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Abstract: Independent tests aiming to constrain the value of the cosmological constant Λ are usually
difficult because of its extreme smallness (Λ ' 1 × 10−52 m−2, or 2.89× 10−122 in Planck units).
Bounds on it from Solar System orbital motions determined with spacecraft tracking are currently at
the ' 10−43–10−44 m−2 (5–1× 10−113 in Planck units) level, but they may turn out to be optimistic
since Λ has not yet been explicitly modeled in the planetary data reductions. Accurate (στp ' 1–10 µs)
timing of expected pulsars orbiting the Black Hole at the Galactic Center, preferably along highly
eccentric and wide orbits, might, at least in principle, improve the planetary constraints by several

orders of magnitude. By looking at the average time shift per orbit ∆δτ
Λ
p , an S2-like orbital

configuration with e = 0.8839, Pb = 16 yr would permit a preliminarily upper bound of the order
of |Λ| . 9× 10−47 m−2 (. 2× 10−116 in Planck units

)
if only στp were to be considered. Our results

can be easily extended to modified models of gravity using Λ-type parameters.

Keywords: astrophysical studies of gravity; general relativity; cosmological constant; neutron
stars & pulsars; classical black holes

1. Introduction

The cosmological constant (CC) Λ [1–8] is the easiest way to explain certain large-scale features of
the universe like the acceleration of its expansion [9,10] and the growth of fluctuations by gravity [11]
within General Relativity (GR) assumed as a fundamental ingredient of the standard ΛCDM model [12];
for a recent overview of the status and future challenges of the Einsteinian theory of gravitation, see,
e.g., Debono and Smoot [13]. Interestingly, the CC was considered before Einstein for the possible
modification of the Poisson equation in the framework of the Newtonian gravity [14]. The CC can
be expressed in terms of the Hubble parameter H0 and the ratio ΩΛ between the density due to the
cosmological constant itself $Λ = (1/8π) c2ΛG−1 and the critical density $crit = (3/8π) H2

0 G−1 as
Λ = 3H2

0 ΩΛc−2, where [15] H0 = 67.74± 0.46 km s−1 Mpc−1, ΩΛ = 0.6911± 0.0062. As such, its
most recent value inferable from the measurements of the Cosmic Microwave Background (CMB)
power spectra by the satellite Planck reads

Λ = (1.11± 0.02)× 10−52 m−2. (1)

In order to relate it to possible symmetry breaking in gravity [16], the CC is sometimes written as
a very tiny dimensionless parameter essentially by multiplying it by the square of the Planck length
`P =

√
h̄Gc−3 = 1.61× 10−35 m. Thus, one gets, in Planck units,

Λ = 2.89× 10−122. (2)
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A CC-type parameterization occurs also in several classes of long range modified models of
gravity aiming to explain, in a unified way, seemingly distinct features of the cosmic dynamics like
inflation, late-time acceleration and even dark matter [17–28].

Ever since the time of Einstein, who, on the backdrop of what is mathematically feasible with the
Poisson equation, included Λ in his GR field equations to obtain a non-expanding, static cosmological
model [29], the introduction of the CC has always been justified from an observational/experimental
point of view by arguing that it would not be in contrast with any observed effects in local systems
like, e.g., orbital motions in gravitationally bound binary systems because of its extreme smallness.
As a consequence, there are not yet independent, non-cosmological tests of the CC itself for which only
relatively loose constraints from planetary motions of the Solar System exist in the literature. So far,
most of the investigations on the consequences of the CC in local binary systems have focused on
the anomalous pericenter precession induced by Λ [30–49] on the basis of a Hooke-type perturbing
potential [32,33]

UΛ = −1
6

Λc2r2 (3)

arising in the framework of the Schwarzschild–de Sitter spacetime [32,50,51]. Equation (3) yields the
radial extra-acceleration [32,33]

AΛ =
1
3

Λc2r. (4)

