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Abstract: By relaxing the constraint of adiabatic universe used in most cosmological models, we have
shown that the new approach provides a better fit to the supernovae Ia redshift data with a single
parameter, the Hubble constant H0, than the standard ΛCDM model with two parameters, H0 and the
cosmological constant Λ related density, ΩΛ. The new approach is compliant with the cosmological
principle. It yields the H0 = 68.28 (±0.53) km s−1 Mpc−1 with an analytical value of the deceleration
parameter q0 = −0.4. The analysis presented is for a matter-only, flat universe. The cosmological
constant Λ may thus be considered as a manifestation of a nonadiabatic universe that is treated as an
adiabatic universe.
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1. Introduction

The redshift of the extragalactic objects, such as supernovae Ia (SNe Ia), is arguably the most
important of all cosmic observations that are used for modeling the universe. Two major explanations
of the redshift are the tired light effect in the steady state theory and the expansion of the universe [1].
However, since the discovery of the microwave background radiation by Penzias and Wilson in
1964 [2], the acceptable explanation for the redshift by mainstream cosmologists has steadily shifted in
favor of the big-bang expansion of the universe, and today alternative approaches for explaining the
redshift are not acceptable by most cosmologists. The situation has been most succinctly expressed
by Vishwakarma and Narlikar in a recent paper [3] as follows: “ . . . a recent trend in the analysis of
SNeIa data departs from the standard practice of executing a quantitative assessment of a cosmological
theory—the expected primary goal of the observations [4,5]. Instead of using the data to directly
test the considered model, the new procedure tacitly assumes that the model gives a good fit to the
data, and limits itself to estimating the confidence intervals for the parameters of the model and their
internal errors. The important purpose of testing a cosmological theory is thereby vitiated.”.

Interestingly, it is the close analysis of the cosmic microwave background that has created tension
between the Hubble constant derived from the spectral data and from the microwave background
data [6,7].

The status of the expanding universe and steady state theories has been recently reviewed by
López-Corredoira [8] and Orlov and Raikov [9]. They concluded that, based on the currently available
observational data, it is not possible to unambiguously identify the preferred approach to cosmology.

It has been phenomenologically shown that the tired light may be due to the Mach effect,
which may contribute dominantly to the cosmological redshift [10]. While the paper’s assumption
that observed redshift may be a combination of the expansion of the universe and tired light effect
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appears to be sound, it incorrectly divided the distance modulus of the light-emitting source between
the two components rather than keeping the proper distance of the source the same and dividing the
redshift. This was corrected in a subsequent paper [11] which showed that a hybrid of the Einstein–de
Sitter cosmological model and the tired light (Mach effect) model gave an excellent fit to the SNe Ia
data while at the same time providing analytically the deceleration parameter and the ratio of the
contribution of the two models. Consequently, the new model was dubbed Einstein–de Sitter Mach
(EDSM) model.

Using Poisson’s work on the motion of point particles in curved spacetime [12], Fischer [13] has
shown analytically that gravitational back reaction may be responsible for the tired light phenomenon
and could account for some or most of the observed redshift. His finding may also be related to the
Mach effect.

The EDSM model required a luminosity flux correction factor proportional to 1/
√

1 + z that was
left unexplained [11], z being the redshift. This inspired us to look at the fundamentals of cosmological
modeling and see if some of the assumptions need revisiting. Most cosmological models are based on
one or more of the following assumptions:

1. Cosmological principle: The universe is homogeneous and isotropic—at large scale.
2. Adiabatic expansion: The energy does not enter or leave a volume of the universe.
3. Perfect fluid: The equation of state follows simple energy–pressure law proportionately.
4. Interaction-free components: Fluid equation for each component is independent.

We believe that the adiabatic expansion of the universe is the weakest among all the above
assumptions. After all, Einstein’s incorporation of the cosmological constant in his field equations in
itself comprises a breach of adiabatic assumption. More recently, Komatsu and Kimura [14,15] have
suggested a nonadiabatic model. Their approach has been to modify the Friedmann and acceleration
equations by adding extra terms and derive the continuity (fluid) equation from the first law of
thermodynamics, assuming nonadiabatic expansion caused by the entropy and temperature on the
horizon. The solution of the equations is thus based on multiple unknown parameters that need to be
determined by fitting the SNe Ia data. We believe if the model is sound, then we would not need any
fitting parameter other than the Hubble constant.

