ρDECDM (Ωtotal = 1) 0.46± 0.06 1−Ωm −1.75± 0.63 43.35 −0.92 156.6 179 88.5

Milne model 43.45 0 174.3 181 62.6

New Gold Sample + the most distant SN UDS10Wil of z = 1.914 [14] (2013)

ΛCDM 0.50± 0.09 0.99± 0.17 −1 43.36 −0.74 157.0 180 89.1
ΛCDM (Ωtotal = 1) 0.35± 0.04 1−Ωm −1 43.40 −0.48 160.1 181 86.6

ρDECDM (Ωtotal = 1) 0.47± 0.06 1−Ωm −1.80± 0.62 43.35 −0.94 157.5 180 88.6
Milne model 43.45 0 178.3 182 56.4

As the SNeIa datasets are generally given in terms of magnitude versus redshift (instead
of luminosity versus redshift), one needs to convert the luminosities appearing in Equation (4),
in the logarithmic scale of magnitudes. Taking a logarithm of Equation (4) and recalling that
l = 10−2m/5 × 2.52× 10−5 erg cm−2 s−1, L = 10−2M/5 × 3.02× 1035 erg s−1 [7], one obtains

m(z;M, Ωm, ΩDE, ωDE) =M+ 5 log
(

H0

c
dL(z; Ωm, ΩDE, ωDE)

)
, (10)

where M ≡ M − 5 log H0 + constant3, with m and M representing the apparent and absolute
magnitudes, respectively. For the nearby SNe (z << 1), Equation (10) reduces to

m(z) =M+ 5 log z, (11)

which can be used to estimateM by using low-redshift supernovae-measurements (that are far enough
into the Hubble flow so that their peculiar velocities do not contribute significantly to their redshifts).
In order to compare the model-predicted value of m with the observed magnitude mobs, one calculates
χ2 according to

χ2 =
N

∑
i=1

[
m(zi;M, Ωm, ΩDE, ωDE)−mobs,i

σmobs,i

]2

(12)

3 The value of this constant depends on the chosen units in which dL and H0 are measured. For example, if dL is measured in
Mpc and H0 in km s−1 Mpc−1, then this constant comes out as ≈25.
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where the quantity σmobs,i is the measurement error (standard deviation) in the observed magnitude mobs,i
of the i-th SNIa. We generally assume that the errors σmobs,i are independent and distributed normally.

It is suggested by Equation (12) that, if the model represents the data correctly, the difference of
the predicted and observed magnitudes should be roughly the size of the measurement uncertainties
and each data point will contribute roughly one to χ2, giving a sum roughly equal to the degrees
of freedom (DoFs) ≡ the number of data points N − the number of fitted parameters (it is expected
that N >> the number of fitted parameters). If χ2 is large, the fit is bad. In order to quantify the
goodness-of-fit of the model to the data, one calculates the χ2-probability P (appearing in the last
column of Table 1), which provides an objective assessment of how the model fares with the data.
If the fitted model provides a typical value of χ2 as x at n DoF, this probability is given by

P(x, n) =
1

Γ(n/2)

∫ ∞

x/2
e−uun/2−1du. (13)

P(x, n) gives the probability that a model that does fit the data at n DoFs would give a value of χ2

as large as x or larger. This generally assumes that the measurement errors are normally distributed.
Unless P is substantially large, we cannot claim that the model has a good fit. Generally, the model is
ruled out if P ≈ 0.05 or smaller.

One may note that the values of M estimated from different data sets (appearing in the 5th
column of Table 1) do not match. There are two reasons for this. (i) Sometimes the data are given in
terms of the distance modulus µ = m(z)−M, instead of m. The constantM takes care of this situation
where Equation (12) can still be used in this case for fitting the data by using µobs in place of mobs.
(ii) Usually the zero-point absolute magnitudes are set arbitrarily in different data sets. While fitting the
combined data set this situation is handled successfully by the constantM appearing in Equation (12),
which now plays the role of the normalization constant and simply gets modified suitably. In this case,
however, it does not represent the usual “Hubble constant-free absolute magnitude”4, but differs from
the latter by an unknown constant (which is, however, not needed for the cosmological results).

