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Abstract: We investigate the quantum geometry of a 2d surface S bounding the Cauchy slices of a 4d
gravitational system. We investigate in detail for the first time the boundary symplectic current that
naturally arises in the first-order formulation of general relativity in terms of the Ashtekar—Barbero
connection. This current is proportional to the simplest quadratic form constructed out of the pull
back to S of the triad field. We show that the would-be-gauge degrees of freedo arising from SU(2)
gauge transformations plus diffeomorphisms tangent to the boundary are entirely described by the
boundary 2-dimensional symplectic form, and give rise to a representation at each point of S of
SL(2,R) x SU(2). Independently of the connection with gravity, this system is very simple and
rich at the quantum level, with possible connections with conformal field theory in 2d. A direct
application of the quantum theory is modelling of the black horizons in quantum gravity.

Keywords: non perturbative quantum gravity; loop quantum gravity; general relativity

1. Introduction

In the construction of black hole models in loop quantum gravity [1-3] via the so-called isolated
horizon boundary condition [4], the boundary would-be-gauge degrees of freedom are described
by a Chern-Simons theory living on the black hole horizon [5-8]. The appearance of the specific
Chern-Simons boundary dynamics is usually argued to be due to restrictions on the set of boundary
conditions adapted to isolated horizons. What we realise here is that the appearance of a boundary
dynamical theory and the appearance of a boundary symplectic structure is not specific to black holes,
and arises naturally in the most general situation [9]. As we explain, the general boundary dynamics
can be understood in terms of a Chern-Simons theory. However, this Chern-Simons theory does not
need the introduction of auxiliary fields. Remarkably, it can be expressed very simply in terms of the
pull back of the triad frame field on the boundary, while the pull back of the spin connection acts
as a Lagrange multiplier for the boundary diffeomorphisms. The boundary symplectic structure is
remarkably simple. It reads

1 .
G):E/azéel/\dei, (1)

where v is the Immirzi parameter and ¢ the triad field pull back on the 2d boundary of the slice X.
This remarkably simple and natural boundary structure constitutes one of the central building blocks
of first-order gravity theory projected on any corner sphere.

In this paper, we provide detailed proof that the symplectic structure (1) allows a complete
Hamiltonian description of the boundary gauge diffeomorphism transformations. This shows
that these would-be-gauge degrees of freedom exhaust the set of boundary degrees of freedom.
This symplectic structure first made its appearance in [7] (see also [10] for a discussion in higher
dimension), but its central importance was not emphasised and it was not studied in full generality.
At first sight, such theory would seem harder to quantise, as the standard techniques developed
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for the background independent quantisation of connections cannot be directly applied. However,
quantisation is made possible by the choice of a complex structure on the 2-dimensional boundary
associated with fiducial coordinates. This leads to expressing the triad in terms of harmonic oscillators
associated to point defects (punctures) on the boundary. The unrestricted Hilbert space is much larger
than the one found for quantum isolated horizons, as expected from the fact that no classical symmetry
reduction on the geometry of the boundary has been imposed. We show that the representations of the
geometric observables can be constrained in a simple way in order to recover the usual accounts of
black hole entropy in the literature.

The paper is organised as follows. In the following section, we describe the geometric context
in which the 2-dimensional model we analyse is natural. We also show how in the situations where
SU(2) gauge transformations and bulk diffeomorphisms that are tangent to the boundary are gauge
symmetries of gravity. In Section 3, we analyse the boundary symplectic structure and define the
associated three-dimensional theory encoding the entire dynamics of the would-be-gauge degrees
of freedom is controlled by our 2 + 1-dimensional system. In Section 4 we quantise the system and
interpret the states in terms of the underlying complex structure. We close the paper with some
concluding remarks in relation to the applicability of our results for the computation of black hole
entropy in Section 5.

2. The Origin of the 2d Symplectic Structure
Starting from the first-order formulation of gravity whose action is

Sle,w] = /M erxre! A e AFRE(w), 2)

introducing a foliation of M in terms of Cauchy surfaces ¥, and using the time gauge ¢’ = 1 where n
is the co-normal to X, the canonical symplectic structure of gravity takes the form

Oc = / S5Ki A ST, 3)
P

where K = w% is the extrinsic curvature one-form and ¥ = %eijkej A ek is the flux two-form. Here and
in the following, § denotes the differential on field space, in particular as a differential it anti-commutes
with itself and its square 62 = 0 vanishes. It should not be confused with d, which denotes the
differential on space. The symplectic form in Ashtekar—Barbero variables is given by

1 .
0=~ / SAT 6%, )
Y Jz

where A’ is the SU(2) connection, which can be expressed as A’ = I 4 yK/, in terms of the spin
connection I" = J€';w/* and the extrinsic curvature tensor K’ = w” with w!/ the Lorentz connection.
In the absence of boundaries, one has that () = ¢, and this is the celebrated result allowing to interpret
the previous connection as a canonical transformation from the original vector variables [11,12]. In the
presence of a boundary 0X # 0 (see Figure 1), one has that

