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Abstract: We review the role of the spectral condition as a characteristic of Minkowski, de Sitter, and
anti-de Sitter quantum field theories. We also discuss the role of plane waves which are compatible
with the relevant analyticity domains linked to the spectral condition(s) and discuss harmonic analysis
in terms of them.
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1. The Birth of the de Sitter Model

After writing, in December 1915, his equations for the geometry of spacetime, Einstein
turned his attention to cosmology and tried to apply them to the entire Universe, creating an
entirely new science—modern scientific cosmology—whose founding idea is that a global
exact solution of Einstein’s equations corresponds somehow to a model for the Universe.

Einstein’s concern was, at first, epistemological: the metric structure of the Universe
must be entirely determined by the material content—this is more or less the so-called Mach
principle. But general relativity still keep a remnant of absolute space in the boundary
conditions that must be specified at spacelike infinity to determine the spacetime geometry.
To solve this problem, or rather, to dispose of it, Einstein’s “crazy idea” was to let the
Universe be spherical, let it have spherical spatial sections.

A curved sphere should be imagined as a three-dimensional spherical hypersurface
embedded in a Euclidean space of dimension four:

S3 = {x2
1 + x2

2 + x2
3 + x2

4 = r2}. (1)

It obviously has no centre, or rather, it has its centre everywhere1, and any point is equiva-
lent to any other point. It has no boundary either; and therefore: no boundary, no conditions
on boundary.

There was also a second guiding principle in Einstein’s cosmological research: The
Universe had to be static and its geometry should not change as time goes by. In 1917, the
visible Universe still coincided with the Milky Way, the nebulae enigma had not yet been
solved, and the hypothesis of a static Universe was perfectly reasonable. But, his General
Theory of Relativity of 1915 does not allow for spherical static solutions.

Here came idea that would be remembered as his biggest blunder: to add to his equa-
tions a constant term Λ that acts repulsively and counteracts the gravitational attraction.
This was, to quote Einstein,

an extension of the equations which is not justified by our real knowledge of
gravitation [. . .] this term is necessary only for the purpose of making possible a quasi-
static distribution of matter as required by the low speed of stars [1].

This commentary indicates that in his 1917 paper, Einstein was already aware of the fact that
his original equations of 1915 implied a dynamical Universe, but that he had set aside this
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possibility. He kept adding Λ and found a perfectly Machian static spherical solution—his
static model of 1917.

Shortly after the publication of Einstein’s paper, de Sitter published a second solution
of the new cosmological equations of 1917: an otherwise empty Universe made only by
the cosmological constant. The astronomer found his model elaborating on the boundary
condition problem. According to him, Einstein’s solution still retained a trace of absolute
space; a four-dimensional (complex) sphere could solve the problem in a more convincingly
covariant way. As for the sphere (1), the de Sitter model can be better visualised as an
embedded surface: it is the four-dimensional one-sheeted hyperboloid embedded in a
five-dimensional Minkowski spacetime M5

dS4 = {x2
0 − x2

1 − x2
2 − x2

3 − x2
4 = −R2}. (2)

Einstein was very unhappy with the new solution, but all his attempts to demonstrate
that de Sitter’s calculations were faulty consistently failed. Einstein finally surrendered:
the de Sitter Universe was indeed a regular solution of his cosmological equations without
matter, but, he said, it was nevertheless without physical interest because it was not globally
static. Einstein was rejecting the possibility of a dynamical Universe, but other scientists
simply did not know: until the early 1930s, the fundamental articles published in 1922 [2]
and 1924 [3] by Friedmann, who made use of the original equations of general relativity to
describe expanding universes, were substantially ignored. Lemaître’s independent work in
1927 [4], based on the cosmological equations of 1917, was ignored too.

On a trip to Pasadena, Einstein learned of Hubble’s latest observations and was
persuaded of the advantages of dynamic models to describe the Universe. In two articles
published shortly afterwards, Einstein asserted that the original reasons for introducing
the cosmological constant no longer existed. Farewell to the cosmological constant.

In 1947, Einstein wrote to Lemaître:

The introduction of such a constant implies a considerable renunciation of the logical
simplicity of the theory. . . Since I introduced this term, I had always a bad conscience . . .
I am unable to believe that such an ugly thing should be realized in nature.

Lemaître’s answer in 1949 sounds like a prophecy.

The history of science provides many instances of discoveries which have been made for
reasons which are no longer considered satisfactory. It may be that the discovery of the
cosmological constant is such a case.

In fact, Einstein himself had been prophetic in 1917 in a letter to de Sitter.

In any case, one thing is clear. The theory of general relativity allows adding the term Λ
in the equations. One day, our real knowledge of the composition of the sky of fixed stars,
the apparent motions of the fixed stars and the position of spectral lines as a function of
distance, will probably be sufficient to decide empirically whether or not Λ is equal to
zero. Conviction is a good motive, but a bad judge.

In 1997, exactly eighty years after its discovery, the cosmological constant was ob-
served [5,6]; or maybe, it was something similar that we now call “dark energy”. These
observations have upturned consolidated and rooted ideas, indicating that the gravitational
effect of the greatest part of the energy of the Universe consists to producing an accelerated
expansion, as in the case of Einstein’s cosmological constant. Nowadays, almost every
physicist believes that the dark component constitutes about seventy percent of the energy
of the Universe and that its proportion, according to the standard cosmological ΛCDM
(cold dark matter) model, is destined to increase. In the end, only the cosmological constant
will remain, and the Universe will become a perfect de Sitter spacetime.

