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Abstract: Cosmological constant corresponds to the maximally symmetric cosmological term with
the equation of state p = −ρ. Introducing a cosmological term with the reduced symmetry, pr = −ρ

in the spherically symmetric case, makes cosmological constant intrinsically variable component of
a variable cosmological term which describes time-dependent and spatially inhomogeneous vacuum
dark energy. Relaxation of the cosmological constant from the big initial value to the presently
observed value can be then described in general setting by the spherically symmetric cosmology of
the Lemaître class. We outline in detail the cosmological model with the global structure of the de
Sitter spacetime distinguished by the holographic principle as the only stable product of quantum
evaporation of the cosmological horizon entirely determined by its quantum dynamics. Density of
the vacuum dark energy is presented by semiclassical description of vacuum polarization in the
spherically symmetric gravitational field, and its initial value is chosen at the GUT scale. The final
non-zero value of the cosmological constant is tightly fixed by the quantum dynamics of evaporation
and appears in the reasonable agreement with its observational value.
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1. Introduction

The biggest challenge may be the cosmological vacuum energy.
John Ellis, 2003

One of the most challenging issues of modern cosmology is to describe the positive
late time acceleration through a single self-consistent theoretical scheme.

A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, 2014

According to observational data, the present state of our universe is dominated by a dark energy
with the equation of state p = wρ; the parameter w satisfies the condition w < −1/3 which guarantees
accelerated expansion.The value w = −1 represents the cosmological constant λ corresponding to
the vacuum density ρvac by λ = 8πGρvac. CMB (Cosmic Microwave Background) measurements [1]
combined with BAO (Baryon Acoustic Oscillations) data [2] and SNe (SuperNovae) Ia data [3] give the
value w = −1.06± 0.06 at 68% CL [2]. On the other hand, much bigger value of a cosmological constant
is required to trigger the early inflationary stage. The fact that it must be constant creates the first
aspect of the problem of the cosmological constant. Second aspect concerns the difference, by 123 orders
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of magnitude, between its observational value and the value predicted by the quantum field theory,
which leads to the fine-tuning problem (see, e.g., [4]).

Various models have been developed with a dark energy of non-vacuum origin which mimics
cosmological constant when necessary (for a review [5,6]), and confronted with cosmography tests [7,8].
Model-independent evidence for dark energy evolution from BAO data prefers theories in which
cosmological constant Λ relaxes from a large initial value [9].

In this paper we review our results on relaxing cosmological constant obtained in the frame of the
model-independent self-consistent approach which allows to make cosmological constant intrinsically
variable. In this approach a vacuum dark energy is presented as a single physical entity on the basis
of the algebraic classification of stress-energy tensors and related to it spacetime symmetry (detailed
description in [10]).

The Einstein cosmological term Λδi
k corresponds to the maximally symmetric de Sitter

vacuum Ti
k = ρvacδi

k with ρvac = const by virtue of the contracted Bianchi identities Ti
k;i = 0.

The model-independent way to make Λ variable, based on the algebraic classification of stress-energy
tensors, consists in reducing the maximal symmetry of the Einstein cosmological term Ti

k = ρvacδi
k

(with ρvac = const), while keeping its vacuum identity, i.e., the Lorentz-invariance in a certain
direction(s). A stress-energy tensor Ti

k with a reduced symmetry describes a vacuum dark fluid
defined by the equation of state pα = −ρ valid only in the distinguished direction(s) [11,12],
which makes it intrinsically anisotropic. The behavior of pressure(s) pβ with β 6= α is determined from
Ti

k;i = 0. This generalizes the description of the cosmological constant Λ to the density component
Λt

t = 8πGρvac 6= const of the variable cosmological term Λi
k = 8πGTi

k [13] which makes a vacuum
energy intrinsically dynamical, i.e., time evolving and spatially inhomogeneous.