3. A Non-Standard Approach to SNeIa Data

(a) About a decade ago, a new approach that does not respect the standard procedure described above
was adopted to analyze the SNeIa data. Initiated by the SuperNova Legacy Survey (SNLS) [15] in 2006,
this approach simply assumes, rather than examines, that the standard cosmology is consistent with
the SNeIa observations and limits itself to calculating confidence intervals (ellipses) of parameters.
Under this approach, χ2 is calculated from

χ2 =
N

∑
i=1

[
[m(zi; parameters)−mobs,i]

2

σ2
mobs,i

+ σ2
int

]
(14)

where σint, appearing as a free parameter in (14), is the (unknown) intrinsic dispersion of the SNeIa
absolute magnitude, which is not included in the σmobs . It is claimed that σint is an extra dispersion
in m related to our imperfect understanding of SNeIa physics. It may result from many unidentified
sources such as the intrinsic progenitor properties, circumstellar dust, the viewing angle, uncorrected
selection effects as well as the imperfect nature of SNeIa as standard candles.

It should be noted that the observations we have considered in Table 1 already include the intrinsic
dispersion of the SN absolute magnitude in their error bars. This is generally estimated from the
nearby data, from the difference between the observed magnitudes and those predicted theoretically
by the cosmological models, e.g., the linear Hubble law (Equation (11)), which is same for all models

4 PerhapsM is called so because it serves as the absolute magnitude corresponding to the “Hubble constant-free luminosity
distance” in Equation (10). It is easy to check that H0dL is Hubble constant-free.
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for a low redshift. On the other hand, the new approach initiated by SNLS estimates σint by considering
it an adjustable free parameter in order to obtain χ2/DoF = 1 (i.e., it assumes, rather than tests, that the
considered model has a good fit). This is, however, equivalent to just increasing the error bars suitably
in order to have a satisfactory fit to our desired model. In this way, one can ‘fit’ any model to the
data and estimate a σint. For example, the Einstein-de Sitter model can also be fitted to the SNLS
data by considering σint = 0.258 with χ2/DoF = 1.00. Various other plausible models, in the ΛCDM
cosmology as well as in alternative theories (for instance, the quasi-steady state cosmology (QSSC),
see Appendix A), can also be fitted to the SNLS data for reasonable values of σint, as is shown in
Tables 2 and 3. Let us note that many of these models do not otherwise fit the data if we follow
Equation (12) of the standard approach with m given by (10). Moreover, the new method prohibits
an objective assessment of the considered theory in terms of the goodness-of-fit probability P, in the
absence of which the estimated parameters do not have any significance.

Table 2. Different possible ΛCDM models which provide χ2/DoF ≈ 1 for suitably chosen σint to fit 115
SNeIa from Astier et al. [15].

σint Ωm ΩΛ M χ2/DoF Varied in χ2-Minimization

0.131 0.26 1−Ωm 43.16 112.97/113 Ωm,M
0.131 0.31 0.81 43.15 112.09/112 Ωm, ΩΛ,M
0.143 0 0 43.26 114.40/114 M
0.172 0.3 0 43.32 113.94/114 M
0.132 0 0.38 43.17 112.97/113 ΩΛ,M
0.135 −0.24 0 43.20 112.89/113 Ωm,M

Table 3. Different plausible models in QSSC which provide χ2/DoF ≈ 1 for suitably chosen σint to fit
115 SNeIa from Astier et al. [15]. The parameters zmax, ΩΛ (< 0), κ (measured in the units of 105 cm2/g),
ρg (in 10−34 g/cm3), and H0 (in 100 Km s−1Mpc−1) characterize a typical model in QSSC [16].

σint ΩΛ κρgH−1
0 zmax M χ2/DoF Varied in χ2-Minimization

0.14 −0.3 8.49 10 43.22 113.62/113 κρgH−1
0 ,M

0.15 −0.1 5 10 43.28 113.22/114 M
0.16 −0.2 5 10 43.31 114.3/114 M
0.173 −0.3 5 10 43.34 113.80/114 M
0.147 −0.1 5 8 43.27 114.63/114 M
0.16 −0.2 5 8 43.30 111.94/114 M
0.17 −0.3 5 8 43.33 114.02/114 M

It might be legitimate to consider χ2/DoF = 1 for the nearby SNeIa only, for which all the models
consistently give the same m− z relation (11). Nevertheless, the high-redshift SNeIa must be checked
to be consistent with the model before calculating the confidence intervals on the estimated parameters.
It may be noted that, in the theories of modified gravity, the peak luminosity of SNeIa depends on the
local strength of gravity [17]. Therefore, the extrapolation of the dispersion of the absolute magnitude
of SNeIa from low-redshift to high-redshift may be erroneous.