2. Theory

The Friedmann equation, coupled with the fluid equation and the equation of state, provides
the dynamics of the universe and thus the evolution of the scale factor a. It does not give the redshift
z directly. The redshift is taken to represent the expansion, and only the expansion, of the universe,
and thus scale factor is considered to be directly observable through the relation a = 1/(1 + z).
The relation ignores other causes that may contribute to the redshift. If the redshift is indeed contributed
partially by other factors, such as by the Mach effect, then the scale factor determined by said equations
will not equate to 1/(1 + z). Unless the said equations are modified to take into account other factors,
they cannot be considered to represent the cosmology correctly. Since energy density is common to all
the three equations, and evolution of density is governed by the fluid equation, we will try to look at it
with a magnifying glass.

The starting point for the fluid equation in cosmology is the first law of thermodynamics [1,16]:

dQ = dE + dW (1)

where dQ is the thermal energy transfer into the system, dE is the change in the internal energy of the
system, and dW = PdV is the work done on the system having pressure P to increase its volume by
dV. Normally, dQ is set to zero on the grounds that the universe is perfectly homogeneous and that
there can therefore be no bulk flow of thermal energy. However, if the energy loss of a particle, such as
that of a photon through tired light phenomenon, is equally shared by all the particles of the universe
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(or by the ‘fabric’ of the universe) in the spirit of the Mach effect [17], then dQ can be nonzero while
conserving the homogeneity of the universe.

We will thus abandon the assumption that dQ = 0. The first law of thermodynamics for the
expanding universe then yields:

.
E + P

.
V =

.
Q (2)

We now apply it to an expanding sphere of commoving radius rs and scale factor a(t). Then the
sphere volume V(t) = 4π

3 r3
s a(t)3, and

.
V = V

(
3

.
a

a

)
(3)

Since the internal energy of the sphere with energy density ε(t) is E(t) = ε(t)V(t), its rate of
change may be written as

.
E = V

.
ε +

.
Vε = V

(
.
ε +

3
.
a

a
ε

)
(4)

If we assume the energy loss
.

Q to be proportional to the internal energy E of the sphere

.
Q = −βE = −βεV (5)

where β is the proportionality constant, then Equation (2) may be written as

.
ε +

3
.
a

a
(ε + P) + βε = 0 (6)

which is the new fluid equation for the expanding universe. Using the equation of state relation
P = wε, and rearranging Equation (6), we may write

dε

ε
+ 3(1 + w)

da
a

+ βdt = 0. (7)

Assuming w to be constant in the equation of state, this can be integrated to yield

ln(ε) + 3(1 + w) ln(a) + βt + C = 0 (8)

Here, C is the integration constant. Now t = t0 corresponds to the scale factor a = 1 and ε = ε0,
giving C = − ln(ε0)− βt0. We may then write Equation (8) as

ε(a) = ε0a−3(1+w)eβ(t0−t) (9)

Let us now examine the simplest form of the Friedmann equation (single component, flat universe)
with G as the gravitational constant. It may be written [16] as

( .
a
a

)2

=

(
8πGε

3c2

)
(10)

Substituting ε from Equation (9), we get

.
a2

=

(
8πGε0

3c2

)
a−(1+3w)eβ(t0−t) (11)

Since a0 ≡ a(t0) = 1, it can be shown that it has the following solution [Appendix A,
Equations (A1)–(A8)]:

a = a/a0 =

(
1− e−

βt
2

1− e−
βt0
2

) 2
3+3w

(12)
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≈
(

t
t0

) 2
3+3w

(
1 +

1
4

β

(
2

3 + 3w

)
(t0 − t) + O

(
β2
))

(13)

This reduces to the standard expression for the scale factor in adiabatic universe (β = 0). Since the
Hubble parameter is defined as H(t) =

.
a/a, differentiating Equation (12) with respect to t and

rearranging, we get [Appendix A, Equations (A9)–(A11)]:

.
a
a
=

(
β

3 + 3w

)(
e

βt
2 − 1

)−1
, or (14)

e
βt
2 = 1 +

(
1

H(t)

