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Abstract: The lightcone gauge is a set of what are called the observational coordinates adapted to our
past lightcone. We develop this gauge by producing a perturbed spacetime metric that describes the
geometry of our past lightcone where observations are usually obtained. We connect the produced
observational metric to the perturbed Friedmann-Lemaître-Robertson-Walker (FLRW) metric in the
standard general gauge or what is the so-called 1+3 gauge. We derive the relations between these
perturbations of spacetime in the observational coordinates and those perturbations in the standard
metric approach, as well as the dynamical equations for the perturbations in observational coordinates.
We also calculate the observables in the lightcone gauge and re-derive them in terms of Bardeen
potentials to first order. A verification is made of the observables in the perturbed lightcone gauge
with those in the standard gauge. The advantage of the method developed is that the observable
relations are simpler than in the standard formalism, and they are expressed in terms of the metric
components which in principle are measurable. We use the perturbed lightcone gauge in galaxy
surveys and the calculations of galaxy number density contrast. The significance of the new gauge
is that by considering the null-like light propagations the calculations are much simpler due to the
non-consideration of the angular deviations.

Keywords: general relativity; past lightcone gauge; direct observational approach; cosmological
observables; galaxy surveys; galaxy number count; density contrast; overdensity; cosmological perturbations
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1. Introduction

Cosmological observable quantities, henceforth simply referred to as observables, encode
information about the state of the Universe at a particular cosmological redshift. In our past lightcone,
we can obtain these observables that can give us our connection to the rest of the Universe. Hence, a
precise measure of cosmological observables can directly determine the geometry of the observable
part of the spacetime, in the so-called observational approach [1]. Furthermore, we can assume a
dynamical theory for the spacetime curvature of the past lightcone, i.e., General Relativity (GR).

The observations are taken so that we can discover what these observations imply about the
large-scale structure of the Universe. The idea was first discussed in [2], and Refs. [3–6] discussed
the construction of the spacetime metric and ways to determine local matter density in the Universe
directly from astronomical observations on our past lightcone as initial data for the field equations,
and later to establish what is called now the lightcone gauge based on an observational coordinates
set. The main aim was to a great extent that cosmology rather be a directly observational subject [3].
Therefore, they bring cosmologically interpretable astronomical observations into a confrontation with
the cosmological theories, in order to reveal the structure of distant regions in the Universe.

The rest of this paper is organised as follows: in Sections 2 and 3, we give a brief overview of
the observational coordinates and the metric adapted to our past lightcone, where we needed to
construct our perturbed lightcone gauge (PLG) in Section 4, by showing the relations between the
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perturbations of spacetime in observational coordinates and those perturbations in the standard metric
approach. Section 5 is dedicated to the study of the observables of spacetime in the PLG and verified
with those obtained in the standard perturbed gauge. In Section 6, we calculate the galaxy number
density contrast using the PLG and we show verification with the standard gauge as well. Finally, in
Section 7, we discuss the results and give our conclusions.

2. Observational Coordinates

A spacetime consists of a manifoldM with a metric g. We shall assume the spacetime filled with
a perfect fluid of the form

Tµν = ρuµuν + p(gµν + uµuν), uµuµ = −1 , (1)

where Tµν is the stress energy tensor and uµ the average 4-velocity. The first step in constructing a set
of observational coordinates is to identify fundamental observers. The integral curves of the velocity
vector uµ and their normalised 4-velocity, represent the worldlines of these fundamental observers, i.e.,
they are comoving with the galaxies. If τ is the proper time along these worldlines, then

uµ =
dxµ

dτ
. (2)

Let us now single out our worldline C, where C is a set of timelike geodesics generated by uµ at
the event attached to us, on Earth.

Figure 1. Observational coordinates {w, y, θ̂, φ̂} based on the event q on the worldline C. w is the
time of observation; θ̂, φ̂ represent the direction of observation; and y is a measure of distance to the
object observed.

We will introduce the set of observational coordinates xµ =: {w, y, θ̂, φ̂}, constructed as follows,
see Figure 1: the coordinate w is the past lightcones of the events on C, generated along our worldline.
It can be normalized by measuring the proper time along the central worldline C (in other words,
w|C = τ|C). By choosing w = w0 (arbitrary) to correspond to the event q here and now, the null cone
generated then will represent the surfaces of events that happened on our past lightcone at constant
w0. Then, generically, q will be at the vertices of the lightcones where we receive information and
signals from the Universe. Then, w is completely determined when w0 has been chosen. The null
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geodesic vector field kµ and ν the affine parameter along them, generating the ruling geodesics of these
lightcones, will be written as

k = ∂/∂ν⇒ kµ = dxµ/dν , (3)

where
kµ ≡ ∂w/∂xµ = w,µ ⇒ kµkµ = 0 . (4)

This definition necessarily implies that k is hypersurface-orthogonal [7],

kµ∇ν = kν∇µ . (5)

Null geodesic vector fields are orthogonal to the null surfaces and generate the past-directed null
geodesics along the past lightcone, on which w is constant:

kµ∇νkν = 0⇒ w,µkµ = 0 . (6)

Once the null geodesic vector condition is satisfied at the central worldline, one will find the same
affine parameter in different directions, which is implying

kµuµ = w,µuµ ⇔ kµuµ|c = 1 , (7)

and this shows that the affine parameter ν is uniquely defined geometrically on the null geodesics,
and this defines the central condition. If we specify that ν = 0 on the worldline C, so the event “q” is
given by

w = w0 , ν = 0 . (8)

The coordinate y measures distances down the null geodesics, and so represents both spatial
distance from the worldline C, and time difference from “q”. There are various choices of y that might
be suitable for different purposes, for example [3]:

1. y = ν, the unique affine parameter down the null geodesics through C determined by the central
conditions on C (ν|c = 0, uµkµ|C = 1). The spacetime metric will be simplified, but one loses the
beautiful physical interpretation of observational coordinates;

2. y = rA, the angular distance, i.e., area distance down the null cones from C.
3. y = z, galactic redshift observed from C, imposing y = const. along matter worldlines;
4. y chosen as in one of the points 1–3 on the initial null cone w = w0, and then specified thereafter

to be comoving with the fluid; y,µuµ = 0.