Oc=0+0, ®)

where © is the boundary symplectic structure given by [7]

1 .
0=, /82 sel A de;, ©)
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as it follows from
®= —1/ 5T A Slee]; = i/ d(de; A del) @)
- r}/ s 7 [ 27 5 1 7

and from the identification
e, 6] ir (8)

which is valid at the boundary.
3/

ox
ox

)y

Figure 1. Spacetime region obtained from the time flow that is allowed in our analysis. Lapse and
shift are constrained on the corners 0% in order to preserve the boundary fixed up to tangent
diffeomorphisms and gauge transformations.

Therefore, in the context of Ashtekar-Barbero variables, the boundary term (1) arises naturally
from the (pseudo) canonical transformation that relates (3) and (4) in the absence of boundaries.
The transformation is pseudo-canonical because when there are boundaries Equation (7) produces
a boundary corner term (1) in the symplectic structure. This corresponds exactly to one of the
intrinsic ambiguities in the determination of the symplectic structure from an action principle [13].
The symplectic potential 0 is defined from the boundary terms arising in the variations of the action,
but they are subjected to the following ambiguities:

0 — 0+ Suy + duy, 9

where p; arises from the possibility of modifying the action by the addition of an exact four-form to the
Lagrangian form, and y; is an arbitrary corner term. No general principle fixes y». However, in our
present specific context y; is singled out by the use of connection variables—Equation (7)—and the
fact that it leads to the correct evaluation of boundary charges and the commutation relations that are
compatible with the kinematics of LQG.

2.1. Symmetries

In this section we analyse the transformation property of the symplectic form () + @ under
two types of transformation: SU(2) gauge transformations labelled by a € su(2), and spatial
diffeomorphism labelled by a vector field & Our variables are the bulk variables (X; A’): a Lie
algebra valued two-form and an SU(2) connection on ¥; and the boundary variables e;, which is a Lie
algebra valued one-form on 9X. We initially treat these variables as independent variables. As we will
see, the gauge symmetry will restore the relationship (8) at the boundary.

The gauge transformations are labelled by an SU(2) Lie algebra element &, and are defined to be

by A = —dya, 0 Z = [, %], duei = [a, €] (10)
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Infinitesimal diffeomorphisms are labelled by a vector field ¢ and generated by the Lie derivative
Lz =dig +igd, (11)

where iz Tye..qg = " Type...qa + ¢ Tpge...q + - - - is the inner contraction for an arbitrary tensor T...q-
This Lie derivative has the disadvantage of not preserving the SU(2) covariance when acting on SU(2)
tensors, since it does not commute with gauge transformations [L¢, x| # 0. For that reason, it is more
natural to work with a gauge-invariant Lie derivative denoted Ls which preserves the covariance
under gauge transformations: [L¢, d,] = 0 (the previous relation is valid when applied to covariant
tensors). This covariant Lie derivative acts on SU(2) tensors like e; or X; or F'(A) as

but it acts differently on the gauge connection! since
L{:A = lgF(A) (13)

This covariant Lie derivative restricts to the usual Lie derivative for SU(2) scalars. On SU(2)
tensors, the covariant and usual Lie derivative are equivalent up to gauge transformations. The relation
is simply

Lz = [:g + ‘Si§A~ (14)

In the following, we use L as the generator of covariant diffeomorphisms. ¢ is a vector field on &
which is assumed to be tangent to dX.. Therefore, ¢ labels an infinitesimal diffeomorphism of X which
does not move the boundary.

2.2. Hamiltonian Generators

The goal of this section is to show that the Hamiltonian generators of covariant diffeomorphisms
Lz and gauge symmetry J, are given by

. 1 . g : 1 ,
H,;E/Z%F/\ZJri/ange’Aei, GaE—/ZdAleAZiJrE/aZaq[e,e]l. (15)
We start by computing the variation of the gauge Hamiltonian.
5Gy = —/ daa; ASE — / SAI A [a,Z}iJr/ [, e]/ A Ge;
z z B3

- /5“AiA§Zi—/ 5Ai/\5,xz"+/ See A\ Se;
X > o
Y 0xa(Q+0O), (16)

where 4,0} denotes the interior product of the field variation 6, with the field two-form Q) + ®.
This shows that G, is the Hamiltonian generating SU(2) gauge transformations. This generator is the
sum of a bulk and a boundary terms. The bulk constraint imposes the Gauss law while the boundary
constraints impose a soldering of the boundary degree of freedom to the bulk degree of freedom.
Integrating by parts, we can write