In the spherically symmetric case vacuum dark fluid is described by stress-energy tensors specified
by Tt

t = Tr
r (pr = −ρ), which are intrinsically anisotropic: p⊥ = −ρ− rρ′/2 by virtue of Ti

k;i = 0 where

p⊥(r) = −Tθ
θ = −Tφ

φ is the transversal pressure [13,14]. For the case of non-negative energy density
for any observer, they generate regular spacetimes with the obligatory de Sitter center Ti

k = Λδi
k at

r = 0 [14,15]. In the case of two vacuum scales, they connect smoothly Ti
k = Λδi

k at r = 0 with Ti
k = λδi

k
at r → ∞, with λ < Λ [11,12], and describe intrinsic relaxation of a large initial Λ = 8πGρΛ towards
a small λ = 8πGρλ. A mechanism for relaxation of cosmological constant to a needed non-zero value
is provided by spacetime symmetry (detailed explanation in [10]).

The key point is that the cosmological models with vacuum dark energy presented by the variable
cosmological term must be anisotropic, since in the isotropic FLRW cosmology ρvac must be constant
by virtue of Ti

k;i = 0. In the spherically symmetric case the intrinsic relaxation of the cosmological
constant is described in the frame of the most general Lemaître class models with anisotropic perfect
fluid. The Lemaître class includes the FLRW model as the particular case of the full isotropy and
homogeneity and, in consequence, of λ = 8πGρvac = const. Cosmological Lemaître models with
vacuum dark energy asymptotically approach the isotropic FLRW models at the earliest and present
(eventually also intermediate) stages when the symmetry of a source term is restored to the de Sitter
vacuum [11,16]. In the case Ω = 1 de Sitter center represents in the Lemaître coordinates (R, τ) a
non-singular non-simultaneous de Sitter bang from the surface r(R, τ) = 0 [11,16].

Regular spacetimes with the de Sitter center contain a special class of spacetimes with the same
global structure as for the de Sitter spacetime. Such a spacetime is distinguished by the holographic
principle as the only stable product of quantum evaporation of the cosmological horizon, with basic
physical parameters tightly fixed by quantum dynamics of the cosmological horizon [17]. Particular
model of this special class [18] we outline here in more detail.

This paper is organized as follows. In Section 2 we show how the holographic principle picks out
a proper spacetime including the values of its basic parameters. Section 3 is devoted to the detailed
description of the related Lemaître dark energy model with the parameters tightly fixed by dynamics
of the cosmological horizon, and in Section 4 we summarize and discuss the results.
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2. Holographic Principle and Triple-Horizon Spacetimes

The holographic principle, formulated originally as the requirement to constrain the number
of independent quantum degrees of freedom contained in a spatial region by its surface area [19],
leads to the conjecture that a physical system can be entirely determined by the data stored on its
boundary which is frequently also referred to as the holographic principle [20]. Some basic information
on application of the holographic principle in quantum gravity can be found in [17]. Here we show
how the holographic principle singles out the special class of one-horizon spacetimes, parametrized by
one function (a density profile), in which dynamical evolution is entirely determined by the quantum
evaporation of the cosmological horizon and proceeds towards triple-horizon spacetimes with the
basic parameters tightly fixed by the quantum dynamics of the horizon [17].

For the source terms which satisfy Tt
t = Tr

r , the weak energy condition (which requires
non-negative density for any observer preferable for cosmological models) leads to a monotonically
decreasing density profile Tt

t = ρ(r) [15]. In the de Sitter space with the background vacuum density
ρλ = (8πG)−1λ we can introduce Tt

t (r) = ρ(r) + ρλ, where ρ(r) is a dynamical vacuum density
decreasing from ρΛ = (8πG)−1Λ at r = 0 to zero at infinity. The metric has the form [11]

ds2 = g(r)dt2 − dr2

g(r)
− r2dΩ2; g(r) = 1− 2GM(r)

r
− λr2

3
; M(r) = 4π

∫ r

0
ρ(x)x2dx, (1)

and is asymptotically de Sitter with λ as r → ∞ and with (Λ + λ) as r → 0.
Geometry has three basic length scales, the gravitational radius rg = 2GM (M = 4π

∫ ∞
0 ρr2dr),

the de Sitter radius related to the de Sitter interior, rΛ =
√

3/Λ, and de Sitter radius related to the
background vacuum, rλ =

√
3/λ. The characteristic parameter relating the dynamical vacuum density

at the center ρΛ with the background vacuum density ρλ reads

q = rλ/rΛ =
√

Λ/λ =
√

ρΛ/ρλ. (2)