The de Sitter geometry seems therefore to assume the role of the reference geometry
of the Universe. In other words, it is de Sitter’s, and not Minkowski’s, the geometry of
spacetime when the latter is deprived of its content of matter and radiation.
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Beyond the acceleration of the Universe at late times, the idea of inflation consists
of a phase of accelerated quasi-exponential expansion, approximately described by de
Sitter’s geometry in the primordial Universe. A theoretical understanding of the structure
of the Universe, which is observable today, is based on quantum field theory on de Sitter
spacetime: quantum fluctuations of the vacuum at the epoch of inflation are thought to
be responsible for the primordial density inhomogeneities that are at the origin of the
structures existing in the Universe today.

Actually, once one admits that a cosmological constant may exist, it might also be
negative, isn’t it? The model of the Universe with a negative cosmological constant and
nothing else is termed anti-de Sitter. It is a curious coincidence that in the very same year,
1997, the negative cosmological constant also took centre stage in theoretical physics [7] with
the formulation of the by-now famous AdS/CFT (Anti-de Sitter/Conformal Field Theory)
correspondence, a conjectured duality between two different physical theories—1997, the
year of the two cosmological constants!

2. Quantum Field Theory: The Spectral Condition

The de Sitter and anti-de Sitter spacetimes thus have great importance in contem-
porary theoretical physics and cosmology, and both dS and AdS quantum field theory
(QFT) also play a major role. The dS and AdS manifolds share the properties of having
constant curvature and being maximally symmetric manifolds. Actually, in the general
d-dimensional case, they are just different real submanifolds of one and the same complex
manifold: the complex d-dimensional sphere

S(c)
d = {z ∈ Cd+1; z2

0 + z2
1 + . . . + z2

d = R2}. (3)

Otherwise, their geometries are radically different from each other. In particular, the (real)
de Sitter manifold has no global timelike Killing vector field, while the (real) anti-de Sitter
manifold is not globally hyperbolic and has closed timelike curves. One can get rid of these
closed curves by moving to the universal covering of the real AdS manifold (even though this
move might be just an illusion), but the universal covering remains not globally hyperbolic.

Global hyperbolicity is a basic property of quantum field theory on curved spacetimes,
as it is usually formulated. Its absence renders AdS QFT a little more demanding from a
technical viewpoint. But, as we will see, this is not a major difficulty since in AdS, there
exists the possibility of identifying a global energy operator. It is precisely the lack of a
global energy operator, which is a consequence of the absence of a global timelike Killing
vector field, which renders dS QFT actually more difficult.

There is, however, a unifying characteristic that makes dS and AdS QFTs similar to
each other and similar also to the standard zero-temperature Minkowski QFT: this is the
analyticity of the correlation functions in suitable domains of the respective complexified
manifolds. This unifying viewpoint is discussed in the following sections.

Here, to prepare the groundwork, we start by recalling that the fundamental theorem
of Stone and Von Neumann, which states the uniqueness of the Hilbert space representation
of the canonical commutation relations (CCRs), fails for infinite quantum systems. The
distinction between observables and states, which is of no consequence for finitely many
degrees of freedom, now becomes crucial, and there exist infinitely many Hilbert space
realisations of the same algebra of the observables. In other words, knowing the Lagrangian
of a quantum field theory is not enough. The Lagrangian just provides the commutation
rules, but there are infinitely many inequivalent solutions of the field equations sharing
the same commutation rules; one needs to specify some extra information to find the
physically relevant ones. Only after this step has been taken can transition amplitudes may
be computed and comparisons with the outcomes of the experiments may be done.
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3. States and Two-Point Functions

This non uniqueness is true already at the level of free fields. What is unique is the com-
mutator: on a globally hyperbolic manifold (M, g), the Klein–Gordon Lagrangian uniquely
selects the (covariant) commutator C(x1, x2), which is an antisymmetric bi-distribution
solving the Klein–Gordon equation in each variable

(□x1 + m2)C(x1, x2) = (□x2 + m2)C(x1, x2) = 0 (4)

with the precise initial condition given by the equal-time canonical commutation relations.
The equal-time CCRs, in turn, imply that C(x1, x2) = 0 for any two events x1, x2 of M,
which are spacelike-separated with respect to the notion of locality inherent to M.

For free fields, the smeared commutator is a multiple of the identity element of the
field algebra (a c-number). Given two test functions f and g belonging to a suitable test
function space T (M),

[ϕ( f ), ϕ(g)] = C( f , g) =
∫
M×M

C(x1, x2) f (x1)g(x2)
√
−g(x1)dx1

√
−g(x2)dx2. (5)

A quantisation is accomplished when the commutation relations (5) are represented by an
operator-valued distribution in a Hilbert space H. One should determine a linear map

ϕ( f ) −→ ϕ̂( f ) ∈ Op(H) (6)

preserving the algebraic structures and such that

[ϕ̂( f ), ϕ̂(g)] = C( f , g) 1. (7)

As we stated, the Stone–Von Neumann theorem fails, and there are uncountably many
solutions to this problem. How can we construct (at least some of) them?