Ga:/ai/\dAZi—i—/ o, <1[e,e]i—zi>. (17)
% X 2

1 Itis easy to check that due to the Bianchi identity, the definitions (12) and (13) are equivalent for F(A).
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In short, G, = 0 means that

1
dAZi =0, Zi = E[E, E]i. (18)

The first condition is the usual Gauss law. The second one is a first-class boundary constraint
simply demanding that the induced area density from the bulk and the intrinsic one match?.
It is convenient to introduce the boundary variation and Hamiltonian:

. . 1 4
Sue' = [a, ], Qo = /az szi[e, el’. (19)

Qu is the generator of boundary variations. It does not act on the bulk fields but is the Hamiltonian for
boundary rotations:

0gn = /a [, €]’ A Be; = 76,10, (20)
Joz

We now do the same computation for the diffeomorphism variation. This computation is more
involved, and in order to do it we separate the bulk and boundary variations. We start with

5(/1'55/\21) - /igdAéAiAZi+/i§FiAz52i
JX JE T JX
- f/ dA(SA,v/\igziwL/ i A 5%
z ; pH
- —/ A NS + / iéFiAéZi—/éAiAdA(i@:Zi)
JoX JZ z
_ . ) i " i o " . i " . . iy _ " . i
/azzg ((SAZ/\Z>+/21§F AOE, /):&A,/\ng /Z5Al/\z§(dAE) /az(z,;&A,)/\Z
/az iz (641 AZ) + 78200 + Gan) — 804)

YL Q)+ G(z'go'A) — 8(igsA)r (21)

where on the last line we used that ¢|yy is a vector tangent to 9X.. We can now focus on the boundary
term variation. We define the boundary Hamiltonian

1 .
he= | LeeiAé. 22
¢ 2/82 geiNe (22)

Its variation is given by

1 ) ;1 ;1 ;
Shy = 5 /az[(z¢5A),ei] Ne' + 5 /az Lgde; Ae' + 5 /a2 Lge; A o¢'
— / (i:0A) A Le e]i+1/ L (5e~Aei)+/ Lee; Adel
o 2 Jos S\ m o
1 ) <
= ./aZ igd (06 A e') + gigon + 7L O
= 1Lz 1O+ gisa, (23)
where we have assumed again that ¢ is a vector tangent to the boundary. Taking the sum

of (21) and (23) gives
(5H€ = ’)/LQ'J(Q + @) + GingA- (24)

In the Chern-Simons description of the boundary degrees of freedom that is used in applications to isolated horizons, the
fusion conditions between the boundary-induced connection and X involves components of the Weyl curvature [14,15].
This requires the definition of a new boundary connection that is non-trivially related to the original one, making the final
structure geometrically obscure. As we see here, the Bulk boundary connection is extremely natural.
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We can also use the gauge variation, computed already in (16), to establish that
6Gi;p = 10 2(Q+ ©) + Gjsa- (25)

This implies that if one introduces the generator of (non-covariant) diffeomorphism Dz = Hg —
Gi, a- Taking the difference of the previous equalities, one obtains that

Imposing the covariant diffeomorphism constraints implies that we impose a bulk and a boundary
constraint given by ‘
(iéF,‘) AX =0, hé =0. (27)

The boundary constraint can be expressed more explicitly as

_ 1 L i e i

he = 7 /az dr(ize;) Ne' + > /az(ngl) A e, €] (28)
_ 7 e i o
= 7 [ KD A lesel = 7 (29)

In order to understand the meaning of the condition iz = 0 for all ¢ tangent to 9%, we now study
its geometrical meaning which follows from the following analysis. We can write K, = a'/¢,;, and the
imposition of the Gauss law implies that K/ is a symmetric internal tensor. The extrinsic curvature
can be written as K, = K,«]-eZei. We introduce N, a spatial unit vector, to be the normal of 0% within £,
and we go to the gauge where ¢ = N;. The condition iz = 0 implies that a>4 = 0 for A = 1,2, which

means that the second fundamental form is K,;, = asp e;“ebB + uc33e;;’e;°1’, or simply that

Ky = kub + a33N; Ny, (30)

where k;;, is a symmetric tensor tangent to 0% (i.e., k;; N* = 0). k,;, is the 2d extrinsic curvature of 0X
as embedded in X. The 3d extrinsic curvature K,;, can be written as K, = %Bqab + 0,p, that is, into its
trace part (the expansion) 6 and traceless part (the shear) o,;. The previous expression implies that
the shear

Oab = (7,55) + 033NaNp, (31)

which means that N, is one of the principal axes of the shear while the other two are tangent to 9.
The geometric interpretation is now clear (see Figure 2): an infinitesimal spherical ball around a point
at 0X when propagated along the timelike geodesics normal to X is allowed to expand and deform
along directions which are either normal or tangent to dX. Deformation in an alternative direction
is precluded by hz = 0. This can be interpreted as a condition of non-rotation for the boundary 0.
In the case when an axisymmetry Killing field ¢ tangent to 0X is available, then k¢ is exactly the Komar

angular momentum3.