In the case of two vacuum scales the spacetime can have at most three horizons defined by
g(r) = 0 [11]: the internal horizon ra, the event horizon rb > ra of a regular cosmological black
(white) hole whose mass is restricted within Mcr1 < M < Mcr2, and the cosmological horizon rc > rb.
The values Mcr1 and Mcr2 correspond to the double-horizon states, ra = rb and rb = rc, respectively,
and depend on the parameter q (more detail in [10]). Dependence of horizons radii on the mass is
shown in Figure 1 left for the case q = 50. In Figure 1 right we plotted the double horizon rb = ra (solid
line denoted as rb) and the cosmological horizon rc (dashed line) dependently on the parameter q.
For the certain values of qcr and Mcr, three horizons coincide at the triple horizon rt (Figure 1 right,
the point where dashed and solid line meet), defined by three algebraic equations g(rt) = 0, g′(rt) = 0
and g′′(rt) = 0 [17,21].

Figure 1. Horizons ra, rb and rc for q = 50 (left); double horizon rb = ra and cosmological horizon rc

coinciding at the triple horizon (right) at q = qcr. Distances are normalized to rλ.
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The triple-horizon spacetime arises as a result of quantum evolution of a one-horizon spacetime
described by the metric function g(r) which has the inflection point ri defined by g′(ri) = 0, g′′(ri) = 0,
and the mass parameter M > Mcr [17]. This metric is shown in Figure 2(left) [21]. Evolution is
governed by quantum evaporation of the cosmological horizon of spacetime with the inflection point
and goes toward the triple-horizon spacetime with q = qcr; M = Mcr shown in Figure 2(right).

r

g(r)
1

r

g(r)
1

Figure 2. Metric function with the inflection point (left) and with the triple-horizon (right).

The Gibbons-Hawking temperature on the horizon r = rh [22] and its specific heat [23] are
given by

kTh =
h̄

4πc
|g′(rh)|; Ch =

2πrh
g′(rh) + g′′(rh)rh

. (3)

In the course of evaporation the cosmological horizon (Figure 2 left) moves outwards unless
the system achieves the triple-horizon state rh = rt (Figure 2 right) corresponding to M = Mcr [17].
Specific heat of this horizon is always positive and tends to infinity at the triple horizon [21], so that
the triple-horizon spacetime is the thermodynamically stable final product of evaporation of the
cosmological horizon. Evaporation stops completely at Th = 0 and Ch → ∞. Three algebraic equations
which specify the triple-horizon state (g(rt) = 0; g′(rt) = 0; g′′(rt) = 0) define uniquely the basic
parameters Mcr, rt, and qcr = ρΛ/ρλ which gives the tightly fixed non-zero present value of a vacuum
dark energy density ρλ for the given value ρΛ [17].

We see that the evolution of a one-horizon spacetime with the inflection point (shown in
Figure 2 left) is governed by the quantum dynamics of surrounding it surface (cosmological horizon)
and goes towards the triple-horizon spacetime, whose basic physical parameters, Mcr, rt and qcr, are
entirely defined by the data stored on its boundary (triple-horizon surface) - in agreement with the
basic sense of the holographic principle [17].

Applying description of the vacuum density by the density profile [14]

ρ(r) = ρΛe−r3/r2
Λrg , (4)

obtained in the semiclassical model for the vacuum polarization in the spherically symmetric
gravitational field [15], we obtain [17]

Mcr = 2.33× 1056g; q2
cr = 1.37× 10107; rt = 5.4× 1028cm. (5)

To evaluate the vacuum dark energy density from q2
cr = ρΛ/ρλ, we adopt ρΛ = ρGUT .

The Grand Unification scale is estimated as MGUT ∼ 1015 − 1016 GeV. This gives the value of ρλ

within the range 1.7× 10−30 g · cm−3 − 1.7× 10−26 g · cm−3, respectively. The observational value
ρλ (obs) ' 6.45× 10−30 g · cm−3 [24] corresponds, in the considered context, to MGUT ' 1.4× 1015 GeV.
This gives ρGUT = 8.8× 1077 g · cm−3 and rΛ = 1.8× 10−25 cm. For this scale q2

cr gives the value of
the present vacuum density ρλ in agreement with its observational value.
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3. Lemaître Model for Relaxing Cosmological Constant