It may also be mentioned that the introduction of σint in Equation (14) does not respect the
standard way of data analysis in statistics. One may recall that the variance σ2

mobs,i
appearing in

Equation (12) represents the combined uncertainty in the observed magnitude of the ith supernova
arising from the uncertainties in different variables, for example, lensing, dust extinction, the peculiar
velocity of the host galaxy, etc. By Taylor-expanding m about its mean value and by recalling that
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the variance of (m) = 〈m2〉 − 〈m〉2, one can write the combined uncertainty in mobs in terms of the
uncertainties in its parameters, say, xj:

σ2
mobs

= ∑
j

(
∂m
∂xj

)2

σ2
xj
+ ∑

j
∑
k 6=j

(
∂m
∂xj

)(
∂m
∂xk

)
cov(xj, xk) (15)

where cov(xj, xk) is the covariance between the variables xj and xk, which vanishes for the uncorrelated
variables, leaving the combined uncertainty in mobs as

σ2
mobs

= ∑
j

(
∂m
∂xj

)2

σ2
xj

(16)

i.e., the sum of the square of some random variables, each normalized by its variance, and thus
following a χ2-distribution. Thus, a more reasonable way to introduce σint would be to estimate the
combined uncertainty in mobs,i according to Equation (16) by using the independent measurement
uncertainties σmint,j from different sources, such as the intrinsic progenitor properties, circumstellar dust,
the viewing angle, etc. This would lead to a χ2 given by

χ2 = ∑
i,j

 [m(zi; parameters)−mobs,i]
2

σ2
mobs,i

+ [ ∂m
∂mint,j

(zi)]2 σ2
mint,j

 . (17)

It may be noted that replacing Equation (12) with Equation (14) is equivalent to assuming that
σmobs,i is underestimated, and so we are adjusting it by adding σint to it. However, we expect σint not
to be higher than σmobs,i , in this case. But σint is far higher than σmobs,i for various SNeIa in the SNLS
data. Another point worth noting is that the goodness-of-fit probability P given by Equation (13) holds
when the measurement errors are independent and Gaussian. It should be a matter of caution whether
this condition is still valid after the extra terms are added in the denominators in Equation (14) (and
also in Equation (18) appearing below) and if the resulting statistic still follows a χ2-distribution.

It should also be mentioned that the value of the intrinsic dispersion σint = 0.13 ± 0.02,
estimated in [15] using Equation (14) for the concordance model, is approximately of the same order as
measured by [8,10,12,18,19]. Nevertheless, our critique is not directed to the fit-quality of the concordance
model, but to the non-standard methodology of SNeIa data analysis mentioned above. The harmful side
effect of this methodology (of disrespecting model-testing and limiting oneself to estimating the parameters
of the model either from the SNeIa data or by combining the SNeIa data with other observations) is clear
from the following example. In analyzing the “Constitution” data [20], although the authors in [20] do
not follow the new approach, they do not seem to notice that the theory does not fit the data well! One
can calculate from their Table 1 that the best-fitting ΛCDM model, with Ωm = 1−ΩΛ = 0.29 gives
χ2/DoF = 465.5/395 with a meager probability P = 0.83%, so the estimated model can be ruled out at a
confidence level of more than 99%! Other models too have a similar fit.

Of course one can estimate σint (if one is interested in just that) from all (high- as well as
low-redshift) SNeIa data by assuming that a particular theory (here the standard cosmology),
already tested, must be consistent with the data (i.e., χ2/DoF = 1). This is fine if the theory is
well established which is already tested by other independent ways. Then we are not interested in
testing the already established theory; rather, we want to estimate, from Equation (14), some parameter
of the data (here σint) that we could not decipher from the observations. This procedure is followed
in many branches of physics. However, this is not so with the standard cosmology in view of the
notorious fine-tuning and coincidence problems related with the cosmological constant, and the
extremely speculative character of the dark energy in general, in the total absence of any direct
observational support. Thus, the standard cosmology calls for more and rigorous observational tests.
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It may be mentioned that the new non-standard approach initiated in 2006 by the SNLS group
has already acquired the status of the “standard” approach. Many other groups, which were earlier
following the conventional methods to analyze the SNeIa data, now follow the new approach [11].