When one of these specific choices has been made, y is uniquely defined on all the null cones.
We will use such a choice of coordinate y as a coordinate comoving with the fluid, and determined by
a unique specification on the initial null cone w = w0. From Equations (3) and (4), we will have [3]

kµ = δ0
µ , kµ = dxµ/dν = (1/β)δ

µ
1 ⇒ (1/β) = dy/dν for β > 0 , (9)

where β is some function that determines the relation of the affine parameter ν to the coordinate y.
Equation (9) shows the change of rate of the coordinate y down the null geodesics relative to the
affine parameter ν. As y → 0, β = const. when y is affine parameter; and β → 1 when we choose
y = rA. Different values of y with constant values of ν represent an event at the same distance from
q down the null cone in different directions. The coordinates (θ̂, φ̂) are angles on the “physical” sky.
The observer sees the sky as the superposition of 2-spheres (w0) embedded in the lightcone, then
we can redefine θ̂, φ̂ as spherical coordinates on the celestial sphere with respect to the (physically
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non-rotating) reference frame eµ
1. They label the geodesics generating the past lightcone (they are

constant along such geodesics) [3]. At a constant surface w,

kµ θ̂,µ = kµφ̂,µ = 0 . (10)

They are based on a parallelly propagated orthonormal tetrad eµ [3] along C. Then, at a constant
w and ν, we have

lim
ν→0

{
ds2

ν2

∣∣∣∣w=const
ν=const

}
= dΩ2 = dθ̂2 + sin2 θ̂dφ̂2 . (11)

These coordinates do not necessarily cover all the spacetime, but they do cover that part which is
observable from the worldline C.

3. Observational Metric

The metric components can be obtained from the previous discussions. From Equations (4) and (9),
we see that

kµkµ = 0⇒ w,µgµνw,ν =⇒ g00 = 0 , (12)

kµ = gµνkν ⇒ gµ0 = (1/β)δ
µ
1 , (13)

and thus
gµνgνγ = δ

µ
γ ⇒ g0νgνγ = δ0

γ ⇒ g1γ = βδ0
γ . (14)

We can get the general expression for gµν and compute its inverse by introducing new functions
for the non-constrained components. We thus have [3],

gµν =


α β v2 v3

β 0 0 0
v2 0 h22 h23

v3 0 h23 h33

 , gνγ =


0 1/β 0 0

1/β δ σ2 σ3

0 σ2 h33/h −h23/h
0 σ3 −h23/h h22/h

 , (15)

where

h = det(hI J) = h22h33 − (h23)
2 , (16)

δ = −(α + β(v2σ2 + v3σ3))/β2 . (17)

Here, we have defined

σ2 = −(v2h33 − v3h23)/βh , (18)

σ3 = − (v3h22 − v2h23) /βh , (19)

where (I, J) ∈ {2, 3}2. The metric form above implies that the surfaces w|const. are null surfaces.
However, it does not, as it stands, guarantee that these null surfaces are the past lightcones of the
geodesic worldline C. To set this feature, one has to impose some limits on the behaviour of the metric
tensor components near the worldline C [3]. When the coordinate y is taken to be the affine parameter
or the area distance, these essential limits are [3]:

lim
y→0

α = −1, lim
y→0

β = 1, lim
y→0

(vI/y2) = 0, lim
y→0

hI JdxIdx J/y2 = dΩ2 . (20)

1 These tetrad vectors eµ are defined through the conditions: (u = e0, u · ei = 0, eiej = δij), and thus satisfy the parallel
propagation along C: ∇ueµ|c = 0, with u the velocity of the comoving geodesic observer.
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When this coordinate y is taken to be point 4, from what we obtained above, and by making a
coordinate transformation y′ = y′(w, y, θ̂, φ̂), w′ = w, θ̂′ = θ̂, φ̂′ = φ̂, as y→ 0, one finds the limits are
found to be [3]

lim
y→0

α = −1 , lim
y→0

β = β0(w, xI) , lim
y→0

vI = 0 , lim
y→0

hI JdxIdx J/y2 = β2
0dΩ2 . (21)

These limits we just introduced guarantee the necessary conditions to make the null hypersurfaces
to be the past lightcones of observer of the worldline C. Finally, we can say that we have observational
coordinates if and only if the metric tensor components obey Equations (15) and (20) [3].

4. Perturbed Lightcone Gauge

The metric in the above mentioned coordinates reads:

ds2 = a2(w− y)
(
−(1 + δα)dw2 + 2(1 + δβ)dwdy + 2v Îdx Îdw + h Î Ĵdx Îdx Ĵ

)
, (22)

where
(

Î, Ĵ
)
∈ {2, 3}2 with x2 = θ̂ and x3 = φ̂. In addition:

h Î Ĵ = Ω Î Ĵ + HÎ Ĵ , (23)

with HÎ Ĵ representing the tensor perturbation. We consider a perturbed FLRW spacetime in an arbitrary
gauge. The coordinate system is xµ = (η, χ, θ, φ). The metric in these coordinates reads:

ds2 = a2gµνdxµdxν = a2(η)
[
−(1 + 2φ)dη2 + 2Bidxidη +

(
γij + 2Cij

)
dxidxj

]
, (24)

where
Cij = −ψγij +∇i∇jE +∇iFj +

1
2

hij . (25)

At first order, the coordinate transformation reads:
w = η + χ + δw,
y = χ + δy,

θ̂ = θ + δθ̂,
φ̂ = φ + δφ̂ .