3.1. Basic Equations

A Lemaître cosmology is described by the metric

ds2 = dτ2 − e2ν(R,τ)dR2 − r2(R, τ)dΩ2. (6)

Here coordinates R and τ are the Lagrange (comoving) coordinates. The Einstein equations
read [25]

8πGpr =
1
r2

(
e−2νr′2 − 2rr̈− ṙ2 − 1

)
, (7)

8πGp⊥ =
e−2ν

r
(r′′ − r′ν′)− ṙν̇

r
− ν̈− ν̇2 − r̈

r
, (8)

8πGρ = − e−2ν

r2

(
2rr′′ + r′2 − 2rr′ν′

)
+

1
r2

(
2rṙν̇ + ṙ2 + 1

)
, (9)

8πGTr
t =

e−2ν

r
(
2ṙ′ − 2r′ν̇

)
= 0. (10)

The component Tr
t vanishes in the comoving reference frame, and the Equation (10) gives [25]

e2ν =
r′2

1 + f (R)
. (11)

The function f (R) is an arbitrary integration function. Applying (11) in the Equation (7) results in
the equation of motion [11]

ṙ2 + 2rr̈ + 8πGprr2 = f (R). (12)

For the vacuum dark energy specified by pr = −ρ, the first integration in (12) yields

ṙ2 =
2GM(r)

r
+ f (R) +

F(R)
r

. (13)

A second integration function F(R) should be chosen equal to zero for models regular at r = 0,
sinceM(r)→ 0 as r3 for r → 0 where ρ(r)→ ρΛ < ∞ [11,15]. The second integration in (12) yields

τ − τ0(R) =
∫ dr√

2GM(r)/r + f (R)
. (14)

The third integration function τ0(R) is called “the bang-time function” [26].

3.2. Model with the Relaxing Cosmological Constant

For the case of vacuum dark fluid specified by Tt
t = Tr

r (pr = −ρ), the basic properties of the
Lemaître class models are determined by the basic properties of the function g(r) in (1) via transition
to the geodesic coordinates (R, τ), where R is the congruence parameter of the family of radial timelike
geodesics and τ is the proper time. The matrix of the transition from the mapping [r, t] to the mapping

[R, τ] reads ṫ = E(R)
g(r) ; r′ =

√
E2(R)− g(r); ṙ = ±r′; t′ = ± E2(R)−g(r)

E(R)g(r) , where dots and primes denote
∂τ and ∂R. The resulting metric [16]

ds2 = dτ2 − [E2(R)− g(r(R, τ))]

E2(R)
dR2 − r2(R, τ)dΩ2 (15)

corresponds to (6) with f (R) = E2(R)− 1, and E2(R)− g(r) = [r′(R, τ)]2 = [ṙ(R, τ)]2.
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For small values of r the solution (14) reduces to

τ − τ0(R) =
∫ dr√

r2/r2
Λ + f (R)

. (16)

For expanding models ṙ = r′ and hence r is a function of (R+ τ). We can thus choose τ0(R) = −R.
For the case f (R) = 0, preferred by observational data (Ω = 1), we have E2 = 1, and evolution

starts from the time-like regular surface r(R, τ) = 0. At approaching this surface the Equation (16)
gives the expansion law

r = rΛe(τ+R)/rΛ ; e2ν = (r′)2 = r2/r2
Λ. (17)

With using the coordinate transformation q = eR/rΛ , the metric (6) reduces to the standard
FLRW form

ds2 = dτ2 − r2
Λe2τ/rΛ

(
dq2 + q2dΩ2

)
, (18)

with the de Sitter scale factor (17), and describes a non-singular non-simultaneous de Sitter bang from
the surface r(τ + R → −∞) = 0 [11]. Further evolution is determined by dynamics of pressures
pr = −ρ − ρλ; p⊥ = −ρ − ρλ − rρ′/2 [11]. The weak energy condition is satisfied and leads to
monotonically decreasing density [15]. As a result the radial pressure pr = −ρ is monotonically
increasing. Transversal pressure evolves from the value p⊥ = −ρΛ − ρλ at the inflation to the
final value p⊥ = −ρλ, through one maximum somewhere in between ([16] and references therein).
Typical behavior of pressures in shown in Figure 3. The variable (τ + R) is normalized to the GUT
time tGUT = rΛ/c ' 0.6× 10−35s.

