# Conformally Coupled General Relativity

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Motivation

## 3. Nonlinear Symmetry Representation

## 4. Nonlinear Representation of $SL(4,\mathbb{R})$ and $C(1,3)$ on the Vierbein

## 5. Conformally-Coupled General Relativity

## 6. Quantum Features of CCGR

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Appendix A. Algebras of A(4) and C(1, 3)

## Appendix B. Conformal Metric Transformations

## Appendix C. Vierbein Formalism

## Appendix D. ADM Foliation

## References

- Will, C.M. The Confrontation between General Relativity and Experiment. Living Rev. Rel.
**2014**, 17, 4. [Google Scholar] [CrossRef] [PubMed] - Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys.
**2016**, 594, A13. [Google Scholar] - Abbott, B.P.; Abott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adamas, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett.
**2016**, 116, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett.
**2016**, 116, 241103. [Google Scholar] [CrossRef] [PubMed] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett.
**2017**, 118, 221101. [Google Scholar] [CrossRef] [PubMed] - Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Tests of general relativity with GW150914. Phys. Rev. Lett.
**2016**, 116, 221101. [Google Scholar] [CrossRef] [PubMed] - Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rept.
**2017**, 692, 1–104. [Google Scholar] [CrossRef] - Berti, E.; Barausse, E.M.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Stein, L.C.; Wex, N.; Yagi, K.; Blaker, T.; et al. Testing General Relativity with Present and Future Astrophysical Observations. Class. Quant. Grav.
**2015**, 32, 243001. [Google Scholar] [CrossRef] - Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rept.
**2012**, 513, 1–189. [Google Scholar] [CrossRef] - Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rept.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] - Linde, A.D. Inflationary Cosmology. Lect. Notes Phys.
**2008**, 738, 1–54. [Google Scholar] - Mukhanov, V. Physical Foundations of Cosmology; Cambridge University Press: Oxford, UK, 2005. [Google Scholar]
- Gorbunov, D.S.; Rubakov, V.A. Introduction to the Theory of the Early Universe: Cosmological Perturbations and Inflationary Theory; World Scientific: Hackesack, NJ, USA, 2011. [Google Scholar]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B
**1983**, 129, 177–181. [Google Scholar] [CrossRef] - Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Stelle, K.S. Renormalization of Higher Derivative Quantum Gravity. Phys. Rev. D
**1977**, 16, 953–969. [Google Scholar] [CrossRef] - Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B
**1986**, 266, 709–736. [Google Scholar] [CrossRef] - Niedermaier, M.; Reuter, M. The Asymptotic Safety Scenario in Quantum Gravity. Living Rev. Rel.
**2006**, 9, 5–173. [Google Scholar] [CrossRef] [PubMed] - Rovelli, C. Loop quantum gravity. Living Rev. Rel.
**1998**, 1, 1. [Google Scholar] [CrossRef] [PubMed] - Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory. Vol. 1: Introduction; Cambridge Monographs on Mathematical Physics: Cambridge, UK, 1988. [Google Scholar]
- Polchinski, J. String Theory. Vol. 1: An Introduction to the Bosonic String; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ogievetsky, V.I. Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups. Lett. Nuovo Cim.