(b) In passing, it would also be worthwhile to bring to the notice of the reader another approach
that also does not seem perfectly consistent with Equation (16). Some authors (for example, [8,12,13])
perform the SNeIa data-fitting by considering the χ2-statistic in the form

χ2 =
N

∑
i=1

[m(zi; parameters)−mobs,i]
2

σ2
mobs,i

+ σ2
v

(18)

where σv represents the dispersion in SN redshift due to peculiar velocities (z = v/c). They usually
consider σv = 400 Km s−1 within its likely range 200 Km s−1 ≤ σv ≤ 500 Km s−1. They further add
2500 km s−1 in the quadrature to σv for high-redshift SNeIa whose redshifts are determined from the
broad features in the SN spectrum. Let us note that m(z) is as non-linear as

m(z) = 5 log
[
(1 + z)

∫ z

0
(Ωm(1 + z′) + ΩΛ)

−1/2dz′
]
+ constant (19)

even for the simplest ΛCDM model. Thus, Equation (18) does not seem to respect Equation (16).
It should be noted that σv can very well be included in σmobs , as has been done in [15]. It should,
however, be mentioned that the removal of σv from Equation (18) does not make any significant change
in the fit-results. The fit-results mentioned in Table 1 are calculated by neglecting σv from (18).

A misunderstanding about the Milne model: It would also be worthwhile to clear a
misunderstanding related to Milne’s model, which persists in the literature. In Table 1, we notice that,
besides the ΛCDM and other dark energy models, the Milne model also fares well with the data (see
also, [21]). The remarkable fact is that this coasting model does so without requiring any dark energy
and accelerated expansion.

In the literature, the Milne model is represented by an unphysical “empty” universe with
Ωm = 0 = ΩDE, which is though misleading. Although by considering Ωm = 0 = ΩDE in the FLRW
equations of GR, one is led to

ds2 = c2dt2 − S2
(

dr2

1 + r2 + r2dθ2 + r2 sin2 θ dφ2
)

, S = ct (20)

which is the same as the evolution dynamics of the universe in the Milne model derived from
kinematic relativity and the cosmological principle (see Appendix B), nevertheless the two models
are fundamentally different [22]. While the former represents an unphysical empty universe in the
framework of GR, the latter is not empty. In fact, the Milne model cannot be recast in the framework of
GR. It is a phenomenological model of the universe that was developed by Milne independently of GR
by assuming the presence of matter in the Minkowskian background. The presence of matter without
curving spacetime in Milne’s theory indicates that this theory is fundamentally different from GR and
should not be viewed within the usual understanding of an empty universe in GR. (Let us note that
the metric given in Equation (20) is Minkowskian in disguise.)

4. Conclusions

No matter how elegant a theory is, its verification, by comparison with the observational evidence,
is absolutely necessary. This is usually done through some standard statistical techniques such as the
χ2-goodness-of-fit test, which determines how well the theory fits the observations. Observations on
the SNeIa can be used as an excellent tool to serve this purpose in the case of a cosmological theory.
Let us recall that the SNeIa are one of the best standard candles known today, and a sizeable number
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thereof is nowadays routinely detected by some dedicated surveys. The statisticians would also concur
with the approach wherein the new SNeIa data are used to test the theory.

However, the current practice of analyzing the magnitude-redshift relation from the SNeIa data
does not fulfill this requirement. It rather reverses the standard procedure by assuming (rather than
examining) that the basic hypothesis (standard cosmology with 23% of dark matter and 72% of dark
energy) is correct (by presuming χ2/DoF = 1) and limits itself to calculating the allowed confidence
intervals for the estimated parameters. Discussions with professional statisticians reveal that this
approach is logically inconsistent. Let us note that only after examining if the considered theory has
a credible goodness-of-fit to the data, one is expected to estimate the parameters of the theory and
their uncertainties. In the absence of a credible goodness-of-fit, the estimated parameters of the theory,
and their estimated uncertainties, have no meaning at all. Moreover, the important goal of testing the
theory with data remains unfulfilled. The futility and weakness of the newly adopted non-standard
procedure have been exemplified by showing that even the models that do not otherwise fit the data
in the standard procedure, can be made to fit it for suitably chosen values of σint.

We strongly advocate that, instead of assuming the correctness of the standard cosmology and
thereby using the SNeIa data to calculate the confidence intervals for the model parameters, the theory
should be tested by the data first through the standard statistical techniques, such as the t-test or the
χ2- test. This is also warranted by the highly speculative nature of the principal elements of standard
cosmology: dark matter and dark energy. While dark matter still eludes direct detection, dark energy
even fails to acquire a single elementary particle candidate, let alone a direct detection. Thus, these
elements appear as mere ad hoc theoretical inventions, devised to explain observations that we do not
otherwise understand.