Hq2
=25L

-4 -2 2 4
Τ+R

-1.0

-0.5

0.5

prHΤ+RL,p
¦
HΤ+RL

Hq2
=1,39 * 10107L

-4 -2 2 4
Τ+R

-1.0

-0.5

0.5

prHΤ+RL,p
¦
HΤ+RL

Figure 3. Typical behavior of pressures. The radial pressure pr is plotted with the dashed line and the
transversal pressure p⊥ is plotted by the solid line.

The first inflationary stage is followed by the essentially anisotropic Kasner-like stage. It is easily
to see from the metric (15) that typical for this stage is the expansion in the transversal direction with
∂τr > 0 and shrinking in the radial direction where ∂R|gRR| < 0 until dg(r)/dr < 0. For E2 = 1 the
metric during this stage (rΛ � r � rλ) takes the form [11]

ds2 = dτ2 − (τ + R)−2/3N(R)dR2 − D(τ + R)4/3dΩ2, (19)

where N(R) is a smooth regular function and D is a constant, with N(R) and D dependent on the
choice of the particular model for the vacuum density in (1).

The line element (6) can be written in the form with two scale factors, r(τ, R) and b(τ, R) ≡ eν(R,τ)

in accordance with (11). This results in the metric

ds2 = dτ2 − b2(τ, R)dR2 − r2(τ, R)dΩ2, (20)
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The evolution of two scale factors in the course of the evolution is shown in Figure 4 (Figure 4a, the
upper curve for r(t, R), the lower for b(t, R)), where we also show the behavior of their derivatives at the
early stage (Figure 4b) [18]. Figure 4 is plotted with the density profile (4) and the model parameters (5).
Distances are normalized to r∗ = (r2

Λrg)1/3 = 1.26× 10−7 cm, with rg = 2GMt = 3.49× 1028 cm in
accordance with (5), and rΛ ' 2.4× 10−25 cm corresponding to MGUT ' 1015 GeV.

τ +R

ln(r), ln(b)

100

-40

0,4 1,6 ·1053

(a)

-10 -5 0 5 10
Τ+R

0.2

0.4

0.6

0.8

dr�dHΤ+RL

-10 -5 0 5 10
Τ+R

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

db�dHΤ+RL

(b)

Figure 4. Behavior of the scale factors (a), and their derivatives dr/dτ, db/dτ (b).

At the first inflationary stage and the stage of the present accelerated expansion the behavior of
two scale factors is similar (curves run parallel and differ only by constant) and corresponds to the
flat de Sitter cosmology. The maximum of the scale factor b(τ, R) at τ + R ' 0, 4 corresponds to the
maximum of the transversal pressure at r ' 1.2r∗ in Figure 3(right).

According to observational data, the present vacuum density starts to dominate at the age of about
3× 109 years. In this limit Equation (16) gives the expansion law r = rλe(τ+R)/rλ , with rλ =

√
3/λ,

Equation (11) gives for the second scale factor in (6) e2ν = r2/r2
λ, and the metric (6) takes the de Sitter

FLRW form ds2 = dτ2 − r2
λe2cτ/rλ

(
dq2 + q2dΩ2), where q = eR/rλ [16].

Intrinsic anisotropy of the Lemaître class cosmological models can be described by the mean
anisotropy parameter [27]

A =
1

3H2

3

∑
i=1

H2
i − 1; Hi =

ȧi(τ)

ai(τ)
; H =

H1 + H2 + H3

3
, (21)
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where ai are the scale factors, and Hi are the directional Hubble parameters. For the spherically
symmetric models the scale factors are a1 = b = r′, a2 = a3 = r, and [16]

A = 2
(Ṁ/M(r)− 3ṙ/r)2

(Ṁ/M+ 3ṙ/r)2
. (22)

In Figure 5 we plotted the behavior of the anisotropy parameter at the early stage and at the stage
close to the present epoch of the accelerated expansion.

0.5 1.0 1.5 2.0 2.5 3.0
r�r*

0.5

1.0

1.5

2.0

AHr�r*L

2´ 10
35

4´ 10
35

6´ 10
35

8´ 10
35

r�r*

0.5

1.0

1.5

2.0

AHr�r*L

Figure 5. Behavior of the anisotropy parameter at the early stage and at the stage close to the present epoch.