The latest upper limits on the absolute value of Λ, inferred within the framework of f (T)
gravity from the anomalous perihelion precessions of some of the planets of the Solar System tightly
constrained with the INPOP10a ephemerides [52], are of the order of [47]

|Λ| . 2× 10−43 m−2, (5)

corresponding to
|Λ| . 5× 10−113, (6)

in Planck units.The Earth-Saturn range residuals constructed from the telemetry of the Cassini
spacecraft [53] yielded an upper limit of the order of [48]

|Λ| . 5× 10−44 m−2, (7)

i.e.,
|Λ| . 1× 10−113, (8)

in Planck units. Iorio et al. [54] suggested that a challenging analysis of the telemetry of the New
Horizons spacecraft might improve the limit of Equation (7) by about one order of magnitude. On the
other hand, the bounds of Equations (5)–(7) may be somehow optimistic since they were inferred
without explicitly modeling Equation (4) in the dynamical force models of the ephemerides. As such,
its signature may have been removed from the post-fit residuals to a certain extent, being partially
absorbed in the estimation of, for example, the planets’ initial state vectors. Such a possibility was
investigated by simulating observations of major bodies of the Solar System in the case of some
modified models of gravity [55]. Thus, more realistic constraints might yield larger values for the
allowed upper bound on Λ.

In this paper, we will show that the future, long waited discovery of pulsars revolving around
the putative Supermassive Black Hole (SMBH) in the Galactic Center (GC) at Sgr A∗ [56–59] along
sufficiently wide and eccentric orbits and their timing accurate to the στp ' 1–10 µs level [60,61], might
allow, in principle, substantial improvement on the planetary bounds of Equations (5)–(7) by several
orders of magnitude, getting, perhaps, closer to the level of Equation (1) itself under certain fortunate
conditions. The possibility that traveling gravitational waves can be used in a foreseeable future for
local measurements of the CC through their impact on Pulsar Timing Arrays (PTA) is discussed in
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Espriu [62]. In Section 2 we will analytically work out the perturbation ∆δτΛ
p induced by Λ on the

pulsar’s timing periodic variation δτp due to its orbital motion around the SMBH; we will follow the
approach put forth in Iorio [63] applying it to Equation (4). We will neglect the time shifts due to the
CC on the propagation of the electromagnetic waves [64]. Despite it can be shown that, for certain
values of the initial conditions, an extremely wide orbital configuration like, say, that of the actually
existing star S85 may yield values of the instantaneous changes ∆δτΛ

p (t) as large as just ' 1–10 µs,
caution is in order because of, for example, the very likely systematic bias induced on such an extended
orbit by the poorly known mass background in the GC [65–68]. Also, the accurate knowledge of
the SMBH physical parameters like mass, angular momentum and quadrupole moment would be
of crucial importance because of the competing pN orbital timing signatures ∆δτ

pN
p , which would

superimpose to the CC effect. Finally, also the orbital parameters of the pulsar should be determined
over a relatively short time interval ∆T with respect to its extremely long orbital period Pb. If, instead,

a closer pulsar is considered, it makes sense to look at its net orbital time shift per orbit ∆δτ
Λ
p . Zhang

and Saha [69] recently investigated the possibility of constraining the SMBH’s spin with such kind of
rapidly orbiting pulsars. See also De Laurentis et al. [70]. In Section 3, it will be shown that a S2-type
orbital geometry, summarized in Table A1, would allow, in principle, improvement to the planetary
bounds of Equations (5)–(7) by about 3–4 orders of magnitude. A strategy to overcome the potentially
serious bias posed by the competing post-Newtonian (pN) orbital time delays driven by the SMBHS’s
mass, spin and quadrupole moment will be discussed as well. In Section 4, we summarize our findings
and offer our conclusions.

2. Calculating the Perturbation of the Orbital Component of the Time Shift Due to the
Cosmological Constant

Here, the analytical method devised in Iorio [63], relying upon Casotto [71], will be applied to the
perturbing acceleration of Equation (4) with some technical modifications. Indeed, since, in this case,
the use of the eccentric anomaly E as a fast variable of integration instead of the true anomaly f turns
out to be computationally more convenient, Equations (30) and (31) of Casotto [71], giving the radial
and transverse components of the perturbation ∆r of the position vector r and used in Iorio [63] as
Equations (3) and (4), have to be replaced with Equations (36) and (37) of Casotto [71], i.e.,

∆rρ (E) =
r (E)

a
∆a (E)− r (E) (e + cos f )

1− e2 ∆e (E) +
r (E) e sin f√

1− e2
∆E (E) , (9)