A possible solution is completely encoded in the knowledge of a two-point function,
i.e., a two-point distribution W ∈ T ′(M×M) that solves the Klein–Gordon equation in
each variable (

□x1 + m2
)
W(x1, x2) =

(
□x2 + m2

)
W(x1, x2) = 0 . (8)

Because of Equation (7), W(x1, x2) is also required to be a solution of the functional equation

W(x1, x2)−W(x2, x1) = C(x1, x2) (9)

in the sense of distributions.
Starting from W(x1, x2), the Hilbert space of the theory H can be constructed using

standard techniques [8]. The first step consists of giving a norm to the one-particle state
Ψ f corresponding to a given test function f ∈ T (M). The norm is computed using the
two-point function:

||Ψ f ||2 =
∫
M×M

W(x1, x2) f ∗(x1) f (x2)
√
−g(x1)dx1

√
−g(x2)dx2. (10)

The squared norm (10) is positive (as it should be) if W(x1, x2) satisfies the positive-
definiteness condition, which is nothing but the nonnegativity of the right-hand side of
Equation (10). We assume that it does.

The norm (10) actually comes from a pre-Hilbert scalar product whose interpretation
is that of providing the quantum transition amplitudes between two one-particle states:

⟨Ψ f , Ψg⟩ =
∫

Md

W(x1, x2) f ∗(x1)g(x2)
√
−g(x1)dx1,

√
−g(x2)dx2. (11)
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The one-particle Hilbert space H(1) is obtained by quotienting out the subspace of zero-norm
states and by taking the Hilbert completion. The full Hilbert space is the symmetric Fock space

H = Fs(H(1)) = H0 ⊕ [⊕nSym(H1)
⊗n]

(with Sym denoting the symmetrisation operation and H0 = {λ1, λ ∈ C} ). In the final step,
one introduces the field operator ϕ̂( f ) decomposed into its “creation” and “annihilation” parts

ϕ̂( f ) = ϕ̂+( f ) + ϕ̂−( f ); (12)

the latter are defined by their action on the dense subspace H(0) of vectors having finitely
many non-vanishing components Ψ = (Ψ0, Ψ1, . . . Ψk, . . . , 0, 0, 0, . . .):

(
ϕ̂−( f )Ψ

)
n =

√
n + 1

∫
W(x, x′) f (x)Ψn+1(x′, x1, . . . , xn)

√
−g(x)dx

√
−g(x′)dx′, (13)

(
ϕ̂+( f )Ψ

)
n =

1√
n

n

∑
j=1

f (xj)Ψn−1(x1, . . . , /x j, . . . , xn). (14)

Equation (9) shows that these formulae imply the commutation relations (7) and that

W(x, x′) = ⟨Ψ0, ϕ̂(x)ϕ̂(x′)Ψ0⟩ (15)

where
Ψ0 = (1, 0, 0, . . . , ) (16)

is the cyclic reference state of the representation.
In the end, either in flat or curved spacetime, quantizing a free-field theory amounts

to specifying its two-point function, which carries all the information about the Hilbert
space and the field operators. Furthermore, the knowledge of the two-point function
and the commutator allows us to determine the Green’s functions, modulo the necessary
renormalisations; thus, the two-point function encodes not only the dynamics of the free
field but also the possibility of studying interactions perturbatively.

But, how do we specify a criterion to choose among the infinitely many existing
possibilities? Here comes the spectral condition.

4. Prelude: The Spectral Condition in Minkowski Space

This section contains material that may be found in (good) textbooks. The reason to
recall it here is to better appreciate and understand the role of the spectral condition and
plane waves in the de Sitter and anti-de Sitter contexts.

On page 97 of the classic book by R. Streater and A.S. Wightman, the following basic
assumption about a relativistic quantum field theory is declared:

Axiom 0. Assumptions of Relativistic Quantum Theory.

The states of the theory are described by unit rays in a separable Hilbert space
H. The relativistic transformation law of the states is given by a continuous
unitary representation of the inhomogeneous Lorentz group {a, A} → U(a, A).
Since U(a, 1) is unitary, it can be written as U(a, 1) = exp(iaµPµ) where Pµ is an
unbounded operator interpreted as the energy momentum operator of the theory.
The eigenvalues of Pµ is lie in or on the forward cone (spectral condition). There
is an invariant state Ψ0, U(a, 1)Ψ0 = Ψ0 unique up to a constant phase factor
(uniqueness of the vacuum).

Stated more succinctly:

The joint spectrum of the infinitesimal generators of U(a, 1) lies in the closed
forward cone V+.

This is the spectral condition of standard (zero-temperature) QFT. It is its most important
and characteristic feature. All the other axioms are of a kinematical character2.
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Here, we consider a general d-dimensional Minkowski spacetime Md with metric

ηµν = diag(+,−, . . . ,−) (17)

and one scalar field. The open future cone of the origin (also called the forward cone) is the set

V+ = {x ∈ Md : x · x > 0, x0 > 0}. (18)

Given the n-point vacuum expectation values of the field (in short, the n-point functions):

Wn(x1, . . . xn) = ⟨Ψ0, ϕ̂(x1) . . . ϕ̂(xn)Ψ0⟩, (19)

the spectral condition is immediately translated into a property of the support of their
Fourier transforms W̃n(p1, . . . , pn). The distribution

W̃n(p1, . . . , pn) =
∫

eip1·x1+...+ipn ·xnWn(x1, . . . , xn)dx1 . . . dxn (20)

vanishes unless all momenta are in the energy-momentum spectrum of the states

p1 ∈ V+, p1 + p2 ∈ V+, . . . p1 + p2 + . . . + pn ∈ V+. (21)

By Fourier–Laplace transform, support properties in one space give rise to analyticity
properties in the dual space [8]. A fundamental theorem of this category shows that the
n-point distributions are boundary values of n-point functions holomorphic in tubular
domains of the complex Minkowski spacetime.