The anisotropy parameter grows quickly at the postinflationary stage. At the maximum of
p⊥ and b(τ + r), it takes the value A ' 0.4, grows further achieving A = 2 at r ' 2.5× 10−7 cm.
Slow decreasing starts at r ' 6× 1027 cm. Discussion of anisotropy is presented in the next section.

4. Summary and Discussion

In the applied here model-independent approach vacuum dark energy is presented by the variable
cosmological term, introduced on the basis of the algebraic classification of stress-energy tensors
and spacetime symmetry. It is intrinsically anisotropic which makes possible model-independent
relaxation of initial value of the cosmological constant Λ to its present value λ in the frame of the
Lemaître cosmological models, intrinsically anisotropic and asymptotically de Sitter at the early and
late time. For the certain class of one-horizon Lemaître models, parametrized by the density profile,
evolution is governed by the quantum evaporation of the cosmological horizon and goes towards the
triple-horizon state. The basic physical parameters of the final state, the mass, radius and the relation
q2 = Λ/λ = ρΛ/ρλ, are tightly fixed by the data stored at its boundary (the cosmological horizon)
in agreement with the basic sense of the holographic principle. The choice the density profile due to
gravitational vacuum polarization and of its initial value ρΛ at the GUT scale, gives the present value
of the cosmological constant in reasonable agreement with observations.

Recent observations suggest that our Universe can be deviated from isotropy [28–30]. Anisotropy of
the Universe was constrained at the magnitude level of 2%–5% by SNe Ia data [29], and at the level of
4.4% by the Union2 dataset and high-redshift gamma-ray bursts [30].

The Lemaître dark energy model allows for detailed analysis of the universe anisotropy against
observations, with the special attention to the question of bounds on the anisotropies in the primordial
universe which requires a comprehensive analysis. It cannot be done on the basis of the above
anisotropy parameter which tells us only about anisotropy of the universe filled with the vacuum
dark energy. Lemaître metric can be used as the background metric in the self-consistent analysis,
similar to that presented in the classical paper [31], where the extended collision-time anisotropy
formalism has been developed on the basis of the multicomponent multicollision time approximation
to the Boltzmann equation for the neutrinos, with taking into account that each neutrino flavor
contributes to the anisotropic stresses [31]. As the background metric the Bianchi type-I was applied,
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ds2 = −dt2 + e2αe2βij dxidxj. The Einstein equations involve contributions from neutrinos, photons
and electrons (ρνe, ρνµ, ρντ , ρ(γ+e) in what follows) and read α̇2 = (8πG/3)[ρ(γ+e) + ρνeV(βe) +

ρνµV(βµ) + ρντV(βτ)] + β̇2
+; β̈+ = −3α̇β̇+ − (4πG/3)[ρνe(∂V(βe)/∂βe) + ρνµ(∂V(βµ)/∂βµ) +

ρντ(∂V(βτ)/∂βτ ], where V(β) are functions of neutrino contributions to anisotropy, and β̇+ is the
shear velocity responsible for the metric anisotropy. The measure of anisotropy during nucleosynthesis
β1 = [(3/8πG)β̇2

+ + ρνeVe + ρνµVµ + ρντVτ ]/(ργ + ρν) is calculated numerically with the Boltzmann
equation [31]. Similar approach should be applied with the Lemaître metric for vacuum dark energy
whose basic parameters have also to be found through a self-consistent analysis in the frame of the
extended collision-time anisotropy formalism. This will be done (we hope) and presented in a separate
paper. For analysis of collisions involving neutrinos, it can be essential that masses of neutrinos can
involve de Sitter vacuum and can be related to breaking of spacetime symmetry from the de Sitter
group [32]. This relation, obligatory for the cases satisfying Tt

t = Tr
r [15], is suggested by the fact that

the Higgs field participate in mass generation in its false vacuum state with p = −ρ. This relation
allows to explain the observable effect of negative mass-square differences for neutrinos by calculating
the particles masses as the eigenvalues of the Casimir operator in the de Sitter space, and to estimate
gravito-electroweak scale from the neutrino data [32].
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