(26)

We also define the backward affine parameter along the past lightcone, λ. In the background,
we have:

d
dλ

=
1
a2

[
∂χ + ∂η

]
. (27)

Since we have kµ̂ = a−2(1− δβ)δ
µ̂
y , we can write that

0 = kw =
dη

dλ
+

dχ

dλ
+

dδw
dλ

= kη + k̄χ +
dδw
dλ

. (28)

Therefore:
δw = −

∫ (
kη + k̄χ

)
dλ . (29)

Similarly, using ky = a−2(1− δβ), we get

δy = −
∫ (

δβ

a2

)
dλ . (30)
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Using k Î = 0:

δx Î = −
∫

kIdλδ Î
I . (31)

The Jacobian of the coordinate transformation is given by:

∂xµ̂

∂xν
=


1 + ∂ηδw 1 + ∂χδw ∂θδw ∂φδw

∂ηδy 1 + ∂χδy ∂θδy ∂φδy
∂ηδθ̂ ∂χδθ̂ 1 + ∂θδθ̂ ∂φδθ̂

∂ηδφ̂ ∂χδφ̂ ∂θδφ̂ 1 + ∂φδφ̂

 , (32)

and we can write the inverse as

∂xµ

∂xν̂
= δ

µ
ν − δ

µ
0 δ1

ν − ∂νδµ̂ + δ1
ν∂wδµ̂ + δ

µ
0 ∂νδy− δ

µ
0 δ1

ν∂wδy . (33)

With all that, the metric quantities in the PLG system are given by:

δα = 2
[
−φ + ∂η

∫ (1− δβ

a2 + kη

)
dλ

]
, (34)

v Î =

[
BI − ∂I

∫ (
kη +

1− δβ

a2

)
dλ− γI J∂η

∫
kJδ Ĵ

J dλ

]
δI

Î , (35)

HÎ Ĵ = 2
[

CγI J + γK(I∂J)

∫
kKdλ

]
δI

Îδ
J
Ĵ

. (36)

Note that the equation for δβ is not constraining anything because d
dλ (δy− δw) involves δβ.

Actually, after a bit of algebra, it leads to the identity:

2φ + kχ − 2kη + Bχ = a2kχ . (37)

Using the fact that kη = gηµkµ, one finds that this identity is exactly satisfied.
The nullity of gyy also leads to a constraint:

kη + kχ =
1
a2

(
nχ(φ + ψ) + Bχ − nχ∇2E− nχ∇χFχ − 1

2
nχh χ

χ

)
, (38)

which is an identity resulting from the null geodesic equation. We have used the facts that

∂

∂y
|w=const. =

∂

∂η
|χ=const. +

∂

∂χ
|y=const. =

d
dη

, (39)

∂

∂w
|y=const. = −

∂

∂η
|χ=const. , (40)

which means that y mimics the behaviour of the affine parameter along the light ray. Finally, the nullity
of gyÎ leads to:

γI JkJ = −∂I

∫
(kη + kχ) dλ− BI +∇(χ∇I)E +∇(χFI) +

1
2

hχ
I , (41)

which also results from the null geodesic equation.
Therefore, we see that the very definition of the observational coordinates system via the relation

kµ̂ = β−1δ
µ̂
y ensures that our PLG metric has the correct form.

5. Observables in the PLG

We are going to present here the observables that we can measure on our past lightcone. By using
the PLG introduced above, we are going to get a set of observables defined by the PLG parameters.
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They are simpler but different in definitions from what we are used to in perturbed FLRW; a justification
has been made between the two gauges.

5.1. The Redshift of Distant Galaxies in the PLG

The redshift of a source crossing the lightcone is the time dilation observed from C(w, y, θ̂, φ̂) of a
source of a proper time τ along its worldlines; crossing our past lightcone is determined by the ratio
dw/dτ along our worldline, see Figure 2. The observed redshift z of its emitted light is determined by

1 + z =
λo

λs
=

ac(w)

a(w− y)
=

dw
dτ

= uw|s =
1

a(w− y)
(1 + δα/2) , (42)

where ac(w) is the scale factor along the central worldline C at singular point w0|C (it can be taken
equal to 1 today), or we can use the expression

1 + z =
(kµuµ)s

(kµuµ)o
, (43)

where we can normalise (kµuµ)o = 1, and we can re-write (43) as

1 + z = (kµuµ)s, (44)

and using (4) again, we will get
1 + z = (δ0

µuµ)s = (uw)s . (45)

This shows that in the lightcone gauge the redshift of the source is its 4-velocity, where the
4-velocity of the source is directly observable because the redshift is directly measurable from the
observed source spectrum.

Figure 2. A time interval dτ at the observed galaxy is measured as a time interval dw by the observer.