When available, the Komar angular momentum is given by

,i abi_i a,,b 7i/ AN 7L/ a
I =g | ewaVe == [ (N Vat)en = o [ EN(Tam)es = o [ VK", 32)

where 1n” is the normal to X, N? is the normal to 9%, €, is the volume form of 9%, and €,p,; = —12N, [a7b€ap] 1S the spacetime

volume form. The last expression is obtained using N?n®V,& = V,(N?n’&,) — V,(N"n’)&,. The last expression is
proportional to iz in the normal gauge.
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)

Figure 2. Deformation of a ball of geodesics normal to 2. On the left panel iz = 0: the principal axis of
the shear are tangent to 0% and normal to dX. On the right panel hg # 0, the boundary “moves”.

From (24), the Poisson bracket of two Hamiltonians is therefore given by
{Hg, Hg/} = LgJ(Lg/J(Q + @)) = LgHg/ = H[c[gl]. (33)

Thus, on-shell (i.e., when iz F i AX; = 0) the commutation relation of the angular momenta simply
gives a representation of the 2-dimensional diffeomorphism algebra:

{hg, hé’/} ~ h[@’,{f’]’ (34)

where [, ¢'] is the Lie-bracket of the two vector fields. Let us finally remember that the boundary
generator of diffeomorphism is given by dz = hs — gi. 4 and explicitly expressed as

1/ 4
d; = E./az Leei Ne (35)

Non-static boundaries for which i # 0 are physically very interesting (an important example
is the Kerr black hole horizon when treated as a boundary). However, the presence of angular
momentum makes the question of diffeomorphism invariance more subtle, and this introduces
additional complications when one aims at the quantisation of the boundary would-be-gauge degrees
of freedom. For an exploration of the quantisation of a non-static boundary, see [16]. For that reason,
in what follows we will restrict ourselves to the static case hz = 0.

3. Boundary Symplectic Structure

The previous section showed that for the set of variation generated by gauge and diffeomorphism,
the bulk symplectic structure is equivalent to the boundary symplectic structure

_ 1 i
@ = 5./}1(56,/\(5& (36)

This symplectic structure controls the “would-be-gauge” degrees of freedom. The remarkable
property of this symplectic structure is that it leads to a non-commutative flux algebra. Indeed,
defining for S C H

Xo(S) = /S s, 37)

we have
{Xa(8), Xp(S")} = ¥X[n 5 (SUS). (38)

In terms of the components efq, the Poisson structure reads

{el(x), €5 (x')} = veapdo*(x — x'). (39)
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Note that if we define some integrated version of the frame field along curves C: ¢/, (C) = [ ¢'(x),
we obtain the loop algebra

{e}(C),5(C")} = ¥Nencread”, (40)

where N~ is the number of intersections of C with C’ with positive orientation minus the number of
intersections with negative orientation.

3.1. The Associated Boundary 2 + 1 Dynamical Theory

Here we write a 2 + 1 dynamical theory from which the 2d boundary symplectic structure (36)
arises in the canonical analysis. In addition, the constraint structure of the theory is compatible
with the gauge symmetries expected to be relevant for the boundary degrees of freedom in view of
eventually coupling them to the bulk quantum gravitational degrees of freedom of the ambient 3d
quantum geometry.

Consider the 2 + 1 action on 90X x R

se, @' = _% /Ei A (de' + e @) A ). 4

First-order variations of this action yield the symplectic structure (36) and the equations of motion
telling us that @; is simply a Lagrange multiplier imposing ¢ A &/ €ijx = 0 and that dweé = 0. There are
non-trivial solutions corresponding to degenerate triads. The degeneracy condition demands that ¢, is
a matrix of rank one.

The previous action is the analog of the Chern-Simons action in the effective treatments of [5-7].
However, unlike the latter, the present one does have local degrees of freedom, and this will explicitly
show up in the quantisation. The present dynamical framework is therefore more general, as expected
from the fact that, in contrast to the approach leading to the Chern-Simons formulation, we have not
imposed any symmetry restriction on the boundary geometry.