**1973**, 8, 988–990. [Google Scholar] [CrossRef] - Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. 1. Phys. Rev.
**1969**, 177, 2239–2247. [Google Scholar] [CrossRef] - Callan, C.G., Jr.; Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. 2. Phys. Rev.
**1969**, 177, 2247–2250. [Google Scholar] [CrossRef] - Volkov, D.V. Phenomenological Lagrangians. Fiz. Elem. Chast. Atom. Yadra
**1973**, 4, 3–41. [Google Scholar] - Arnowitt, R.L.; Deser, S.; Misner, C.W. The Dynamics of general relativity. Gen. Rel. Grav.
**2008**, 40, 1997–2027. [Google Scholar] [CrossRef] - Dirac, P.A.M. The Theory of gravitation in Hamiltonian form. Proc. Roy. Soc. Lond. A
**1958**, 246, 333–343. [Google Scholar] [CrossRef] - Dirac, P.A.M. New ideas of space and time. Naturwiss
**1973**, 60, 529–531. [Google Scholar] [CrossRef] - Dirac, P.A.M. Long range forces and broken symmetries. Proc. Roy. Soc. Lond. A
**1973**, 333, 403–418. [Google Scholar] [CrossRef] - Deser, S. Scale invariance and gravitational coupling. Annals Phys.
**1970**, 59, 248–253. [Google Scholar] [CrossRef] - Dirac, P.A.M. Generalized Hamiltonian dynamics. Can. J. Math.
**1950**, 2, 129–148. [Google Scholar] [CrossRef] - Khvedelidze, A.M.; Papoian, V.V.; Palii, Yu.G.; Pervushin, V.N. Description of Friedmann observables in quantum universe. Phys. Lett. B
**1997**, 402, 263–269. [Google Scholar] [CrossRef] - Pervushin, V.N.; Smirichinski, V.I. Bogolyubov quasiparticles in constrained systems. J. Phys. A
**1999**, 32, 6191–6201. [Google Scholar] - Gyngazov, L.N.; Pawlowski, M.; Pervushin, V.N.; Smirichinsky, V.I. Proper time dynamics in general relativity and conformal unified theory. Gen. Rel. Grav.
**1998**, 30, 1749–1773. [Google Scholar] [CrossRef] [Green Version] - Arbuzov, A.B.; Barbashov, B.M.; Borowiec, A.; Pervushin, V.N.; Shuvalov, S.A.; Zakharov, A.F. General relativity and the standard model in scale-invariant variables. Grav. Cosmol.
**2009**, 15, 199–212. [Google Scholar] [CrossRef] - Arbuzov, A.B.; Barbashov, B.M.; Nazmitdinov, R.G.; Pervushin, V.N.; Borowiec, A.; Pichugin, K.N.; Zakharov, A.F. Conformal Hamiltonian Dynamics of General Relativity. Phys. Lett. B
**2010**, 691, 230–233. [Google Scholar] [CrossRef] - Pervushin, V.N.; Arbuzov, A.B.; Barbashov, B.M.; Nazmitdinov, R.G.; Borowiec, A.; Pichugin, K.N.; Zakharov, A.F. Conformal and Affine Hamiltonian Dynamics of General Relativity. Gen. Rel. Grav.
**2012**, 44, 2745–2783. [Google Scholar] [CrossRef] - Borisov, A.B.; Ogievetsky, V.I. Theory of Dynamical Affine and Conformal Symmetries as Gravity Theory. Theor. Math. Phys.
**1975**, 21, 1179–1188. [Google Scholar] [CrossRef] - Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys.
**1971**, 12, 498–501. [Google Scholar] [CrossRef] - Horndeski, G.W. Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys.
**1974**, 10, 363–384. [Google Scholar] [CrossRef] - Dirac, P.A.M. New basis for cosmology. Proc. Roy. Soc. Lond. A
**1938**, 165, 199–208. [Google Scholar] [CrossRef] - Penrose, R. Relativity, Groups and Topology; Gordon and Breach: New York, NY, USA, 1964. [Google Scholar]
- Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar fields in de Sitter spacetime. Ann. Inst. Henri. Poincare Phys. Theor. A
**1968**, 9, 109–141. [Google Scholar] - Behnke, D.; Blaschke, D.B.; Pervushin, V.N.; Proskurin, D. Description of supernova data in conformal cosmology without cosmological constant. Phys. Lett. B
**2002**, 530, 20–26. [Google Scholar] [CrossRef] - Blaschke, D.B.; Vinitsky, S.I.; Gusev, A.A.; Pervushin, V.N.; Proskurin, D.V. Cosmological production of vector bosons and cosmic microwave background radiation. Phys. Atom. Nucl.