)(
β

3 + 3w

)
, or (15)

βt
2

= ln
(

1 +
(

1
H(t)

)(
β

3 + 3w

))
, or (16)

t0 =
2

3 + 3w

(
1

H0

)
when β⇒ 0. (17)

Here, Equations (15) and (16) can be used to determine the age of the universe in the nonadiabatic
universe provided we know β. They reduce to Equation (17) in the limit of β⇒ 0 . It is the standard
expression in adiabatic universe for the age of the universe in terms of the Hubble constant for a
single component flat universe. We see from Equation (11) that at t = t0,

.
a(t0) =

√( 8πGε0
3c2

)
. We can

therefore write the expression for the age of the universe in terms of the energy density as

t0,β =
2
β

ln

1 +
(

β

2

)(
1

1 + w

)√
c2

6πGε0

, and (18)

t0,0 =

(
1

1 + w

)√
c2

6πGε0
when β⇒ 0. (19)

Equation (18) is the expression for the age of the universe for the single component flat
nonadiabatically expanding universe and Equation (19) is the standard expression for adiabatically
expanding universe obtained in the limit of zero β. We need to know β in order to get t0 in the
nonadiabatic universe.

If we like, we could resolve the Friedmann Equation (11) into adiabatic and nonadiabatic components:

.
a2

=

(
8πGε0

3c2

)
a−(1+3w)

[
1 + β(t0 − t) +

1
2

β2(t0 − t)2 . . .
]

(11’)

Here, the 1st term in the square bracket is the adiabatic term that is used in most cosmological
models and the remaining terms represent the nonadiabatic correction. The nonadiabatic correction
is nonexistent at t = t0 (i.e., z = 0) and negligible when t is close to t0 (i.e., z � 1). Thus, we can
resort to adiabatic universe as the boundary condition when finding certain analytical parameters and
correlations. Since we know the analytically derived value of the deceleration parameter q0 = −0.4
from the adiabatic EDSM model [11], let us first work out the expression for the same from its standard
definition and see if β can be expressed in terms of q0.

q0 ≡ −
( ..

aa
.
a2

)
t=t0

(20)

Equation (14) may be differentiated and rearranged to obtain the expression for q0 as follows:

..
a(t) =

(
β

3 + 3w

)
[

.
a(t)

(
e

βt
2 − 1

)−1
− a(t)

(
e

βt
2 − 1

)−2
e

βt
2

(
β

2

)
], (21)
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=

(
β

3 + 3w

)(
e

βt
2 − 1

)−1[ .
a(t)−

(
β

2

)
a(t)

(
e

βt
2 − 1

)−1
e

βt
2

]
, (22)

=

( .
a(t)
a(t)

)
.
a(t)

[
1−

(
β

2

)(
a(t)
.
a(t)

)(
e

βt
2 − 1

)−1
e

βt
2

]
, or (23)

..
a(t)a(t)

.
a2
(t)

= 1−
(

β

2

)(
a(t)
.
a(t)

)(
e

βt
2 − 1

)−1
e

βt
2 , (24)

= 1− 3 + 3w
2

e
βt
2 from Equation (14), or (25)

q = −1 +
(

3(1 + w)

2

)
e

βt
2 , or q0 = −1 +

(
3(1 + w)

2

)
e

βt0
2 . (26)

For q0 = −0.4 and w = 0 (i.e., matter-only universe), Equation (26) yields e
βt0
2 = 0.4 or

β = −1.833/t0. Substituting these values in Equation (15) at t = t0 yields β = −1.8H0 and the
age of the universe t0 = 1.02H−1

0 .
Up until now, we have not used any observational data. In order to proceed further, we need

to know the Hubble constant H0. The observational data is usually provided in the form of distance
modulus µ and the redshift z. In an expansion-only model, we may write the distance modulus
as [1,16]:

µ = 5 log(dL) + 25, where (27)

dL = (1 + z)dP, where (28)

dP(t0) = c
t0∫

te

dt
a(t)

. (29)

Here, dL is the luminosity distance of the source emitting the photons at time te whose redshift
is being measured, and dP is the proper distance of the source in megaparsecs observed at time t0.
When all the redshift is allocated to the expansion of the universe, 1 + z = 1/a(t). We may then write
Equation (29)

dP(z) = c

z(t0)∫
z(te)

dz(1 + z)/
(

dz
dt

)
. (30)