The canonical analysis of (41) yields the Poisson brackets (39). Taking a 2 4 1 decomposition ¢; =
Bidt + e; and @' = a'dt + w', where the barred forms are 2-dimensional, we find that $ = J dtL, with

1 . 1 ) ) .
= o [ = [ afeel + pidue’ + T, 42
27 /B)Ze £€; Y azal[e e] + Bidwe’ + vill, (42)

where I, is the momentum conjugate to w. The Hamiltonian is a linear combination of
primary constraints:

s = [ wleel, 4@ = [ pdue 1) = [ L, 3)

The first is the Gauss law that implies that e; is degenerate, while the second implies that ¢’ is
w-closed. The requirement that Il is preserved by time evolution implies that

[B,e]' =0. (44)

This condition reduces the constraint system to the following first-class system:
— [ afec,  d(p)= [ pdes 45
s = [ afec, )= [ pae (45)

Equation (44) determines the Lagrange multiplier . If ¢, is of maximal rank 2, it implies that
B = 0. When ¢, is degenerate of rank 1, this equation is solved by the choice of Lagrange multiplier
B = vPel, which when replaced in d(B) gives
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d(ﬁ):/ (ipe')de; 2/ e A Ly(e), (46)

which reduces to the diffeomorphism constraints. Therefore, d(v) is equivalent to the diffeomorphism
constraints when e; is invertible. When ¢; is not invertible, it is more restrictive.

A naive counting of degrees of freedom would lead to the incorrect conclusion that this theory
is topological. However, further scrutiny shows that the field theory has local degrees of freedom
corresponding to degenerate metric configurations. In addition to these, the theory can acquire
additional degrees of freedom if appropriately coupled with external charges which take the form of
defects to the gauge constraints.

For instance, an external electric field can couple to the Chern—simons theory via

1 .
Sine = / @ AT 47)

This coupling is gauge invariant if the flux ¥ satisfies the Gauss law dX. = 0. The addition of
this term gives the equation of motion
[6, EL‘ =23 (48)

This will become apparent in the treatment in the following section.

4. Quantisation: The Discrete Representation

We now study the quantisation of the Poisson algebra (39). In order to do so, and since this
algebra is ultralocal, we first perform a discretisation of the 2d sphere in terms of a system of curves.
In order to define the discretisation, we start from a conformal structure This singles out a dx and a
dy (dz,dz). We now introduce a set of paths {(Lx, Ly) } and define ¢'(Ly) = [, ¢’ and ¢'(Ly) = fL el at
every point of the square lattice defined by the conformal structure (see Flgure 3). It follows that

[ (L), ¢ (Ly)] = indY, (49)
Y= eijk(ej(Lx)ek(Ly) - ej(Lx)ek(Ly))- (50)

It will be convenient from now on to use index notation A, B instead of the explicit mentioning of
Ly and Ly. In addition, we absorb the factor -y defining

Ei(LA). (51)

; 1
Y =—
v
In this notation, the finite dimensional algebra smeared frame fields become

[ely, €] = ieapo. (52)

Given the frame field, we can define the flux and the metric

= el]ke] eBeAB SAB = ef‘]eiB. (53)

N =

These satisfy the algebra

2,3 = ie*sy,  [Zgap]l =0, (54)

(8aB, Sam] = i(gaa€pp +8ap€pa +8a€an + BB EAA)- (55)
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Moreover, it is important to note that
det(g) = &;%,

and is therefore a Casimir of this algebra. One sees that X/ capture the gauge degrees of freedom and
g Ap the metric degrees of freedom, while the conformal degree of freedom is shared by both due to the
previous relation.

We chose complex coordinates z,z on H, where z = (x + iy) /+/2. One can quantise the system,
introducing creation and annihilation operators a; = ¢! and al = el with canonical commutation
relations that just follow from (52). A change in the conformal structure corresponds to a non-trivial
change of the vacuum a; — aa; + Ba} with |a|? — |B|? = 1 (Bogoliubov transformation). In order to
analyse the algebra, it will be convenient to introduce the following definitions:

el = ay, e =a_, e =b, (56)

where ¢t = (el 4 ie?). Since the metric is real, we have that e, = &.. Hence, at the quantum level

we have
e; =at, et =at, e = bt (57)

The algebra is thus simply a product of three harmonic oscillators which reads
[ax,al] =1,  [bb"] =1 (58)

B

Given the frame field, we can define the fluxes X! = %ei]-ke{qe’éeA . A straightforward

computation gives

¥ = ata, —a'a,
Y = a bt —atp,
¥t = a'b—a bt (59)
which satisfy the SU(2) algebra
[£F,27] =53, [2*] =+5%, (60)

with Casimir £'%; = £3(Z3+1) + 22~ 2. We also have the metric*

82z = 2aia_+ bz/
Qzz = 2a1at + %2,
Qz = aIaJr +ata_+b'p, (61)
which satisfies the algebra
[gzz/giz‘] =4g,, [gzz,gzz] = 2gss, [gzz‘zgzz] = —24z, (62)

% The relationship with the usual real coordinates metric components is

1 . -
ds® = 5 [(gxx — gy — i2gxy)dz* + CC] +2(gux + gyy)dzdz.
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Note that this algebra is an SL(2, R) algebra

8+, 8-1=—83, [83,8+] = £284, (63)
with B

83 = &8zz, 8+ = %r 8- = gzﬂr
and

det(g) = g3(g3+1) — 48+ 8- (64)

is the Casimir of the SL(2, R) algebra. Therefore, the canonical commutation relations (52) of our initial
12-dimensional kinematical phase space at each point is replaced by the (6-dimensional) Lie algebra of
SU(2) x SL(2,R) in terms of the new fields. The metric variables encode the gauge-invariant degrees
of freedom, while the gauge parameters are encoded into the flux ¥/ variables.