∆rσ (E) =
r (E) sin f

1− e2 ∆e (E) + a
√

1− e2 ∆E (E) + r (E) [cos I ∆Ω (E) + ∆ω (E)] . (10)

Equation (32) of Casotto [71], giving the out-of-plane component ∆rν of the perturbation ∆r of the
position vector r and used in Iorio [63] as Equation (5), remains unchanged. Thus, the perturbation of
the z component of the pulsar’s position vector r reads

∆rz =
r (E)

a
sin I sin u ∆a (E)− r (E) sin I (sin ω + e sin u)

1− e2 ∆e (E) + r (E) cos I sin u ∆I (E) +

+ r (E) sin I cos u ∆ω (E) +
sin I

[
a
(
1− e2) cos u + er (E) sin f sin u

]
√

1− e2
∆E (E) . (11)

From Iorio [63], it is ∆δτp = ∆rzc−1 in a coordinate system whose reference z axis points
towards the observer perpendicularly to the plane of the sky spanned by the reference {x, y} plane.
In Equations (9)–(11), the instantaneous shift ∆E (E) of the eccentric anomaly can be expressed, in turn,
in terms of the perturbations ∆M (E) , ∆e (E) of the mean anomaly and the eccentricity, respectively,
according to Equation (A.5) of Casotto [71], i.e.,
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∆E (E) =
a

r (E)
[∆M (E) + sin E ∆e (E)] . (12)

The instantaneous shifts of the osculating orbital elements are to be computed in terms of E as

∆κ (E) =
∫ E

E0

dκ

dt
dt

dE′
dE
′
, κ = a, e, I, Ω, ω; (13)

with the aid of the standard formulas of celestial mechanics

sin f =

√
1− e2 sin E
1− e cos E

, (14)

cos f =
cos E− e

1− e cos E
, (15)

r (E) = a (1− e cos E) , (16)

dt
dE

=
1− e cos E

nb
, (17)

applied to the usual Gauss equations for the variation of the elements yielding dκ/dt. The calculation
of the perturbation ∆M (E) of the mean anomaly has to be performed as shown in Iorio [63], whose
Equations (20) and (21) are to be calculated with E. The CC-induced instantaneous perturbations of
the osculating orbital elements turn out to be

∆a (E) =
c2Λae (cos E− cos E0) [−2 + e (cos E + cos E0)]

3n2
b

, (18)

∆e (E) =
c2Λ

(
1− e2) (cos E− cos E0) [−2 + e (cos E + cos E0)]

6n2
b

, (19)

∆I (E) = 0, (20)

∆Ω (E) = 0, (21)

∆ω (E) =
c2Λ
√

1− e2

12en2
b

[
4
(

1 + e2
)

sin E0 − e (6E0 − 6E + sin 2E0)−

−4
(

1 + e2
)

sin E + e sin 2E
]

, (22)

∆M (E) =
c2Λ

72en2
b

{
12e

(
7 + 6e2

)
(E0 − E)− 4

(
6 + 54e2 + 7e4

)
sin E0 + 6e sin 2E0+

+3
(

8 + 72e2 + 7e4
)

sin E + 2e3 [9 (E− E0) + e (2 sin E0 − 9 sin E)] cos 2E0+

+ 6e2 [7e sin E0 + 12 (E0 − E + e sin E)] cos E0−

− 3e
(

2 + 19e2
)

sin 2E + 7e4 sin 3E
}

. (23)
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By inserting Equations (19) and (23) in Equation (12), it is possible to explicitly infer the
instantaneous perturbation of the eccentric anomaly

∆E (E) = − c2Λ
72en2

b (1− e cos E)

{
12
[
e
(

7 + 6e2
)
(E− E0) + 2 (sin E0 − sin E)

]
+

+e
[
6e
(

36 + 5e2
)

sin E0 − 3
(

2 + 7e2
)

sin 2E0 − 2e3 sin 3E0 − 3e
(

71 + 8e2
)

sin E+

+
(

3eE0 − 3eE + sin E + 2e2 sin E
)
(6e cos 2E0 − 24 cos E0) +

+ 9
(

2 + 5e2
)

sin 2E− e
(

3 + 4e2
)

sin 3E
]}

. (24)