Theorem 1 (A.S. Wightman). The distribution Wn(x1, . . . xn) is the boundary value of a function
Wn(z1, . . . zn) holomorphic in the tube

Tn = {(z1, . . . zn) : Im (zj+1 − zj) ∈ V+}. (22)

Wightman’s reconstruction theorem [8] finally states the equivalence of the analyticity of
the n-point function in the tubes Tn and the spectral condition: starting from a set of Wightman
functions having such analyticity properties, it is possible to reconstruct the Hilbert space
of the theory, the representation of the inhomogeneous Lorentz group, and the infinitesimal
generators of the translation group and verify that their joint spectrum is contained in the
closed forward cone.

The above analyticity properties and the spectral condition have therefore one and the
very same precise physical meaning: they assert that the states of the theory have positive
energy in every Lorentz frame.

Focusing now on two-point functions, the spectral condition is equivalent to the
following simpler property.

Corollary 1 (Normal analyticity property). W(x1, x2) is the boundary value of a function
W(z1, z2) holomorphic in the tube T12 = T− × T+:

W(x1, x2) = ⟨Ψ0, ϕ̂(x2)ϕ̂(x1)Ψ0⟩ = b.v.
T−∋ z1→x1
T+∋ z2→x2

W(z1, z2) (23)

where
T± = {(z = x + iy : ±y ∈ V+} (24)

are the past and future tubes.

The tubes T± are invariant under the action of the real inhomogeneous Lorentz group.
Acting with the complex group, one discovers that every Lorentz invariant two-point
function satisfying the spectral condition enjoys a much larger analyticity domain.
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Theorem 2 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the Lorentz-invariant variable λ = (z1 − z2)

2.
2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆0 = {(z1, z2); (z1 − z2)
2 ̸= ρ, ρ ≥ 0} (25)

that contains all pairs of complex events with the exception of all pairs of real events that are
causally connected (the causal cut).

3. W(z1, z2) is invariant in ∆0 under the action of the complex inhomogeneous Lorentz group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

T21 = T+ × T−:

W(x2, x1) = ⟨Ψ0, ϕ̂(x2)ϕ̂(x1)Ψ0⟩ = b.v.
T+∋ z1→x1
T−∋ z2→x2

W(z1, z2). (26)

5. The cut domain ∆0 contains all pairs of non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, Re z0
1 = Re z0

2 = 0, Im zi
1 = Im zi

2 = 0, i = 1, . . . , d − 1, z1 ̸= z2}. (27)

The Schwinger function S (also called the Euclidean propagator) is the restriction of W(z1, z2)
to the non-coincident Euclidean points Ė . S is analytic in Ė and can be extended as a
distribution to the whole Euclidean space E , including the coinciding points.

Klein–Gordon Fields

Now, let us see how the spectral condition works in practice for Klein–Gordon fields.
The first thing is to identify a suitable basis of solutions of the Klein–Gordon operator. In
flat space, the exponential plane waves are almost always the convenient choice since they
are also characters of the translation group:

ψ
(±)
p⃗ (x) =

1

2
√
(2π)d−1ω

exp(±ipx), p0 = ω =
√
| p⃗|2 + m2. (28)

The above plane waves extend to functions that are holomorphic in the whole complex
Minkowski spacetime M(c)

d . The important point to be noted is the following.

Remark 1. Positive frequency waves ψ
(−)
p⃗ (z) are exponentially decreasing in the past tube T−;

negative frequency waves ψ
(−)
p⃗ (z) are exponentially decreasing in the future tube T+.

Let us now examine the two-point function. By translation invariance, it may depend
only on the difference variable ξ = x1 − x2. Taking the Fourier transform of the Klein–
Gordon equation with respect to ξ gives

(p2 − m2)W̃m(p) = 0. (29)

The most general Lorentz invariant distributional solution has two disconnected components:

W̃m(p) = aθ(p0)δ(p2 − m2) + bθ(−p0)δ(p2 − m2) (30)

and the spectral condition imposes b = 0. By Fourier anti-transforming, we obtain:

Wm(x1, x2) =
1

2(2π)d−1

∫ e−iω(x0
1−x0

2)+i p⃗·(x⃗1−x⃗2)√
| p⃗|2 + m2

dp⃗ =
∫

ψ
(−)
p⃗ (x1)ψ

(+)
p⃗ (x2)dp⃗. (31)
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Remark 1 invites us to move the first point into the past tube T− and the second point
into the forward tube T+. This move greatly improves the convergence of the integral, as
the function

Wm(z1, z2) =
∫

ψ
(−)
p⃗ (z1)ψ

(+)
p⃗ (z2)dp⃗, z1 ∈ T−, z2 ∈ T+ (32)

is now an analytic function of (z1, z2) ∈ T−× T+. The two-point distribution W(x1, x2)
is recovered by taking the boundary value. The normalisation ensures that the CCRs hold
with the correct coefficient.