Equation (12) can now be used to determine dz/dt for substitution in Equation (30). Since we are
observing redshift in the matter-dominated universe, we may simplify Equation (12) by taking w = 0,
and rewrite it as

1 + z =
1
a
=

(
1− e−

βt0
2

) 2
3 (

1− e−
βt
2

)− 2
3
, or (31)

dz
dt

=

(
β

3

)
(1 + z)

(
1− e−

βt
2

)−1(
−e−

βt
2

)
. (32)

We can use Equation (31) to express
(

1− e−
βt
2

)−1
and

(
−e−

βt
2

)
in terms of 1 + z. By defining the

constant term
(

1− e−βt0/2
)
≡ A, we may write

(
1− e−

βt
2

)
= A/(1 + z)

3
2 , (33)

and rewrite Equation (32) as

dz
dt

=

(
β

3

)
[(1 + z)

5
2 /A]

[
A

(1 + z)
3
2
− 1

]
, or (34)
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=

(
β

3

)
(1 + z)

[
1− (1 + z)

3
2

A

]
. (35)

Equation (30) may now be written

dP(z) = −
(

3c
β

) z∫
0

du

[
1− (1 + u)

3
2

A

]−1

. (36)

There is no simple analytical solution for the integral in Equation (36). Substituting
A ≡

(
1− e−βt0

)
= −1.5 and β = −1.8H0 from above Equation (26) and the paragraph following it,

and defining R0 ≡ c/H0, we may write the distance modulus µ as

µ = 5 log[
R0

0.6
(1 + z)

z∫
0

du
(

1 +
(

2
3

)
(1 + u)

3
2

)−1
] + 25. (37)

We can include Mach effect contribution to the redshift following the approach in an earlier
paper [11] and recalculate the distance modulus µ. Using subscript M for Mach effect and
X for expansion effect and equating the proper distance expressions for the two, and since
1 + z = (1 + zM)(1 + zX) and R0z = RMzM = RXzM, we may write

RM ln(1 + zM) =

(
RX
0.6

) zX∫
0

du

[
1 +

(1 + u)
3
2

1.5

]−1

, or (38)

(
R0z
zM

)
ln(1 + zM) =

(
R0z

0.6zX

) zX∫
0

du

[
1 +

(1 + u)
3
2

1.5

]−1

, or (39)

(
R0z(1 + zX)

z− zX

)
ln((1 + z)/(1 + zX)) =

(
R0z

0.6zX

) zX∫
0

du

[
1 +

(1 + u)
3
2

1.5

]−1

. (39’)

It is not possible to express analytically zX (or zM) in terms of z and write µ directly in terms of z.
Nevertheless, Equation (39’) can be numerically solved for zX for any value of z, and distance modulus
calculated to include Mach effect as well as expansion effect using the expression

µ = 5 log[
R0

0.6

(
z

zX

) zX∫
0

du
(

1 +
(

2
3

)
(1 + u)

3
2

)−1√
(1 + zX)(1 + z)] + 25. (40)

As equality between the proper distances determined by the Mach effect and the expansion effect
is already established by Equation (39), and since 1 + z = (1 + zM)(1 + zX), exactly the same result as
from Equation (40) is obtained if we use the expression for µ as follows:

µ = 5 log
[

R0

(
z

zM

)
ln(1 + zM)

√
(1 + zX)(1 + z)

]
+ 25, or (41)

µ = 5 log
[

R0

(
z

zM

)
ln(1 + zM)(1 + z)/

√
(1 + zM)

]
+ 25. (41’)

We will now consider how various parameters compare between the adiabatic models and the
nonadiabatic model developed here.