By inserting Equations (18)–(22) and Equation (24) in Equation (11) and using Equations (14)–(16)
allows one to obtain the instantaneous perturbation ∆δτΛ

p (E) of the orbital time shift of the pulsar p
due to Λ. It is

∆δτΛ
p (E) =

cΛa sin I
72n2

b
L (E; E0, e, ω) , (25)

where L (E; E0, e, ω) is a function of E and the parameters E0, e, ω definitely too cumbersome to be
explicitly displayed. Thus, we show only the leading term of Equation (25);

∆δτΛ
p (E) ' cΛa sin I

6n2
b

[4 (E0 − E) cos (E + ω)− sin (E0 − 2E−ω)−

−3 sin (E0 + ω) + 2 sin (E + ω)] +O
(

ek
)

, k ≥ 1. (26)

It is important to note from Equation (25) that ∆δτΛ
p is proportional to the fourth power of the

semimajor axis a, which characterizes the size of the pulsar’s orbit, and is inversely proportional to the
mass of the SMBH.

The net shift per orbit can be calculated from Equation (25) with E→ E0 + 2π: it turns out to be

∆δτ
Λ
p = −πcΛa sin I

12n2
b

1
(1− e cos E0)

{√
1− e2

[(
16 + 9e2

)
cos E0+

+3e (10 + 6 cos 2E0 − e cos 3E0)] cos ω− 16 sin E0 sin ω+

+6e
[
2
(
−3 + e2

)
cos E0 + e (−6 + cos 2E0)

]
sin E0 sin ω

}
. (27)

It can be noted that also Equation (27) depends on the initial conditions through E0. It is also
important to stress that both Equations (25) and (27) were worked out without any a priori simplifying
approximations about the pulsar’s orbital configuration; they hold for all values of e. It is a key feature
in view of the highly eccentric orbits revealed so far in the GC.

3. The Opportunity Offered by Hypotetical Pulsars in the Galactic Center

Let us now move to the compact object located in Sgr A∗. For an interesting multidisciplinary
discussion about the possibility that it is, actually, a SMBH or something else, see the recent overview
in Eckart et al. [72]. However, our results will be unaffected by the alternative possibilities discussed
there since their spacetimes are indistinguishable from that of a SMBH for the pulsars’ orbital motions
of interest here.
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In order to explore the opportunity offered by our results to effectively constrain the CC with
pulsar timing in the GC, let us consider a putative pulsar whose orbital period Pb is short enough to
allow to monitor at least one full revolution during a timing campaign. In this case, by suitably choosing
the initial orbital phase E0, it would be possible to profitably use Equation (27) in order to maximize it;
indeed, in principle, Equation (27) can even vanish. To this aim, for the sake of concreteness, let us
assume a S2-type orbital configuration characterized by Pb = 16 yr, e = 0.8839 [73]. It turns out that
the maximum of the absolute value of Equation (27) occurs for E0 = 342.08 deg, which corresponds to
almost an orbital period after the time of periastron passage, yielding an upper bound on the CC as
little as

|Λ| . 9× 10−47 m−2
(
. 2× 10−116 in Planck units

)
, (28)

for a timing accuracy of στp ' 1 µs. It should be noted that Equation (28) is 3–4 orders magnitude
better than the (likely optimistic) planetary bounds of Equations (5)–(7). Figure A1 depicts the plot
of Equation (27) as a function of E0. If we modify some of the parameters of the pulsar’s orbital
configuration by adopting, say, Pb = 30 yr, e = 0.987, I = 90 deg, it is possible to improve the bound
on the CC to the level

|Λ| . 4× 10−48 m−2
(
. 1× 10−117 in Planck units

)
, (29)

for E0 = 354.04 deg. About the figures in Equations (28)–(29), inferred by considering only στp

as source of observational error, it must be stressed that they should be regarded with caution as
preliminary and just indicative of the potential of the approach proposed. If not explicitly modeled
and simultaneously estimated in actual pulsar timing data reductions, the CC-induced signature may
be partially removed from the resulting residual. As such, the resulting bounds may be weaker than
those in Equations (28)–(29). Further dedicated analyses should be made by simulating observations
and fitting a full orbital model to them in order to assess how good the input values are recovered.
A possible source of systematic uncertainty is represented by the mismodelled part of the competing
averaged orbital time shifts induced by the standard post-Newtonian (pN) effects due to the current
experimental errors in the SMBH’s parameters entering their formulas. For example, according to
Equation (35) of Iorio [63], the amplitude of the 1pN gravitoelectric average time shift ∆δτ