Let us discuss the following elementary massless case in more detail:

W((t − is, 0 . . . , 0), 0) =
∫ e−iω(t−is)kd−3

2(2π)d−1 e−iω(t−is)kd−3 dk dΩd−2 (33)

=
1

(4π)
d−1

2

Γ(d − 2)

Γ
(

d−1
2

) 1
(it + s)d−2 . (34)

By restoring in this expression the Lorentz-invariant variable (z1 − z2)
2, we immediately

obtain the maximally analytic two-point function:

W(z1, z2) =
Γ
(

d−2
2

)
4π

d
2

[−(z1 − z2)
2]−

d−2
2 . (35)

Its boundary values from the relevant tubes give the two-point function W(x1, x2) and the
permuted two-point function W(x2, x1). The covariant commutator is their difference (9):

C(x, y) =
Γ
(

d−2
2

)
4π

d
2

(
[−(x − y)2 + iε(x0 − y0)]−

d−2
2 − [−(x − y)2 − iε(x0 − y0)]−

d−2
2

)
. (36)

Using the notations of [9], we obtain

C(x, y) =
1

2πi
1

Γ
(

2 − d
2

) ε(x0 − y0)[−(x − y)2]
− d−2

2
− . (37)

where ε(x) = θ(x)− θ(−x). When the spacetime dimension d is even, the distribution
[−(x − y)2]λ− has a simple pole at λ = − d−2

2 with residue

Res
λ=− d−2

2
[−(x − y)2]λ− =

(−1)
d
2 −2

Γ
(

d
2 − 2

) δ(
d
2 −2)[(x − y)2] (38)

while 1/Γ
(

d
2 − 2

)
has a zero, and we obtain that the support of the commutator is the light

cone (Huygens principle):

C(x, y) =
1

2πi
ε(x0 − y0)δ(

d
2 −2)[(x − y)2]. (39)

In particular, for d = 4, we obtain the well-known dominant term of the Pauli–Jordan function.

5. de Sitter

Let us consider now the d-dimensional de Sitter Universe (see Equation (2)):

dSd = {x ∈ Md+1 : x · x = −R2 = −1} . (40)
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The future cone of the origin of the ambient spacetime in one dimension more is given by

V+ = {x ∈ Md+1 : x2 > 0, x0 > 0} (41)

which provides the causal ordering of the de Sitter manifold. An event x2 is in the future of
another event x1 if the vector (x2 − x1) belongs to the closed future cone V+ of the ambient
spacetime. Two events x1, x2 ∈ dSd are spacelike separated if and only if

(x1 − x2)
2 = −2 − 2x1 · x2 < 0. (42)

A straightforward adaptation of the spectral condition of Wightman QFT is just not
possible because there exists no global energy operator available in the de Sitter case. This
is a consequence of the absence of a global timelike Killing vector field on the de Sitter
manifold. Timelike Killing vector fields exist only on wedge-like submanifolds bordered
by bifurcate Killing horizons, but there is no Killing vector field that remains timelike on
the whole manifold.

Still, since the complexification of Minkowski space plays such a crucial role in
Minkowski QFT, we may go on and consider the complex de Sitter spacetime, visualised
here as a submanifold of the complex (d + 1)-dimensional Minkowski space:

dS(c)
d = {z ∈ M(c)

d+1 : z · z = −R2 = −1} . (43)

Note that z = x + iy ∈ dS(c)
d if and only if x2 − y2 = −R2 and x · y = 0. On the complex

manifold there acts the complex de Sitter group G(c) acts, which is the complexification of
the restricted Lorentz group of the ambient space G = SO0(1, d).

dS(c)
d contains tuboids T±, which are very similar to the past and future tubes of

Minkowski space. Actually, they can be described in the simplest way precisely as the
intersections of the ambient tubes T± with the complex de Sitter manifold:

T± = dS(c)
d ∩ T± = {x + iy ∈ dS(c)

d : y ∈ ±V+} . (44)

The set of points with purely imaginary zero component z0 = iy0 and purely real spatial com-
ponents zi = xi, i = 1, . . . , d, forms the Euclidean sphere of the complex de Sitter manifold:

Sd = {z = (iy0, x1, . . . , xd) ∈ C1+d : y02
+ x12

+ . . . + xd2
= R2 = 1}. (45)

Now, we come to de Sitter QFT. While it is impossible to formulate a true spectral
condition, we may retain its most characteristic consequence: in the case of two-point
functions, we may assume [10] there holds the following.

Assumption 1 (Normal analyticity property). W(x1, x2) is the boundary value of a function
W(z1, z2) holomorphic in the tube T12 = T− × T+,

W(x1, x2) = ⟨Ψ0, ϕ̂(x2)ϕ̂(x1)Ψ0⟩ = b.v.
T−∋ z1→x1
T+∋ z2→x2

W(z1, z2) (46)

where T− and T+ are the de Sitter past and future tubes (see Figure 1).

Of course, the physical interpretation of this property cannot be the positivity of
the energy spectrum of the states. It turns out that the correct physical interpretation is
thermodynamical [10–12].

The tubes T± are invariant under the action of the real de Sitter group. By acting with
the complex group, a much larger analyticity domain appears, as before. The following
theorem [10] is mutatis mutandis identical to Theorem 2 [10].
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Theorem 3 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the Lorentz-invariant variable ζ = z1 · z2.