4.1. Diffeomorphism Symmetry

Here we will clarify the geometric interpretation of the SL(2,R) Lie algebra satisfied by the
metric variables. We will indeed show that the SL(2,R) transformations can be identified with
area-preserving transformations of e, which can be seen as an ultralocal residue of the group of tangent
diffeomorphisms. The constraint generating tangent diffeomorphisms is

1
(o) = 5 /a _eiA Lo (65)

where £, denotes the Lie derivative along the vector field v tangent to the boundary. One can
check that {d(v),d(w)} = d(L,w). Using the identity Lye; = d(iye') + ipde;, one can verify that
d(v) = 1 [,5 d((ive')e;) + [, (ive')de;. The first term vanishes identically because 0% = 0.

Let us now assume that the surface 0% is decomposed in a union of cells 0¥ = U;D; with
boundaries dD; = C;. We can assume for definiteness that each cell i is a square that corresponds
to a lattice cell centred around the vertices of the square lattice introduced in the definition of the
basic observables in Equations (49) and (50). Let us also assume that inside each cell we impose
the Chern-Simons constraints de; = 0 as a way to express the discreteness of our regularisation.
This imposes that the metric is constant within each cell, and implies that the discrete data determine
the value of ¢; inside each cell and then on 9 (cf. [17] for an analog treatment in loop gravity). Then,
the diffeomorphism constraint becomes

d(v) = dpui(v) + zdci (), (66)

where the first term generates bulk diffeomorphisms, which are assumed to vanish, while the d¢(v)s
are given by

1 . : 1
dc(v) = 3 fc(lvei)é’l = Efcvﬂgabdxb‘

In the lattice regularisation, one can find an ultralocal action of the d¢(v) by using paths C such
as the one depicted in Figure 3. In that case, one finds that

dc(v) = 61 gxx + 6 gyy + (67 + 63)gxy, (67)

where 0f = (v], —v5)/2 and 05 = (vf —vf)/2, and v with A € {u,d,r, 1} denotes the value of the
vector field at the up, down, right, and left segments, respectively, defining C as in Figure 3. We have
shown that in our regularisation, the action of the D¢ (v) corresponds to the action of the generators of
the SL(2, R) symmetry that we algebraically deduced from the commutator algebra in (63).
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\/

Figure 3. The thick segments represent the paths Ly and Ly used in the regularization of the basic
observables used in (49). The square-oriented path represents the contour C used in (67) defined by
four oriented segments {u,d, r,1}. The diagram should be thought of as embedded inside a coordinate
ball x2 + y? < €2. The regularisation is removed in the limit e — 0.

4.2. Representation

We now describe the representations of this metric-flux algebra. There is the obvious Fock
representation built on top of the vacuum state |0,0,0) annihilated by b,a,,a_. A general state is
denoted by |n,,n4,n_) (ie., the corresponding harmonic oscillator multiparticle states). However,
in our case it is more transparent to construct a basis where some of the metric-flux variables are
diagonal. We can describe this algebra in a basis that diagonalises det(g), 23, g3, and we first look for
the highest weight states which annihilate g_. Such a state is labelled by a pair of half integers j, m
such that j =m € N and can be written

jtm—n j—m—n
: _ gy D) () 7 (al)
j,m,0) = Ajm Z (1\/5)” nl  Em—ny, j—m—n !|0'0'0>
HEN]'m ' 2 ) (T)
— A Y (iv/2)" " j+m—n j—m—n> (68)
]Wl ~ | j+m—n | ],_m_n | 7 2 7 2 7
neENy, 1’1.(72 )(72 )

where the sum is over the ensemble N, of all positive integers such that (j =m —n)/2 € N, and we
use | ) instead of | ) to denote the states in the new basis.
It can be checked that the previous states form an orthonormal set once A, is suitably chosen:

271
A2 = : 4 (69)
" nEZNJ nt (R ()
Remarkably, this term can be resummed in terms of a simple formula:
(i 1(i —m)!

The proof of this identity can be given by writing the summation formula (69) as an integral:

. 2 4. . Lo T d . . .
]!A;ri — /72” £(2+€1¢ +efz(p>]efzmzp — / j(ellli _._6711[})2]871251711[)/ (71)

—7T 27
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where the second equality follows from the change of variable ¢ = 2i. We can also check that
g—1j,m,0) = 0 while
galj;m) = jlj,m,0),  Xslj,m,0) = mlj,m,0). (72)