GE
p is

proportional to µ•c−3 = 22 s, while the mass of the SMBH is currently known at a ' 7% level of
accuracy [73]. Analogous considerations hold for the Lense–Thirring (Equation (51) of Iorio [63])
and quadrupole (Equation (83) of Iorio [63]) average shifts. In principle, such an issue could be
circumvented if N pulsars j with different orbital configurations will be discovered. Indeed, in this
case, it could be possible to write down for each of them an analytical expression

∆δτ
exp
j = ∆δτ

GE
j + ∆δτ

LT
j + ∆δτ

Q2
j + ∆δτ

Λ
j , j = 1, 2, . . . N (30)

for their measured average orbital time shift ∆δτ
exp
j as a sum of the pN terms plus the CC one by

treating µ•, S•, Q•2 , Λ, which enter each term of Equation (30) as multiplicative scaling parameters, as
unknowns of the resulting linear system of algebraic equations. Solving for them, it would be possible
to obtain, among other things, an expression for Λ independent, by construction, of the mismodeled
SMBH’s physical parameters. Such an approach could be extended also to other dynamical effects
impacting the pulsar’s average orbital time shift like, e.g., third-body perturbations.

Recently, the upper bound

|ω̇S2| . 1.6× 10−3 yr−1 = 9.2 deg cty−1 (31)

on the periastron precession of the real star S2 was inferred in Hees et al. [74]. By combining
Equation (31) with the well known analytical expression for the Λ-induced pericenter precession
(see the references cited in Section 1)
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ω̇Λ =
1
2

(
Λc2

nb

)√
1− e2, (32)

it is possible to infer a tentative upper limit on the CC of the order of

|Λ| . 3× 10−35 m2
(
. 8× 10−105 in Planck units

)
. (33)

For much more distant pulsars, major sources of systematic uncertainty would be given by the
still poorly mass background and the difficulty of effectively constraining the parameters of extremely
wide orbits [75] and of the Black Hole itself over a relatively short observational time interval ∆T with
respect to the expected extremely long orbital period Pb of the neutron star.

4. Summary and Conclusions

In this paper, we analytically calculated the perturbation ∆δτΛ
p induced by the CC Λ on the orbital

part of the time variation δτp of a hypothetical pulsar p orbiting the SMBH in Sgr A∗. We did not
restrict to any particular orbital configuration, and our results are, thus, exact with respect to the
eccentricity e; it is an important feature since most of the main sequence stars discovered so far in the
GC move along highly eccentric orbits. We obtained both the instantaneous change ∆δτΛ

p (E) and the

net shift per orbit ∆δτ
Λ
p : they are proportional to cΛa4 sin Iµ−1

• . A distinctive feature of both of them
is their explicit dependence on the initial value E0 of the orbital phase. Our results hold also for a
wide class of long-range modified models of gravity generating an extra-potential quadratic in the
distance r.

We applied our results to some putative scenarios by adopting, for the sake of definiteness, the
orbital configurations of one actually existing main sequence star orbiting Sgr A∗. By considering a

S2-type orbit with Pb = 16 yr, it is meaningful to look at the averaged time shift ∆δτ
Λ
p . It turns out

that, for a careful choice of the initial orbital phase E0, it would be possible, in principle, to infer an
upper bound |Λ| . 9× 10−47 m−2 , corresponding to . 2× 10−116 in Planck units, by assuming a
pulsar timing accuracy of στp ' 1 µs. It would be 3–4 orders of magnitude better than the current,
likely optimistic, constraints from Solar System’s planetary orbital motions. On the other hand, it
should be stressed that the very same aforementioned bound on Λ, derived by accounting for only
στp , may be optimistic in view of possible partial removal of the sought signature if not explicitly
modeled and solved for in actual data reductions. As a suggestion for further dedicated investigations,
simulating the observations and fitting a complete dynamical orbital model to them would be needed
in order to assess how accurately the input values can be recovered. The bias due to the errors in the
physical parameters of the SMBH entering the competing pN net shifts per orbit could be eliminated
by setting up suitably designed linear combinations of the time delays measured for several pulsars.