2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆ = {(z1, z2); ζ ̸= ρ, ρ ≤ −1} (47)

that contains all pairs of complex events minus the causal cut (42).
3. W(z1, z2) is invariant under the action of the complex de Sitter group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

T21 = T+ × T−:

W(x2, x1) = ⟨Ψ0, ϕ̂(x2)ϕ̂(x1)Ψ0⟩ = b.v.
T+∋ z1→x1
T−∋ z2→x2

W(z1, z2). (48)

5. The cut domain ∆ contains all the non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, z1 ∈ Sd, z2 ∈ Sd, z1 ̸= z2}. (49)

The Schwinger function S is the restriction of W(z1, z2) to the non-coincident Euclidean
points Ė . S is analytic in Ė and can be extended as a distribution to the whole Euclidean space
E , including the coinciding points.

Figure 1. Sections of the forward and the backward tubes in the complex dS manifold. The arrows are
the imaginary parts y of the vectors z = x + iy, represented as attached at the endpoint of their real
parts x, which belong to the hyperboloid whose radius is −R2 + y2. Here is represented the section
at a given fixed positive value of y2. Recall that x · y = 0.

5.1. Klein–Gordon Fields and Plane Waves

Now we want to construct dS Klein–Gordon quantum fields starting from two-point
functions (as in Equation (12)) that are normal analytic in the sense of Assumption 1. Fol-
lowing the paradigm of flat space, we should look for wave solutions of the Klein–Gordon
equation analytic in the past, and respectively, in the future tube, and write a two-point
function similar to Equation (32). When solving the Klein–Gordon equation, the normal
strategy is to separate the variables; however, this would not be a good idea if the normal
analyticity property has to appear manifestly, as in Equation (32).

One possibility comes from the study of geodesics [13]: a de Sitter timelike geodesic
may be parametrised by the choice of two lightlike vectors belonging to the future light
cone C+ of the ambient Minkowski spacetime (see Figure 2), as follows:

xµ(τ) =
R√

2ξ · η
(ξµe

τ
R − ηµe−

τ
R ). (50)

The two null vectors parametrising the geodesics point towards its asymptotic directions.
In fact, the conformal compactification of the Sitter manifold has a boundary at timelike
infinity, and the light cone of the ambient spacetime is, in a precise sense, equivalent to
it [14].
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Figure 2. Timelike geodesics can be parametrised by the choice of two null vectors in the ambient
space; they have the physical interpretation of asymptotic momentum directions.

A natural basis of the solutions of the de Sitter Klein–Gordon equation

□dSψ(z) + m2ψ(z) = 0 (51)

can thus be parametrised by the choice of a lightlike vector ξ ∈ C+ and a complex number
λ, as follows:

ψλ(z, ξ) = (z · ξ)λ = eλ log(z·ξ). (52)

In this definition, the scalar product is in the sense of the ambient spacetime. The functions (52)
are plane waves, as their phase is constant on the planes z · ξ = const. As required, they are
well defined and analytic in each of the tubes T + and T − [10].

It is useful to introduce a new complex parameter ν with the following definition:

λ = −d − 1
2

+ iν. (53)

The parameters λ and ν are related to the complex mass squared and the complex dimension
as follows:

m2 = −λ(λ + d − 1) =
(d − 1)2

4
+ ν2. (54)

Of course, m2 is real and positive only under the following conditions:

1. ν is real. This corresponds, in a group-theoretical language, to the principal series of
unitary representations of the Lorentz group;

2. ν is purely imaginary and |ν| < d−1
2 . This corresponds to the complementary series of

unitary representations of the Lorentz group.

But, in the de Sitter Universe, there is also room for negative mass squared at certain
discrete values [15,16].

5.2. Construction of the Two-Point Function

We can now mimic Equation (32) and consider the two-point function:∫
γ
(ξ · z1)

− d−1
2 −iν(ξ · z2)

− d−1
2 +iν dµγ, z1 ∈ T−, z2 ∈ T+ (55)

where

dµγ(ξ) = α(ξ)|γ = (ξ0)−1
d

∑
j=1

(−1)j+1ξ j dξ1 . . . d̂ξ j . . . dξd|γ . (56)
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γ denotes any (d − 1)-dimensional integration cycle in C+. To fix the ideas, we can integrate
over the spherical basis Sd−1 of the cone C+ equipped with its canonical orientation:

γ0 = Sd−1 = C+ ∩ {ξ : ξ0 = 1} = {ξ ∈ C+ : ξ12
+ . . . + ξd2

= 1}. (57)

In this case, α(ξ)|γ coincides with the rotation-invariant measure dµγ0 on Sd−1, normalised
as follows:

ωd =
∫

γ0

dµγ0 =
2π

d
2

Γ
(

d
2

) . (58)

The following is self-evident.

Property 1. The two-point function (55) solves by construction the Klein–Gordon equation by
construction in each variable and is manifestly holomorphic in T− × T+.

Since the integrand is a homogeneous function of ξ of degree (1 − d), the integral (55)
is actually the integral of a closed differential form and, as such, does not depend on the
integration cycle. This immediately implies the following property.

Property 2. The two-point function (55) is de Sitter-invariant and depends only on the invariant
ζ = z1 · z2.