This subjects the theory to more rigorous observational tests, performed through the standard
statistical methods, such as the χ2- test that has been used in the cases of different cosmological models
considered in Table 1. These methods can also be used to compare the rival theories, such as those that
try to explain the SNeIa observations without requiring the dark energy.
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Appendix A: QSSC

The Quasi-Steady State Cosmology, proposed in 1993 [23,24], is a cyclic model of the universe
driven by a negative-energy scalar field and a negative cosmological constant. The scale factor S of the
model is subjected to short-term oscillations superimposed on a long-term steady expansion:

S(t) = et/P [1 + η cos(2πτ/Q)] (A1)

where the time scales P ≈ 103 Gyr� Q ≈ 40− 50 Gyr are considerably greater than the Hubble
time scale of ≈ 14 Gyr of the standard cosmology. The model has cycles of expansion and contraction
(regulated respectively by the creation field and the negative Λ) of a comparatively shorter period (Q)
superposed on a long-term (P) steady state-like expansion. The function τ(t) is very much like the
cosmic time t, with significantly different behavior for short durations near the minima of the function
S(t). The parameter η has a modulus less than unity, thus preventing the scale factor from reaching
zero. Typically, η ∼ 0.8− 0.9. Hence, there is no spacetime singularity, nor a violation of the law of
conservation of matter and energy, as happens at the big bang epoch in the standard cosmology.
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In order to interpret the m − z relation of SNeIa, QSSC invokes the presence of metallic dust
that extinguishes radiation traveling over long distances. This additional extinction adds an extra
magnitude [16]

∆m(z) = 1.0857× κ ρg0

∫ z

0
(1 + z′)2 dz′

H(z′)
(A2)

to the apparent m given by (10) and thus the net magnitude amounting to

m(z) =M+ 5 log [H0dL(z)/c] + ∆m(z), (A3)

where κ is the mass absorption coefficient and ρg0 is the density of the metallic dust at the present epoch.

Appendix B: The Milne Model

The Milne model is a cosmological model based on special relativity which was introduced by
Edward Arthur Milne in 1935 [25]. It is a deductive theory based on Milne’s kinematic relativity [26,27]
in which information is deduced only from the cosmological principle taken together with the basic
properties of spacetime and the propagation of light. Besides the cosmological principle, Milne made
another assumption that the matter present in the universe is conserved (which is evidently suggested
by ordinary physics). This implies that the equation of hydrodynamic continuity applies and the
density of matter decreases with time in the universe, whose invariant border advances at the speed
of light.

The assumptions of homogeneity and isotropy as required by the cosmological principle leads to
the R-W line element (3):

ds2 = c2dt2 − S2(t)
[

dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)

]
given in terms of the cosmic time t, in which the relative motion of the observes is non-zero but
unaccelerated (as it is a special-relativistic theory). In order to make the motion of the observers
uniform, Milne considered the scale factor S = ct in (3). Now, k = −1 is the only choice to
make the line element (Equation (3)) compatible with the Minkowskian metric, since with S = ct,
the resulting 4-dimensional spacetime form (3) is flat only when k = −1 and the 3-space is hyperbolic.
Hence, the Milne model reduces to Equation (20). One may check that the transformations t̄ = t

√
1 + r2,

r̄ = ctr indeed reduce the line element (Equation (20)) to a manifestly Minkowskian form in the
coordinates t̄, r̄, θ, φ (see page 140 in [6]).

The greatest achievement of the kinematic relativity is the existence of another important time
scale, say τ, in which the observers appear to be at rest and the universe presents a static appearance.
The τ-time is related with the t-time through the transformation

τ = t0 ln
(

t
t0

)
(A4)

which transforms the line element (20) to a form conformal to a static form of (20):

ds2 = e2τ/t0

[
c2dτ2 − c2t2

0

{
dr2

1 + r2 + r2(dθ2 + sin2 θ dφ2)

}]
(A5)

where t0 is a constant with the significance that τ = 0 when t = t0. The zero of t-time scale is a
fundamental event in the theory when the separation of the fundamental (co-moving) observers
vanishes, proposing a physical explosion of matter. In the τ-time scale, this event takes place in the
infinite past, owing to its logarithmic dependence on t, as is indicated by Equation (A4).

It should be noted that the line element (Equation (20)) results as a natural consequence of
kinematic relativity, and has nothing to do with GR. However, as the same solution expressed by



Universe 2018, 4, 73 11 of 12

Equation (20) is also obtained in the framework of the standard cosmology for an empty universe, it is
generally believed that the Milne model represents an empty universe, which is not correct. All one
can say, in the language of GR, is that matter does not curve the spacetime in the geometric analogue
of the Milne model.
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