We will use the Jacobian (32) to transform our above result into the standard model gauge, getting

uw =
∂w
∂η

uη +
∂w
∂xi ui . (46)



Universe 2018, 4, 108 8 of 19

To first order, this can be expanded as

uw =
1

a(w− y)

[
1− φ + ∂ηδw + viδ1

i

]
. (47)

We could decompose vi into scalar and tensor parts as

vi = Vi + γij[∇jE′ + Bj] . (48)

To simplify the discussion, let us concentrate on scalar modes in the longitudinal gauge: E = B = 0.
Then, using the expression for δw, and the commutation rules Equation (A5), we obtain

∂ηδw = −
∫ [

∂η

(
φ− ψ

a2

)
+ 2H

(
φ− ψ

a2

)]
dλ . (49)

Hence:

∂ηδw = −
∫ ∂η(φ− ψ)

a2 dλ = −
∫

∂η(φ− ψ)dη . (50)

Thus, remembering that, in Longitudinal gauge φ = Φ, φ− ψ = Φ + Ψ, and ~V ·~n = vχ, we get:

uw =
1

a(η)

[
1−Φ +

∫
∂η (Φ + Ψ) dη + ~V ·~n

]o

s
, (51)

evaluated from the source s to the observer on the central worldline o. This gives the expected
expression for 1 + z in terms of Bardeen’s potentials.

If we now look at scalars only in a general gauge, using the fact that ∂χ and
∫

dλ commute, we get,
after a bit of algebra:

uw =
1

a(η)

[
1 +H

(
B− E′

)
−Φ +

∫
(Φ + Ψ)′ dη + ~V ·~n

]o

s
. (52)

Under a general gauge transformation, η → η − T and xi → xi − Li, we have

B− E′ → B− E′ − T , and a(η)→ a(η) [1−HT] . (53)

Therefore, uw → uw, and the redshift as a whole is indeed gauge invariant, although its
background and first-order parts are manifestly not.

If one includes vectors and tensors, one finds:

uw =
1

a(η)

[
1 +H

(
B− E′

)
−Φ +

∫
(Φ + Ψ)′ dη + ~V ·~n +

∫ [
~̄Φ ·~n

]′
dη +

1
2

∫
[h(~n,~n)]′ dη

]o

s
. (54)

We can conclude that the 4-velocity of the observer in the PLG can cover the Sachs–Wolfe (SW)
equation with the scalar contribution, and the so called integrated Sachs–Wolfe term, additional to vector
and tensor contributions to the redshift.

5.2. The Area Distance in the PLG

The shape and size of the image of a source depends on the path taken by the light rays from the
source to the observer through the spacetime by the null geodesics; i.e., it depends on the spacetime
curvature. In fact they are both represented by the metric components h Î Ĵ , which are in principle,
directly measurable. For an object of known size and shape observed at time w0 and lying at distance
y in the direction θ̂, φ̂, one has [3]

dl2 = h Î Ĵ(w0, y, θ̂, φ̂)dx Îdx Ĵ , (55)
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where dl represents distance of the object perpendicular to the line of sight, which are known if the
size, shape and orientation of the object are known. The term dx Î represents the corresponding angular
displacements at the image, which are directly measurable [3]. Comparing the angular measurements
with the known dimensions, one can deduce h Î Ĵ . In addition, directly from (55) and (20), we get the
area distance rA given by

rA =

[
det[hI J ]

sin2 θ̂

] 1
4

, (56)

where

h Î Ĵ =

( a2S2(y)(1 + Hθ̂θ̂) a2S2(y)Hθ̂φ̂

a2S2(y)Hθ̂φ̂ a2S2(y)(sin2 θ̂ + Hφ̂φ̂)

)
. (57)

For simplicity, we express the embedded S(y) in HÎ Ĵ , thus defining the determinant as

det[h] = a4S4(y)(sin2 θ̂ + Hφ̂φ̂ + sin2 θ̂Hθ̂θ̂)− a4S4(y)H2
θ̂φ̂

, (58)

and therefore

rA =

(
a4S4(y)[1 + Hθ̂θ̂ +

1
sin2 θ̂

Hφ̂φ̂]

) 1
4

. (59)

This means the area distance in the PLG can be written in a very simple way as

rA = a((w− y), η)S(y)
[

1 +
1
4

HT
]

, (60)

where HT is the trace, given by Equation (36), and according to Equation (A7), one can write

HT = 2CI
I + 2

∫ λ

λs
dλ′∇IkI , (61)

where kI is the null vector from the source position at xs and along the light trajectory to the observer
position at xo. Thus, the preceding equation becomes

HT = −4Ψs − 4H(B− E′) +
2

(ηo − ηs)

∫ ηo

ηs
dη
∫ η

ηs
dη′(η′ − ηs)

[
(∇2 − ni∇2

i −
2
χ

ni∇i)(Φ + Ψ)

−∇2Bini −∇(iB
′
j)n

inj +
2
χ
∇(iBj)n

inj +∇2njFj ′ +∇(iF
′′
j)n

jni − 2
χ
∇(iFj)

′njni

+
2
χ

ninj 1
2

h′ij −∇2hijninj
]

. (62)

Now, substituting back in Equation (60), the area distance is given by

rA(n, η) = a(ηs)(ηo − ηs)

[
1−Ψs −H(B− E′) +

1
2

1
(ηo − ηs)

∫ ηo

ηs
dη(η − ηs)(ηo − η)

×
(
(∇2 − ninj∇i∇j −

2
(ηo − η)

ni∇i)(Φ + Ψ)− ni∇2Bi + ni∇2F′i −∇(iB
′
j)n

inj

+∇(iF
′′
j)n

jni −∇2hijninj − 2
(ηo − η)

(∇(iF
′
j)n

jni + ninj 1
2

h′ij +∇(iBj)n
inj)

)]
. (63)

This equation represents the area distance of an object in a general gauge including the vector
and tensor modes contributions in the Friedmann universe, and it is equivalent to the expression of
the area distance in our PLG, see Equation (60). The double integrals term in Equation (63) represents
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the integrated effects proportional to line-of-sight integrals of the scalar, vector and tensor modes and
their time derivatives.