To compute it explicitly, we may, therefore, choose the two arbitrary points z1 in T −

and z2 in T + in the way that most pleases us. Interestingly, different choices produce
different integral representations of the same function. A useful choice is

z1 = (−i, 0, . . . , 0, 0), z2(s) = (sinh(is), 0, . . . , 0, cosh(is)), ξ = (1, n⃗ sin θ, cos θ),

so that
ζ = z1 · z2(s) = sin(s), (ζ2 − 1)

1
2 = i cos s. (59)

The condition z2 in T + means 0 < s < π. We obtain [17], Equation (7), p. 156∫
Sd−1

(ξ · z1)
− d−1

2 −iν(ξ · z2)
− d−1

2 +iν dξ =

= ωd−1

∫ π

0
e−

iπ
2 (− d−1

2 −iν)(i sin s − cos s cos θ)−
d−1

2 +iν sind−2 θdθ

= (2π)
d
2 e−πν(ζ2 − 1)−

d−2
4 P− d−2

2
− 1

2+iν
(ζ). (60)

Imposing the normalisation of the CCRs gives the plane-wave expansion of the two-point
function, valid for any complex value of ν that is not a pole of Γ

(
d−1

2 + iν
)

Γ
(

d−1
2 − iν

)
.

Main formula: The canonically normalised (so-called Bunch–Davis) Wightman function
of a Klein–Gordon de Sitter scalar field has the following expressions:

Wν(z1, z2) = wν(z1 · z2)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
eπν

2d+1πd

∫
γ
(ξ · z1)

− d−1
2 −iν(ξ · z2)

− d−1
2 +iν α(ξ) (61)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
2(2π)d/2 (ζ2 − 1)−

d−2
4 P− d−2

2
− 1

2+iν
(ζ). (62)
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Equation (61) is only valid in the normal domain of analyticity, with z1 in T − and z2 in T +.
On the other hand, the right-hand side of Equation (62) is maximally analytic, that is, entire
in the cut plane ∆.

The discontinuity of the Wightman function on the cut provides the commutator. The
retarded propagator function is obtained by (carefully) multiplying the commutator with
the relevant step function:

Cν(x1, x2) = Wν(x1, x2)−Wν(x2, x1), (63)

Rν(x1, x2) = iθ(x2, x1)Cν(x1, x2). (64)

To compute the retarded propagator, let us choose x2 in the future cone of the origin:

x0 = (0, 0, . . . , 0, 1) x2(t) = (sinh t, 0, . . . , 0 cosh t), t > 0, ζ = − cosh t.

The retarded discontinuity (x2 > x1) is, therefore,

rν(u) =
i Γ

(
d−1

2 + iν
)

Γ
(

d−1
2 − iν

)
2(2π)d/2 (u2 − 1)−

d−2
4

(
P− d−2

2
− 1

2+iν
(ζ − iϵ)− P− d−2

2
− 1

2+iν
(ζ + iϵ)

)

= cosh(πν)
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
(2π)d/2 (ζ2 − 1)−

d−2
4 P− d−2

2
− 1

2+iν
(−ζ).

(65)

The Schwinger function is the restriction of the maximally analytic two-point function
to the Euclidean sphere. Given any two points of the Euclidean sphere, their invariant
product may be parametrised as follows: z1 · z2 = − cos(s). The choice of sign is because
at coincident points, z2 = −1. Thus,

Gν(− cos s) =
Γ( d−1

2 + iν)Γ( d−1
2 − iν)

2(2π)d/2 (sin s)−
d−2

2 e
iπ
2 (d−2)P− d−2

2
− 1

2+iν
(− cos s). (66)

At this point, we are fully equipped to begin studying perturbative quantum field theory
on the de Sitter Universe. Of course, we do not do it here, but we want to discuss one
remarkable success of the above formalism.

5.3. Linearisation and the Källén–Lehmann Representation

In Minkowski space, any scalar two-point function W(z1, z2) satisfying the properties
described in Section 4 admits a Källén–Lehmann representation of the form

W(z1, z2) =
∫ ∞

0
ρ(m2)Wm(z1, z2) dm2 (67)

where Wm(z1, z2) is given in Equation (32) and the weight ρ(m2) is a positive measure of
tempered growth. In particular, given two masses m1 and m2, computing the weight for
the bubble

Wm1(z1, z2)Wm2(z1, z2) =
∫ ∞

(m1+m2)2
ρ(m2 : m1, m2)Wm(z1, z2)dm2 (68)

is an easy exercise of Fourier transformation.
The corresponding de Sitter case is much more difficult. To obtain the Källén–Lehmann

weight of the corresponding integral

Wλ(z1, z2)Wν(z1, z2) =
∫ ∞

−∞
ρ(λ, ν, κ)Wκ(z1, z2)κdκ, (69)
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one should compute the Mehler–Fock transform of Wλ(ζ)Wν(ζ). This amounts to the
following integral:

hd(λ, ν, κ) =
∫ ∞

1
P− d−2

2
− 1

2+iλ
(u)P− d−2

2
− 1

2+iν
(u)P− d−2

2
− 1

2+iκ
(u) (u2 − 1)−

d−2
4 du (70)

and the Källén–Lehmann weight is

ρ(λ, ν, κ) =
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
Γ
(

d−1
2 + iλ

)
Γ
(

d−1
2 − iλ

)
sinh(πκ) hd(λ, ν, κ)

2(2π)1+ d
2

. (71)

The evaluation of hd(λ, ν, κ) is very far from obvious. In the particular case where the
two masses are equal, hd(λ, λ, κ) may be evaluated by Mellin transform techniques, used
for the first time in the de Sitter context in [18,19]. The same idea of using Mellin techniques
was used a few years later to compute the Källén–Lehmann weight in the case of two equal
masses [20] in AdS QFT3.