If we compare Equation (5) with the standard Mach effect photon energy loss equation
− dE

dt = H0E, then for radiation energy β = −H0 and the Mach effect redshift z is given by
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1 + z = exp(H0d/c) [10] with d = c(t0 − t). In addition, since w = 1/3 for radiation, Equation (9) may
be written for radiation as

εr(a) = εr,0a−4(1 + z). (42)

What is the scale factor here? In a standard adiabatically expanding universe, β = 0 and
a = 1/(1 + z). However, in the EDSM model, the redshift z has two components, zX, due to the
expansion of the universe, and zM, due to the Mach effect, with 1 + z = (1 + zX)(1 + zM) [11].
We should therefore replace in Equation (42) a with aX = 1/(1 + zX) and z with zM:

εr(aX) = εr,0a−4
X (1 + zM) = εr,0a−3

X (1 + z). (43)

Recalling that the standard expression for the radiation energy density evolution is given by

εr(a) = εr,0a−4 = εr,0(1 + z)4, (44)

we find that εr(aX) = εr(a)/(1 + zM)3, and is a fraction of the energy density for a given z without the
Mach effect.

Since Equation (9) is valid also for matter with w = 0, we get in the adiabatic universe with β = 0,

εm(aX) = εm,0a−3
X . (45)

Comparing it with Equation (43), we see that the ratio of the radiation density and mass density
is proportional to (1 + z), the same as in the standard expansion models [1,16]. The ratio is inclusive
of the factor e−β(t0−t) in the nonadiabatic universe.

3. Results

The database used in this study is for 580 SNe Ia data points with redshifts 0.015 ≤ z ≤ 1.414 as
compiled in the Union2 µ, z database [18] updated to 2017.

We used Matlab curve fitting tool to fit the data using nonlinear least-square regression.
To minimize the impact of large scatter of data points, we applied the ‘Robust Bisquare’ method in
Matlab. This tool fits data by minimizing the summed square of the residuals, and reduces the weight
of outliers using bisquare weights. This scheme minimizes a weighted sum of squares, where the
weight given to each data point depends on how far the point is from the fitted line. Points farther
from the line get reduced weight. Robust fitting with bisquare weight uses an iteratively reweighted
least-square algorithm. The Goodness of Fit in Matlab is given by parameters SSE (sum of squares
due to errors, i.e., summed square of residuals), that is minimized in the fitting algorithm; R-Square
indicates the proportionate amount of variation in the response variable explained by the independent
variable in the model (the larger the R-squared, the more the variability explained by the model);
and RMSE (root mean square error, i.e., standard error of the regression—the closer the value to zero,
the better the data fit).

Figure 1 shows the curves fitted to the data set using Equations (37) and (40), and using standard
ΛCDM model [11] for comparison. The expression used for ΛCDM model is

µ = 5 log[R0

z∫
0

du/
√

Ωm,0(1 + u)3 + 1−Ωm,0] + 5 log(1 + z) + 25. (46)

The first one has been labeled as EDSM-NA since it is the nonadiabatic version of the EDSM model
(flat, matter only, including Mach effect) of reference [11]. The second curve is labeled as EdeS-NA as it
is the nonadiabatic version of the Einstein–de Sitter model (flat, matter-only universe). The third one is
the curve for standard ΛCDM model. There is no visible difference between the three curves when the
full data fit curves are viewed in the left display of the figure, and only very slight visible difference
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when the zoomed-in right display at high z is viewed. Corresponding goodness-of-fit numbers are
presented in Table 1. The goodness-of-fit numbers differ only slightly.
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Figure 1. Fitted data curves for the three models in Table 1. The first one has been labeled as EDSM-NA
since it is the nonadiabatic version of the EDSM model (flat, matter only, including Mach effect)
in reference [11]. The second curve is labeled as EdeS-NA as it is the nonadiabatic version of the
Einstein–de Sitter model (flat, matter-only universe). The third one is the curve for ΛCDM model.
The left figure shows the complete fitted curves for the 580-points data set whereas the right figure is
the zoom-in of the fit in the high z region to enhance the difference among the fitted curves.

Figure 2 depicts the evolution of dimensionless parameters: (a) scale factor a, (b) Hubble parameter
H/H0, and (c) deceleration parameter q, against the dimensionless time H0(t− t0) for the standard
ΛCDM model and the nonadiabatic model developed here. While the shapes of the curves are different,
the trends are similar. We notice that the ΛCDM curves are steeper in most of the plotted region.
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Figure 2. Evolution of dimensionless parameters: scale factor a (left figure), Hubble parameter H/H0

(middle figure), and deceleration parameter q (right figure), against dimensionless time H0(t− t0) for
the standard ΛCDM model and the nonadiabatic model EdeS-NA.