In the case of much more distant pulsars, using the orbital averaged time shift ∆δτ
Λ
p is unfeasible; only

instantaneous values ∆δτΛ
p (E) could be, in principle, measured. On the other hand, too wide and

slow orbits may be impacted by the still poorly known mass background in the GC, and it would be
difficult to effectively constrain the pulsar’s orbital parameters over a relatively short time interval
with respect to its extremely long orbital period.
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Appendix A

Appendix A.1. Notations and definitions

Some basic notations and definitions used in the text are listed below [76–79]. In the case treated
in this paper, the unseen companion c of the pulsar p is the SMBH of mass M•, so that mc = M• � mp

and ap ' a.

G : Newtonian constant of gravitation
c : speed of light in vacuum
h̄ : reduced Planck constant
`P

.
=
√

h̄Gc−3 : Planck length
Λ : cosmological constant
H0 : Hubble parameter
$crit

.
= (3/8π) H2

0 G−1 : critical density of the universe
$Λ

.
= (1/8π) c2ΛG−1 : density due to the cosmological constant

ΩΛ
.
= $Λ$−1

crit : normalized energy density of the cosmological constant
mp: mass of the pulsar p
mc: mass of the invisible companion c
mtot

.
= mp + mc: total mass of the binary

µ
.
= Gmtot : gravitational parameter of the binary

a : semimajor axis of the binary’s relative orbit
nb

.
=
√

µa−3 : Keplerian mean motion
Pb = 2πn−1

b : Keplerian orbital period
ap = mcm−1

tot a : semimajor axis of the barycentric orbit of the pulsar p
e : eccentricity
I : inclination of the orbital plane
ω : argument of pericenter
tp : time of periastron passage
t0 : reference epoch
M .

= nb
(
t− tp

)
: mean anomaly

f : true anomaly
E : eccentric anomaly
u .
= ω + f : argument of latitude

r : relative position vector of the binary’s orbit
rz : component of the position vector along the line of sight
r : magnitude of the binary’s relative position vector
ρ̂ : radial unit vector
ν̂ : unit vector of the orbital angular momentum
σ̂

.
= ν̂ × ρ̂ : transverse unit vector

rρ : radial component of the relative position vector of the binary’s orbit
rν : normal component of the relative position vector of the binary’s orbit
rσ : transverse component of the relative position vector of the binary’s orbit
UΛ : perturbing potential due to the cosmological constant
AΛ : perturbing acceleration due to the cosmological constant
δτp = rzc−1 : periodic variation of the time of arrivals of the pulses from the pulsar p due to its

barycentric orbital motion
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Appendix A.2. Tables and Figures

Table A1. Relevant physical and orbital parameters of the S2 star and the SMBH at the GC along with
their estimated uncertainties according to Table 3 of Gillessen et al. [73]; they are referred to the epoch
2000.0. D0 is the distance to Sgr A∗. The linear size of the semimajor axis of S2 is a = 1044 au.

Estimated Parameter Value

M• 4.28± 0.10|stat ± 0.21|sys × 106 M�
D0 8.32± 0.07|stat ± 0.14|sys kpc
Pb 16.00± 0.02 yr
a 0.1255± 0.0009 arcsec
e 0.8839± 0.0019
I 134.18± 0.40 deg
Ω 226.94± 0.60 deg
ω 65.51± 0.57 deg
tp 2002.33± 0.01 calendar year

Figure A1. Average orbital time shift per orbit ∆δτ
Λ
p , in µs, of a hypothetical pulsar in Sgr A∗ obtained

analytically from Equation (27) along with the value of Equation (1) for Λ as a function of the initial
phase E0. The orbital configuration of the S2 star, quoted in Table A1, was adopted. It can be noted

that ∆δτ
Λ
p vanishes for two given values of E0; the largest absolute value occurs for E0 = 342.08 deg.

By assuming a pulsar timing accuracy of στp = 1 µs, it translates to an upper bound on Λ of the order
of |Λ| ≤ 9× 10−47 m−2 (. 10−116 in Planck units).
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