5.3. The Luminosity Distance in the PLG

The luminous rays received from a source of area distance rA, observed at redshift z, is defined in
the past-lightcone as

dL =
(
1 + z

)2rA = a(w− y)S(y)(uw)2
[

1 +
1
4

HT
]

, (64)

from which we can write

dL(n, ηs) =
S(χ)
as(η)

[
1− 2Φo + 2Φs −Ψs +H(B− E

′
) + 2V · n

+2
∫
(Φ + Ψ)′dη −

∫
ninj

(
∇(iF

′
j) +

1
2

h′ij −∇(iBj)

)
dη

+
1
2

1
(ηo − ηs)

∫ ηo

ηs
dη
∫ η

ηs
dη′(η′ − ηs)

(
(∇2 − ninj∇i∇j −

2
(ηs − η)

ni∇i)(Φ + Ψ)

−∇2Bini −∇(iB
′
j)n

inj +
2

(ηs − η)
∇(iBj)n

inj +∇2njFj ′ + njni∇(iF
′′
j)

− 2
(ηs − η)

∇(iF
′
j)n

jni +
2

(ηs − η)
ninjh′ij −∇2hijninj

)]
. (65)

Relating the above expression to the redshift of the source, therefore

zs = zs + δzs , (66)

where we can easily write

δzs = (1 + zs)

[
Ψo −Ψs +H(B− E

′
) + V · n−

∫ ηo

ηs
ni∇i(Φ + Ψ)dη

−
∫ ηo

ηs
ninj

(
∇(iF

′
j) +

1
2

h′ij −∇(iBj)

)
dη

]
, (67)

and we can assume that [8]
dL(n, ηs) = dL(n, η(zs)) ≡ dL(n, zs) , (68)

by taking the Taylor expansion

dL(n, zs) = dL(n, zs)−
dL(n, zs)

dzs
|z=z δzs . (69)

Then, the redshift luminosity distance is given by [9]

dL(n, zs)

dzs
|z=z = (1 + zs)

−1dL +H−1
s + O(1) , (70)

with zs + 1 = 1/a(ηs) at the background. This leads to

dL(n, zs)

dzs
|z=z = (1 + zs)

[
− (ηo − ηs +H−1

s )

][
Ψo −Ψs +H(B− E

′
) + V · n

−
∫ ηo

ηs
ni∇i(Φ + Ψ)dη −

∫ ηo

ηs
ninj

(
∇(iF

′
j) +

1
2

h′ij −∇(iBj)

)
dη

]
. (71)
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Then, the redshift luminosity distance will be given as

dL(n, zs) = (1 + zs)

[
(ηo − ηs) + [(ηo − ηs)−H−1

s ]Ψo − [2(ηo − ηs)−H−1
s ]Ψs

+2(ηo − ηs)Φs −H−1
s H(B− E′) + [(ηo − ηs)−H−1

s ]V · n + 2
∫ ηo

ηs
dηΦ

+
∫ ηo

ηs
dη(ηs − η)ni∇i(−3Φ + Ψ) + [(ηo − ηs)−H−1

s ]
∫ ηo

ηs
ni∇i(−Ψ + Φ)dη

+ninjH−1
s

∫ ηo

ηs

(
∇iF′j +

1
2

h′ij −∇iBj

)
dη

+
1
2

∫ ηo

ηs
dη(η − ηs)(ηo − η)

(
[∇2 − ninj∇i∇j](Φ + Ψ)−∇2ni(Bi − F′i )

−ninj[∇(i B′j) −∇(iF
′′
j)] − ninj∇2hij −

2
ηo − η

[∇(iF
′
j) +

1
2

h′ij +∇(iBj)]n
inj
)]

. (72)

This is the famous expression of the redshift luminosity distance in a perturbed Friedmann
universe in general gauge, as a function of the measured source redshift zs and its direction n.
It contains the angular and redshift fluctuations of the luminosity distance or what is called
“gravitational redshift” in the first line apart from the background contribution. The second line can be
the terms due to peculiar motion of the observer and emitter (Doppler terms). The third and fourth
lines collect integrated effects proportional to line-of-sight integrals of Ψ and its time derivative, and
the fifth and last line represents the lensing term with ∇2Ψ ∝ δρ. This equation is obtained in [10,11],
and is equivalent to our expression of luminosity distance in PLG, Equation (64), which we expressed
in one single line in terms of the metric components, which in principle is measurable quantity.

6. Galaxy Surveys

The large-scale cosmic structure contains lots of information about the global properties of our
Universe, and by analysing maps of galaxies we can probe the initial conditions of the Big Bang and
its physical processes that have operated subsequently [12,13]. Statistical measurements of galaxy
motions and clustering with the weak gravitational lensing provide some of the strongest evidence to
date that Einstein’s GR is an accurate description of gravity on cosmological scales.

Galaxies are the building blocks which define the large-scale distribution of visible matter in
the Universe and it can be used to trace the underlying dark matter distribution. Without dark
matter, galaxy formation would occur substantially later in the Universe than it is observed. After this
all dark matter ripples could grow freely, forming seeds into which the baryons could later fall.
Such information requires a combination of the galaxies’ location in three dimensions and distance
information from its redshift [14].