These states carry a representation of SU(2) given by

. —iAjy 1 . . .
2l 0) = (= m Dl = 1,0) = oy Em) —m Dljm - 10), - (73)
jm—1
iApm
=*|j,m,0) = \[A T m Dl m+1,0) f\/]— Yj+m+1)|j,m+1,0).  (74)
e+

A general state is obtained from these highest weight states by action of g,
g+|j,m,k) = ijk |],m,k+1) (75)

Since g38+|j,m,0) = g+&3lj,m,0) 4+ g+|j,m,0) on these general states we have

gslj,m k) = (j+k)|j,mk),  Zsl|jmk)=mljm,k) (76)
and the Casimir
det(g)|j, m, k) = L;X'|j,m, k) = j(j +1)[j, m, k), (77)
where
(j, m,k|j/, m’, k/) = 5j,j/5m,m/5k,k" (78)

Finally, the operator ¢g_g is also diagonal and plays an important role in the discussion below.
From (64) and the commutation relations, we get

1
8-8+ = g+8- 83 = ;(g3(g3 +1) —det(g) +4gs). (79)

Now, (76) and (77) yield

8-8g+li,m k) = %l((j+k)(j+k+1) —j(+1) + 4G +K)lj,m k),

which allows us to compute the coefficients Cj,x defined in (75), namely

Ciuk = 3\/ G+ B +K+5) = (i +1). (50)

This basically concludes the construction of the representation theory of the geometric observables (59)
and (61). The first surprise is that the condition for the area of the boundary to be finite does not restrict
the quantum theory to a finite dimensional Hilbert space. The reason for this is that, even for the zero
area eigenstates j = 0, one has an infinite tower of degenerate excitations |0, 0, k) for k € N/2. In order to
recover a finite dimensional subspace defined by a fixed total area, one needs to find a way of restricting
these 2d degenerate geometry quantum numbers.

4.3. The Geometry of the k Quantum Number

In the absence of external charges (i.e. when j = 0 and the local version of the constraint (45)
is imposed at the quantum level), the only remaining quantum number is k. This implies that k is a
quantum number associated to the genuine degenerate triads degrees of freedom of the 2 + 1 effective
theory introduced in Section 3.1. As mentioned previously, the presence of these local degrees of
freedom is expected from the more general nature of the present boundary conditions, which are
weaker than those used in the isolated horizon literature. However, such local excitations (encoded in
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k) need to be restricted in some way if we are to recover finite-dimensional subspaces that are a key
property of the previous treatments. Here we show that there are two natural ways of imposing such
restriction. The link with black hole models will be discussed in the conclusion section that follows.

When j # 0 quantum, the number k admits a geometric interpretation in terms of the metric
observables as it follows from

8-g+li,m k) = 2[G+K)(j+k+5) —j(j+ DIlj,m k), (81)

I

which tells that for fixed area eigenvalue (77), or equivalently for fixed j, the minimum eigenvalue
of g_g is obtained for k = 0. Lets us recall here that in conformal coordinates g_ g4+ = g9z is
a measure of the shear deformation of the metric from the diagonal metric. This means that states
picked around the minimal k are (conformally) picked on the fiducial metric that defines our complex
structure®, namely

(822) = \/detg =,

<gzz> = <gi_> =0, (86)

and have minimal uncertainties in the off-diagonal components that vanish in the large j limit

(Agxy)? ~ (§-8+) _[G+k)(+k+5)—j(j+1)] oy
det(g) — det(g) 4G+ 1) o o/ (87)

The previous semiclassical properties imply that maximum weight states are indeed generalised

coherent states representing a semiclassical conformally spherical geometry of the boundary. The quantum
number k is related to (ultra)local diffeomorphisms that make the x and y directions—canonically chosen
by our conformal structure at the starting point—non-orthogonal in the physical metric. Preserving the
condition k = 0 implies the restriction to conformal transformations—diffeomorphisms which preserve
the conformal structure at each non-trivial (j # 0) puncture.

There is an alternative and equally geometric way of imposing the restriction k = 0. It corresponds
in essence to the U(1) treatment of [5]. The key equations are (76). According to the algebra (63) of
metric variables, the metric component g3 generates a subgroup U (1) C SL(2,R) corresponding to
area-preserving diffeomorphisms that can be interpreted as local rotations along a direction normal to

Another way of getting a geometric intuition goes as follows: let us make a classical study by writing the triad in our fiducial
coordinate system as

e! =adx, ¢* = bcos(p)dx +bsin(p)dy, ¢ =0, (82)
where ¢3 = 0 is a partial gauge fixing of the SU(2) symmetry. A further rotation preserving the condition ¢ = 0 allows us
to choose e! completely “aligned” along dx. Now we know that the transformations generated by the metric variables are
given by an SL(2, R) of area-preserving linear transformations. This means that the SL(2, R) transformation deforms the
parallelogram defined by e! and e? above without changing its area. If we fix the area to unity, we get the condition