Table 1. Parameter and goodness-of-fit for the two models. R0 is in Mpc−1 and H0 is in km s−1 Mpc−1.
SSE stands for sum of squares due to errors and RMSE for root mean square error.

Model
Parameter 95% Confidence Parameter 95% Confidence Goodness of Fit

R0 R0 Low R0 High Ωm Ωm Low Ωm High SSE R-Square RMSE

ΛCDM 4292 4240 4344 0.2877 0.2489 0.3266 24.35 0.9959 0.2053

EDSM-NA 4391 4357 4425 None NA NA 24.58 0.9958 0.2060

EdeS-NA 4344 4311 4378 None NA NA 24.10 0.9959 0.2040

In Figure 3 we have plotted the inverse of the expansion scale factor 1
a X = (1 + zX) against the

inverse of the standard scale factor 1
a = (1 + z). The curve can be approximated with a power law

expression y = 1.1345x0.4714 except at rather low values. Also, we have included a curve showing
a−3

X (1 + z) = (1 + zX)
3(1 + z) against a−4 = (1 + z)4 to show that the radiation energy density scaling
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is altered drastically by the inclusion of the Mach effect. This curve may be approximated with a power
law expression y = 1.4604x0.6035 except at small values.
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4. Discussion

From Figure 1 and Table 1, it is difficult to state unarguably which model is better. Nevertheless,
based on the fact that nonadiabatic models yield data fit using only one fit parameter, whereas the
ΛCDM model requires two fit parameters, the preferred model would be one of the nonadiabatic
models. Since the analytical value of the deceleration parameter used in this work is derived by
equating the Mach proper distance and expansion proper distance [11], both the nonadiabatic models,
EdeS-NA and EDSM-NA, implicitly involve the Mach effect. Our choice of the nonadiabatic model
will thus be determined by studying which model fits other cosmological observations better.

It should be mentioned that nonadiabatic modeling has been tried by some cosmologists,
most recently by Komatsu and Kimura [14,15]. Their approach has been to modify the Friedmann and
acceleration equations by adding extra terms and derive the continuity (fluid) equation from the first
law of thermodynamics, assuming nonadiabatic expansion caused by the entropy and temperature on
the horizon. The solution of the equations is thus based on multiple unknown parameters that need to
be determined by fitting the SNe Ia data. Our approach here modifies only the fluid equation from the
first law of thermodynamics on the assumption that the system energy gain or loss is proportional to
the energy of the system—Equation (5). No adjustable parameters, other than the universal Hubble
constant, are required to fit the data. The deceleration parameter that is needed in our nonadiabatic
formulation is analytically obtained from the EDSM model [11]. It may therefore be concluded that the
luminosity flux correction factor of reference [11] proportional to 1/

√
1 + z is due to the nonadiabatic

nature of the universe. Similarly, one could say that the cosmological constant Λ approximates the
nonadiabatic nature of the universe when studied in an adiabatic approximation of the universe.

The lowest value of the Hubble constant in this work is obtained with the EDSM-NA model
without compromising the goodness-of-fit. It is closer to the Hubble constant obtained from the cosmic
microwave background (CMB) data, such as from Plank and WMAP space crafts, than from the ΛCDM
model or the EdeS-NA model. At 68.28 km s−1 Mpc−1, it is almost right at the weighted average of
68.1 km s−1 Mpc−1 reported from WMAP and Planck data points [19]. However, it may just be a
coincidence. As discussed by Bonnet-Bidaud [20], the origin of CMB is not fully settled as yet.

Another important thing to note is that the ratio of Mach and expansion contribution to the
redshift has now changed. In reference [11], expansion contribution at the current epoch (t = t0

or z = 0) was only 40%. If we expand Equation (39) in the limit of very small z, we can see that
zM = 0.6zX and since z = zM + zX in this limit, we find that zX is 62.5% of z. The luminosity flux
correction factor can be considered as responsible for this discrepancy. This means that 62.5% of
Hubble constant H0 is due to the expansion of the universe and remaining due to Mach effect. All the
expansion-related cosmological parameters should thus be determined using H0X = 43 km s−1 Mpc−1.
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For example, the age of the universe would be t0 = 1.02
H0X

= 1.632 H0 ≈ 23 Gyr in the EDSM-NA model

against t0 = 1.02
H0
≈ 14.5 Gyr in the EdeS-NA model.