6.1. The Galaxy Number Count with the PLG

Suppose one counts the galaxies seen in a solid angle dΩ0 around the direction of observation
(θ̂, φ̂), down to a distance y. An increment from y −→ y + dy will result in including dN new galaxies
in the count, where dN is the number of galaxies detected in a volume dV of size as (dy, dθ̂, dφ̂) around
a point on our past lightcone

dV = (r2
AdΩ0)(uµkµdν) . (73)

If the number density of galaxies at the position y is n, then (n dV) is the number of galaxies that
will be contained in this volume. We will write dN in the form

dN = fmdV , (74)
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where fm is the selection function representing the fraction of galaxies in dV that are actually detected
and included in the number count; one can estimate fm from knowledge of the galactic brightness
distribution and spectrum, the area distance rA and redshift z. In general, fm will depend on
w, y, θ̂ and φ̂. The number count of galaxies in a box of size (dy, dθ̂, dΦ̂) around a point on our past
lightcone can also be calculated as

dN = fmr2
A(1 + z)dΩ0βdy , (75)

where dν = βdy, and β = a2(1 + δβ). If y has been chosen to be an observable quantity, then dN is
directly measurable. As z and rA are known, one can estimate the selection function fm, which depends
on rA, z, the galaxy properties and the observational limits and selection effects. Therefore, in principle,
one could determine the quantity β in terms of known quantities.

The geometric properties of spacetime play a role in the determination of the distribution of
galaxies. Nevertheless, the observed redshift and position of galaxies are affected by the matter
fluctuations and the gravity waves between the source galaxies and the observer. Therefore, the
volume element constructed using the observed redshift and observed angle is different from the real
physical volume occupied by the observed galaxies. The observed flux and redshift of the source
galaxies are also different from their intrinsic properties. Therefore, the observed galaxy fluctuation
field contains additional contributions arising from the distortion in observable quantities and these
include tensor contributions as well as numerous scalar contributions [15]. Therefore, the observed
galaxy number density is affected by perturbations given the total number of observed galaxies, and it
contains additional contributions from the distortions in the observable quantities, compared to the
standard description that galaxies simply trace the underlying matter distribution.

6.2. The Perturbation of Galaxy Number Counts ∆

The number count of an overdensity galaxy number count is what we can measure when we
divide the map of galaxy surveys with beams at fixed redshift and solid angle. By counting the galaxies
in each pixel separately, we can study the fluctuation of the galaxy number and the distribution of
dark matter. The number of overdensity galaxies in one pixel can be given by

∆ =
N − N̄

N̄
= b · δρ

ρ
= b · δ . (76)

The number count ∆ is an observable quantity; it relates the number of the galaxies in each
pixel to the average numbers of the galaxies N̄, and the distribution of dark matter δ and its bias b.
Galaxy formation is a local process and its relation to the underlying matter density should be well
defined and gauge invariant. The observable quantities such as observed galaxy counting should be
independent of a choice of the gauge condition. The large-scale distribution of galaxies, the density
fluctuation δ(x, t) which we calculate in a given Friedmann background, is not gauge invariant, and
this is “the cosmological gauge problem” [16]. Since it depends on the background Friedmann universe,
we compare the observed ρ(x, t) with [17]:

δ(x, t) ≡ ρ(x, t)− ρ̄(t)
ρ̄(t)

. (77)

In order to fix this problem, one has to consider individual observational effects like the redshift
space distortions [18,19], the Alcock–Pacinski [20] or lensing [17,21].
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For unbiased distribution, ρ̄ is the mean galaxy density, i.e., ρ̄ = 〈ρ〉 . Determining the spectrum
in terms of directly observable quantities compares with determining gauge-invariant expression.
The redshift density perturbation can be written as

δz(n, z) =
ρ(n, z)− 〈ρ〉(z)
〈ρ〉(z) . (78)

Using the fact that ρ = N/V, and with a little of algebra, we can get [17]

δz(n, z) =
N(n, z)− 〈N〉(z)

〈N〉(z) − δV(n, z)
V(z)

, (79)

where the physical survey volume density per redshift bin per solid angle can be written as a
background part in a homogeneous world and a fluctuated quantity, since the solid angle and the
redshift bin are distorted between the source and the observer:

V(n, z) = V(z) + δV(n, z) . (80)

The perturbation in the number density of galaxies is an observed quantity, and the volume
perturbation also can be measured with other tracers than galaxies, and it is therefore measurable by
itself and hence gauge invariant. Therefore, they are gauge-invariant quantities. Hence, δz(n, z) is
gauge invariant. We can re-write Equation (79) as

∆(n, z) =
N(n, z)− 〈N〉(z)

〈N〉(z) = δz(n, z) +
δV(n, z)

V(z)
, (81)

which is a gauge-invariant expression.

6.2.1. The Computation of δz(n, z) in the PLG

The computation of δz(n, z) to first order will get

δz(n, z) =
ρ(n, z)− ρ(z)

ρ(z)
, (82)

knowing that ρ(n, z) = ρ(z) + δρ(n, z), and using the fact that z = z + δz, then Equation (82) yields,
to first order

δz(n, z) = δ(n, z)− dρ

dz
δz(n, z(η))

ρ(z)
, (83)

where δρ(n,z)
ρ(z) = δ(n, z), and by using dρ

dz = −3 ρ
1+z the matter fluctuation (at the observed redshift) is

given by

δz(n, z) = δ(n, z) + 3
δz(n, z(η))
(1 + z)

. (84)

Since 1 + z = (1 + z̄)(1 + δα/2), and δz = (1 + z̄) 1
2 δα. Then, one can re-write Equation (84) as

δz(n, z) = δ(n, z) +
3
2

δα . (85)

Here, we relate the perturbation variables in direction n at redshift z to their unperturbed position
and time η. z = z(η) is the redshift of the background universe that we measure on and δz is the
redshift perturbation to this universe, δz(n, z) = δ(n, z) in a uniform-redshift frame δz = 0. It is
gauge invariant since is defined by observable quantities, where the time slicing is set by the observed
redshift z, rather than by an arbitrary choice of coordinate systems or gauge conditions as for δ(n, z)
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and differs in its value contingent upon the gauge choice [22]. Moreover, by solving the background
relation z = z(η), we can write

ρ(n, z(η)) = ρ(η) + δρ(n, η) . (86)

Note that ρ(z) = ρ(z + δz) deviates to first order from ρ(z). Both δz and δρ depend on the chosen
background and are, hence, gauge dependent; however, their combination in Equation (83) must turn
out to be gauge invariant as it is in principle observable.