1 =absin(¢), (83)

el =

(dz+dz), = %(exp(—igb)dz +exp(ip)dz), ¢ =0, (84)

4
V2
from which we get

1 .
8= (a® 4 b2 exp(2i¢)),

1 ,
8+ =g (a® 4+ 12 exp(—2i¢)),

8= 5 (@+17). (55)

We conclude that the condition g_ = 0 implies a> = b* and ¢ = 77/2. From absin(¢) = 1 we get ab = 1 and finally g5 = 1
ore! =dx, e? = dy,and ¢ = 0. All this is the classical counterpart of the metric-flux spectral form found above.
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the boundary®. By setting m = j in (76), one chooses SU(2) coherent states picked along the internal
direction 3. One can then impose the constraint

B—23=0 (88)

strongly, which boils down to setting k = 0. The previous constraint can be interpreted as aligning the
internal direction 3 with the normal to the normal to the boundary. In this way;, it links the subgroup
U(1) C SL(2,R) with the internal subgroup U(1) C SU(2). Note that the vectors |}, j,0) solving the
constraint (88) are the only common representation vectors shared by the unitary representations of
SU(2) and SL(2,R) (in the discrete series).

If no restriction on k is imposed, then we have a completely general quantum geometry of the
boundary degrees of freedom. The interpretation of k in terms of intrinsic degenerate geometries
follows from our analysis of the boundary dynamical system of Section 3.1.

5. Conclusions

A simple symplectic structure for the geometry of a 2-dimensional boundary arises from the
canonical formulation of gravity in connection variables. This was previously observed in studies of
the isolated horizon boundary condition [4]. Here we emphasise its more general validity.

Starting from this simple symplectic form of the boundary 2-geometry, expressed in terms of
the induced triad field in Equation (36), we produced a quantisation of the boundary geometry
which differs from the one found in the models using a Chern-Simons theory effective treatment.
The main difference consists of the presence of purely degenerate (zero area) point-like excitations of
the form |0,0, k). Such dissimilarity should not be surprising, as the classical equivalence between
description of the boundary geometry presented here and that defined in terms of Chern-Simons
theory is only valid when one assumes the non-degeneracy of the boundary geometry (in addition
to classical restrictions of symmetry contained in the type I isolated horizon boundary condition) [4].
The quantisation presented here is therefore more general.

In order to establish a link with previous formulations, one has to supplement our quantisation
with an additional requirement restricting the quantum number k to be equal to zero. This can always
be achieved at the classical level by a diffeomorphism. In order to relate our quantisation to the
usual treatment, we have to impose the diffeomorphism symmetry at the quantum level. Because the
generators of diffeomorphism encoded in the metric components are non-commutative, it cannot
be done strongly. Herein we discussed two different ways to proceed. The first possibility is to
require that the averaged complex structure used in the quantisation process matches the one defined
by the quantum geometry. This requirement cannot be imposed strongly due to the uncertainty
relations, but it can be weakly imposed in the semiclassical sense of expectation values and that
fluctuations go to zero in the large j limit (Equation (87)). This implies that the condition k = 0 is
optimal. The second possibility is to impose the geometric requirement that the eigenvalues of the
generator of U (1) C SL(2,R) area-preserving diffeomorphisms coincide with those of the generator of
the U(1) C SU(2). This condition can be imposed strongly as an operator equation (Equation (88)).
In this second case, there is no ambiguity and the restriction sets k = 0 and m = j. The subspace of
admissible states at an excited puncture (i.e. j # 0) is one-dimensional. This possibility is geometrically

6  Inthe normal gauge ¢® = 0 we can write ¢! = ¢#(cos(6)dx + sin(6)dy) and ¢ = e (— sin(6)dx + cos(0)dy) /g = e*#dx A dy.
The metric component g3 = gz = (el + e;e;) /2 generates the transformations
def = {g3,e5} =¢j,

bef = {gav et} = —l.

Therefore, it is conjugate to the coordinate 6 and generates local rotations of the coordinates around the origin. Note that
one can directly obtain such local differ from the action of D¢(dy) as defined in (67).
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very appealing, as it links the notions of internal rotations with tangent rotations as defined by the
complex structure, defining in a way an intrinsically defined normal gauge fixing.

Ultimately, a proper imposition of the diffeomorphism constraints should be investigated.
We expect that this will lead to a relationship with conformal field theories in 2d. We leave these
appealing aspects for future investigation. The appearance of new degrees of freedom associated
with diffeomorphisms might provide a concrete example of the kind of non-dissipative information
reservoir needed in the scenario of unitary black hole evaporation advocated in [18].
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