**2004**, 67, 1050–1062. [Google Scholar] [CrossRef] - Barbashov, B.M.; Pervushin, V.N.; Zakharov, A.F.; Zinchuk, V.A. Hamiltonian general relativity in finite space and cosmological potential perturbations. Int. J. Mod. Phys. A
**2006**, 21, 5957–5990. [Google Scholar] [CrossRef] - Zakharov, A.F.; Pervushin, V.N. Conformal Cosmological Model Parameters with Distant SNe Ia Data: ‘Gold’ and ‘silver’. Int. J. Mod. Phys. D
**2010**, 19, 1875–1887. [Google Scholar] [CrossRef] - Einstein, A. Cosmological Considerations in the General Theory of Relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin Math. Phys.
**1917**, 1917, 142–152. [Google Scholar] - Ivanov, E.A. Gauge Fields, Nonlinear Realizations, Supersymmetry. Phys. Part. Nucl.
**2016**, 47, 508–539. [Google Scholar] [CrossRef] - Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M. Einstein Gravity, Massive Gravity, Multi-Gravity and Nonlinear Realizations. J. High Energy Phys.
**2015**, 2015, 101. [Google Scholar] [CrossRef] - Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M. Galileons as Wess-Zumino Terms. J. High Energy Phys.
**2012**, 2012, 004. [Google Scholar] [CrossRef] - Nair, V.P. Quantum Field Theory: A Modern Perspective; Springer: New York, NY, USA, 2005. [Google Scholar]
- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: New York, NY, USA, 1992. [Google Scholar]
- Misner, C.W.; Thorne, K.S.; Wheeler, J.A. Gravitation; W. H. Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Kiefer, C. Quantum gravity. Int. Ser. Monogr. Phys.
**2004**, 124, 1–308. [Google Scholar] - Kühnel, W. Differential Geometry: Curves–Surfaces–Manifolds; Student Mathematical Library, American Mathematical Society: Providence, RI, USA, 2015. [Google Scholar]
- Barbashov, B.M.; Pervushin, V.N.; Zakharov, A.F.; Zinchuk, V.A. Hamiltonian cosmological perturbation theory. Phys. Lett. B
**2006**, 633, 458–462. [Google Scholar] [CrossRef] - Smolin, L. An Invitation to loop quantum gravity. In Proceedings of the 3rd International Symposium on Quantum theory and symmetries (QTS3), Cincinnati, OH, USA, 10–14 September 2003; pp. 655–682. [Google Scholar]
- DeWitt, B.S. Quantum Theory of Gravity. 1. The Canonical Theory. Phys. Rev.
**1967**, 160, 1113–1148. [Google Scholar] [CrossRef] - DeWitt, B.S. Quantum Theory of Gravity. 2. The Manifestly Covariant Theory. Phys. Rev.
**1967**, 162, 1195–1239. [Google Scholar] [CrossRef] - DeWitt, B.S. Quantum Theory of Gravity. 3. Applications of the Covariant Theory. Phys. Rev.
**1967**, 162, 1239–1256. [Google Scholar] [CrossRef] - Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; Taylor & Fracnis Group: Boca Raton, FL, USA, 1992. [Google Scholar]
- Burgess, C.P. Quantum gravity in everyday life: General relativity as an effective field theory. Living Rev. Rel.
**2004**, 7, 5–56. [Google Scholar] [CrossRef] [PubMed] - Lichnerowicz, A. L’integration des equations de la gravitation relativiste et le probleme des n corps. J. Math. Pures. Appl.
**1944**, 23, 37–63. [Google Scholar] - York, J.W., Jr. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett.
**1971**, 26, 1656–1658. [Google Scholar] [CrossRef] - Kuchar, K. A Bubble-Time Canonical Formalism for Geometrodynamics. J. Math. Phys.
**1972**, 13, 768–781. [Google Scholar] [CrossRef] - Hawking, S.W.; Ellis, G.F.R. The Large Scale Structure of Space-Time; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Arbuzov, A.; Latosh, B.
Conformally Coupled General Relativity. *Universe* **2018**, *4*, 38.
https://doi.org/10.3390/universe4020038

**AMA Style**

Arbuzov A, Latosh B.
Conformally Coupled General Relativity. *Universe*. 2018; 4(2):38.
https://doi.org/10.3390/universe4020038

**Chicago/Turabian Style**

Arbuzov, Andrej, and Boris Latosh.
2018. "Conformally Coupled General Relativity" *Universe* 4, no. 2: 38.
https://doi.org/10.3390/universe4020038