It should be emphasized that the main merit of the model presented here is that it can fit the
data with a single parameter, the Hubble constant H0. There have been several models developed
in the past, such as based on the modified tired light approach in plasma cosmology by Lorenzo
Zaninetti [21], that can give excellent fit to the data with one additional parameter which has to be
determined by fitting the data.

5. Conclusions

The cosmological model presented in this communication is based on relaxing the assumption
that universe dynamics is adiabatic within the confines of the cosmological principle. The fact that a
single parameter yields a better fit to the SNe Ia data using the nonadiabatic model presented here
than the two-parameter fit of the same data using ΛCDM model establishes the superiority of the new
model. The Hubble constant obtained by the two models is almost the same; in fact, the nonadiabatic
Mach-expansion hybrid model EDSM-NA gives a lower value, H0 = 68.28 (±0.53) km s−1 Mpc−1,
very close to 68.1 km s−1Mpc −1 sought by cosmic microwave background data from Plank and
WMAP space crafts. It may therefore be possible to dispense with the cosmological constant after all,
and corresponding perpetually elusive dark energy, in the spirit of Einstein, who always wanted to
correct his greatest mistake!
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Appendix

In this Appendix, our objective is to show how to obtain Equations (12) and (14) from Equation (11).
Equation (11) may be rewritten as

.
a =

(
8πGε0

3c2

) 1
2
e

βt0
2 a−

(1+3w)
2 e

−βt
2 . (A1)

Substituting temporarily A =
(

8πGε0
3c2

) 1
2 e

βt0
2 and B = 1 + 3w, we may write Equation (A1) as

.
a = Aa−

B
2 e
−βt

2 . (A2)

The solution of this equation from the free online solver Wolfram Alpha (http://www.
wolframalpha.com) is

a(t) = 4−
1

B+2

[
(−B− 2)

(
2Ae−

βt
2

β
+ c1

)] 2
B+2

. (A3)

Here, c1 is the integration constant that needs to be determined from the boundary condition;
it should reduce to the standard expression for a(t) [16] in the nonadiabatic universe when β = 0.
Since the scale factor a(t0) ≡ 1, dividing Equation (A3) by the same by setting t = t0, we get

a(t) =
a(t)
a(t0)

=

[(
2Ae−

βt
2

β
+ c1

)] 2
B+2

/

2Ae−
βt0
2

β
+ c1

 2
B+2

, (A4)

http://www.wolframalpha.com
http://www.wolframalpha.com
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=
[(

e−
βt
2 + βc1/2A

)] 2
B+2

/
[(

e−
βt0
2 + βc1/2A

)] 2
B+2

(A5)

=

[(
1− βt

2
+ .. + βc1/2A

)
/
(

1− βt0

2
+ .. + βc1/2A

)] 2
3+3w

(A6)

where we have used series expansion for the exponential function and retained only the first two
terms in the numerator as well as denominator in order to take the limit β⇒ 0 . This must reduce to

the standard expression for single component flat universe, i.e., to
(

t
t0

) 2
3+3w [16]. With this boundary

condition, we see that we must have βc1
2A = −1. We may now write

a(t) =
[(

e−
βt
2 − 1

)
/
(

e−
βt0
2 − 1

)] 2
3+3w

, (A7)

=

[(
1− e−

βt
2

)
/
(

1− e−
βt0
2

)] 2
3+3w

. (A8)

Equation (A8) is the same as Equation (12). Taking time derivative of this equation, we get

.
a(t) =

2
3 + 3w


(

1− e−
βt
2

)
(

1− e−
βt0
2

)


2
3+3w (

1− e−
βt
2

)−1(
−e−

βt
2

)(
− β

2

)
, (A9)

= a(t)
(

2
3 + 3w

)(
1− e−

βt
2

)−1( β

2

)
e−

βt
2 , or (A10)

.
a(t)
a(t)

=

(
β

3 + 3w

)(
e

βt
2 − 1

)−1
. (A11)

This expression is the same as Equation (14).
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