6.2.2. The Volume Distortion in the PLG

The volume perturbation δV
V should be gauge invariant because it is, in principle, a measurable

quantity given unbiased volume tracers. The differential volume element (seen by a source with
4-velocity uµ) is given by

dV =
√
−gεµναβuµdxνdxαdxβ (87)

= v(ν, α, β)dxνdxαdxβ , (88)

where v is a volume density, which determines the volume perturbation

δV
V

=
v(z)− v(z)

v(z)
=

δv
v

. (89)

Then, the volume perturbation in terms of redshift and sky position is determined by our
observation coordinates (w, y, θ̂, φ̂), and therefore

v =
√
−gε0123uw ∂y

∂z
∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
+
√
−gε1230uy ∂w

∂z
∂θ̂

∂θ̂s

∂φ̂

∂φ̂s
, (90)

where ε has a permutation signature. The transformation matrix from the angles at the source to the
angles at the observer is ∣∣∣ ∂(θs, ϕs)

∂(θo, ϕo)

∣∣∣ = 1 +
∂δθ

∂θ
+

∂δϕ

∂ϕ
. (91)

In homogeneous and isotropic backgrounds, the geodesics are straight lines, that is θs = θo,
ϕs = ϕo, but in a perturbed universe, angles are perturbed with respect to each other:

θs = θ0 + δθ , ϕs = ϕo + δϕ . (92)

The angles between the source and the observer are fixed at the PLG. It can be shown that there is
no angular displacement

δθ̂ = δφ̂ = 0 . (93)

This will lead to the volume perturbation being given as

v =
√
−guw ∂y

∂z
−
√
−guy ∂w

∂z
. (94)

With instant light cone w|const., we get

v =
√
−guw ∂y

∂z
. (95)

Furthermore, from Equation (22),

√
−g = a4S(y)2 sin(θ)

(
1 +

HT

2
+ δβ

)
, (96)
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and the 4-velocity of the source according to the PLG

u = {(1 + z), nivi} . (97)

Since dy
dz is the change in comoving distance y with redshift along the photon geodesic, we can

re-write it as
dy
dz

=
dy
dz
− dy

dz
dδz
dz

+
dδy
dz

. (98)

Using the fact that y = χ, we can rewrite the above result as

dy
dz

=
dχ

dz
− dχ

dz
dδz
dz

+
dδy
dz

=

(
dχ

dη
− dχ

dz
dδz
dη

+
dδy
dη

)
dη

dz
. (99)

Here, dy/dz is to be understood as the change in co-moving distance y with respect to the redshift
along the photon geodesic. The distinction between z and z is only relevant for background quantities.
Therefore, Equation (95) will look like

v(z) = a4S(y)2 sin(θ)
(

1 +
HT

2
+ δβ

)
(1 + z)

(
dχ

dη
− dχ

dz
dδz
dη

+
dδy
dη

)
dη

dz
. (100)

In Equation (99), the last term contains the redshift-space distortion, which will turn out to
be the biggest correction to the power spectrum [17]. To lowest order along the photon geodesic,
with 1 + z = a0

a = 1
a , we have

dη

dz
= −aH−1 = −H−1 , (101)

where H is the physical Hubble parameter and H is the comoving Hubble parameter. With all the
above taken into account, the volume element becomes

v(z) = −a4S(y)2 sin(θ)
(

1 +
HT

2
+ δβ

)(
1 +

1
2

δα

)(
dχ

dη
− 1
H(1 + z)

dδz
dη

+
dδy
dη

)
H−1 , (102)

or

v(z) =
a4S(y)2 sin(θ)

H

(
−1 +

1
H(1 + z)

∂δz
∂y
− ∂δy

∂y
− HT

2
− δβ− 1

2
δα

)
, (103)

where we have used the relations (39). Furthermore, we introduce the volume density as

δv
v

=
v(z)− v(z)

v(z)
, (104)

where

v(z) = v(z) +
dv(z)

dz
δz(n, z) . (105)

To obtain the fluctuation of v, just subtract the unperturbed part v(z) from v of Equation (103)
(and additional 1/a factor coming from the background part of [1 + z] term)

v(z) =
S(y)2 sin(θ)
(1 + z)4H , (106)

and thus

v(z) = v(z)
(

1 +
[

2
S(y)H − 4 +

H′
H2

]
δz

1 + z

)
. (107)

Putting all of these together, we obtain the volume density fluctuations given by

δv
v

=

(
1

H(1 + z)
∂δz
∂y
− ∂δy

∂y
− HT

2
− δβ +

[
2

S(y)H +
H′
H2 − 1

]
δα

2

)
. (108)
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In addition, since from Equation (30), we can conclude

∂δy
∂y

=
dδy
dη

= −δβ . (109)

Then,

δv
v

=

(
1

H(1 + z)
∂δz
∂y
− HT

2
+

[
2

S(y)H +
H′
H2 − 1

]
δα

2

)
. (110)

With S(y) = y = (ηo − ηs) in flat space, and δz = 1
2 (1 + z)δα, one can then write

∆(n, z) = δ(n, z) +
1

2H
∂δα

∂y
− HT

2
+

[
2

yH +
H′
H2 − 1

]
δα

2
. (111)

This is the expression for the density redshift perturbation in observational coordinates using the
observational metric, and as indicated does not include unmeasurable monopole terms or a dipole
term (niVi)o that usually arises by the perturbation at the observer position. Moreover, it does not
depend on the peculiar velocity of observer and emitter, and we do not need to compute the deviation
vectors that relate the perturbed geodesic to the unperturbed one. It only depends on quantities in
terms of the perturbed metric and in principle all can be measurable.

Equation (111) is a gauge-invariant expression, and we have discussed the first term earlier;
the second term contains the Doppler term, the integrated Sachs–Wolfe, the gravitational redshift and
the redshift-space distortion. The third term contains the lensing distortion and time delay, and the
last term contains the redshift perturbation of the volume.

When we apply the gauge transformations into the density fluctuations to the equivalent
expression in general gauge, the upcoming result is already obtained in [15,21,22]:

∆(n, z) = Dg −Ψ−H(B− E′) +
1
H

[
Ψ′ + ∂χVχ −

(
∂χF′χ +

1
2

h′χχ −∂χBχ

) ]
+

[
2

yH +
H′
H2

][
−Φ +H(B− E′) + Vχ +

∫ ηo

ηs
(Φ + Ψ)′dη −

∫ ηo

ηs

(
∂χF′χ +

1
2

h′χχ − ∂(χBχ)

)
dη

]
− 1

ηo − ηs

∫ ηo

ηs
(η′ − ηs)∆Ω

(
(Φ + Ψ)− Bχ + F′χ −

1
2

hχχ

)
dη′ . (112)

Dg is density fluctuation on the uniform curvature hypersurface

Dg ≡ δ + 3(1 + w)(ψ) = δlong − 3(1 + w)Ψ , (113)

where δlong is the density perturbations in the longitudinal gauge. Equation (112) represents the
gauge-invariant redshift density fluctuation using an FLRW metric. The H−1∂χΨ term is the
gravitational redshift. The light emitted from a galaxy has to pass via that potential field and reach the
observer. In so doing, the photon has to lose some of its own energy and hence become redshifted.
This will result in changing the redshift of the beam. The term H−1∂χ(Vχ) is the redshift space
distortion due to the galaxies’ peculiar velocity relative to the observer line of sight, and this is
considered the largest signal correction on the intermediate scales [17]. The middle line comes from the
redshift perturbation of the volume, and it contains a Doppler term; it also contains the ordinary and
integrated Sachs–Wolfe terms. The third line (the integral) is the lensing distortion which corresponds
to the change in the solid angle causing radial and angular volume distortions and time delay [23–25];
it is relevant especially on large scales. The rest of the terms have very small relativistic effects.

The standard Newtonian description of the galaxy power spectrum breaks down and the general
relativistic description is therefore essential for understanding the observed galaxy power spectrum
and deriving correct constraints from these measurements. The relativistic effects progressively become
significant at low angular multipoles at high redshifts z ≥ 2, where the relativistic effects are dominant
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and significant on the horizon scale, but they break the symmetry of the correlation function [26].
Due to these effects, ∆ contains additional information δ, V, Φ, Ψ; this can help with testing gravity by
probing the relation between density, velocity and gravitational potentials.

7. Conclusions

In this paper, a lightcone gauge has been constructed and adapted to observations made on the
null cone using observational coordinates. We developed this gauge by perturbing the lightcone,
and reproducing a new linear perturbed gauge to satisfy us up to first-order calculations of the
observables. We calculated the observables in the so-called lightcone gauge. The calculations of the
observables in the new gauge introduced was much easier than the ones we usually obtain in the
standard gauge. In addition, the most interesting feature in the results of the PLG is that they are a
sum of the scalar, vector and tensor contributions to the standard gauge results.

We then used this perturbed gauge to compute the galaxy number density contrast, which is
the truly measured quantity in large galaxy surveys. Our result contains the relativistic effects that
have been produced due to the distortions of spacetime. With the use of the PLG, we could have
them in terms of the metric components, which make it easy to be calculated since we considered
null-like observations; we did not have to worry about deviations on the spatial positions of the galaxy.
These effects do affect our observables and, by measuring them, we can use the result to test the
relations between the density, velocity and gravitational potentials. Using the PLG gauge was an
attempt to make the measuring of these relativistic effects achievable in the simplest way. Our results
will be most significant for future galaxy survey catalogs like BOSS, DES, Euclid, and of significance to
SLOAN-7 data analysis.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Commuting Partial Derivatives and Integrals

Here is an attempt at finding a way to commute partial derivatives and integrals from the observer
to the source. Say we want to calculate ∂ηX where X is first order and is written:

X =
∫

Ydλ. (A1)

Then, we have:
d

dλ
X = Y ⇔

(
∂χ − ∂η

)
X = a2Y. (A2)

Therefore: (
∂χ − ∂η

)
∂ηX = a2∂ηY + 2a2HY, (A3)

or equivalently:
d

dλ
∂ηX = ∂ηY + 2HY. (A4)

Hence:
∂η

∫
Ydλ =

∫ [
∂ηY + 2HY

]
dλ . (A5)

In addition, we get similarly:

∂χ

∫
Ydλ =

∫
[∂χY] dλ. (A6)

Using these two relations and integrating by parts, we recover d
dλ

∫
Ydλ = Y. Finally:

∂I

∫
Ydλ =

∫
∂IYdλ . (A7)
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