The general case of two independent masses cannot be dealt with by Mellin trans-
formation techniques, and something more similar to the Fourier transform of flat space
is needed. It is precisely at this point that the plane-wave representation (61) makes a
substantial difference.

An especially important Fourier-type representation is obtained by evaluating (61) at
the purely imaginary events in the tubes [22]: z = −iy ∈ T − and z = +iy′ ∈ T +. y and y′

can be visualised as points belonging to a Lobachevsky space, modelled as the upper sheet
of a two-sheeted hyperboloid:

Hd = {y ∈ M1,d : y2 = y · y = R2, y0 > 0}. (72)

It follows that

wν(−iy, iy′) =
Γ( d−1

2 + iν)Γ( d−1
2 − iν)

2d+1πd

∫
γ
(y · ξ)−

d−1
2 +iν(ξ · y′

)− d−1
2 −iνdµγ(ξ)

=
Γ
(

d−1
2 + iν

)
Γ
(

d−1
2 − iν

)
2(2π)

d
2

((
y · y′

)2 − 1
)− d−2

4 P− d−2
2

− 1
2+iν

(
y · y′

)
. (73)

By choosing, in particular, γ = γ0 and y′ = (1, 0, . . . , 0) so that y · y′ = y0 = u ≥ 1, we then
obtain the following integral representation:

(
u2 − 1

)− d−2
4 P− d−2

2
− 1

2+iν
(u) =

1

(2π)
d
2

∫
γ0

(y · ξ)−
d−1

2 −iνdµγ0 . (74)

This formula is of crucial importance for computing hd(λ, ν, κ): it allows us to rewrite
the one-dimensional integral (70) as the following multiple integrals over the manifold
Hd × Sd−1 × Sd−1 × Sd−1:

hd(λ, ν, κ) =

(2π)−
3d
2

ωd−1

∫
γ0

∫
γ0

∫
γ0

∫
Hd

(y · ξ1)
− d−1

2 −iλ(y · ξ2)
− d−1

2 −iν(y · ξ3)
− d−1

2 −iκdy dµγ0 dµγ0 dµγ0

(75)

where dy is the Lorentz-invariant measure on Hd. The above integral may be computed,
and the final result is [22]
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ρ(λ, ν, κ) =
1

2dπ
d−1

2 κΓ
(

d−1
2

) ∏ϵ,ϵ′ ,ϵ′′=±1 Γ
(

d−1
4 + iϵλ+iϵ′ν+iϵ′′κ

2

)
∏ϵ=±1 Γ

(
iϵκ
2

)
Γ
(

1
2 + iϵκ

2

)
Γ
(

d−1
4 + iϵκ

2

)
Γ
(

d+1
4 + iϵκ

2

) .

(76)

The application of this formula and its AdS twin to loop calculations are discussed in [23,24].

6. Anti-de Sitter

The anti-de Sitter spacetime can also be visualised as a hypersurface embedded in an
ambient flat space, which is Rd+1 with two timelike directions and metric mostly minus,
as follows:

AdSd = {x ∈ Rd+1 : x2 = x · x = R2}, (77)

x · y = x0y0 − x1y1 − . . . − xd−1yd−1 + xdyd. (78)

The AdS manifold has a boundary at spacelike infinity and, therefore, is not globally
hyperbolic. This feature gives AdS QFT a little extra complication with respect to the
standard globally hyperbolic case.

We also have to consider the complexification of the AdS manifold, which is defined
as before by an embedding:

AdS(c)
d = {z = x + iy ∈ Cd+1 : z2 = R2}. (79)

While AdS(c)
d is simply connected, the real manifold AdSd is not and admits a nontrivial

universal covering space ÃdSd. Here, we focus mainly on the uncovered manifold AdSd.
The symmetry group of the anti-de Sitter spacetime is the pseudo-orthogonal group of

the ambient space SO(2, d − 1). This group may also be regarded as the conformal group
of transformations of the boundary, represented as the null cone of the ambient space

Cd = {ξ ∈ Rd+1 : ξ2 = ξ · ξ = 0}. (80)

This simple geometrical fact lies at the basis of the AdS/CFT correspondence. The null
cone of the ambient space also plays the role of giving a causal order to the AdS spacetime,
which is, however, only local due to the existence of closed timelike curves. Two events are
spacelike separated if

(x1 − x2)
2 = 2 − 2x1 · x2 < 0. (81)

The covering manifold is globally causal but remains non-globally hyperbolic (see Figures 3 and 4).
It is possible to identify in the complex manifold AdS(c)

d an analogue of the Euclidean

subspace of the complex Minkowski spacetime: it is the real submanifold Hd of AdS(c)
d

defined by

Hd = {z ∈ Cd+1 : z · z = R2, z(y) = (y0, . . . , yd−1, iyd), yµ ∈ R, y0 > 0}. (82)

This is indeed the same Lobachevsky space we met before in (72) at the end of the de
Sitter tubes, but it has, of course, a different interpretation in the AdS context, and, more
importantly, AdS correlation functions have singularities at coincident Euclidean points of
Hd, while dS correlation functions do not.
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Figure 3. The AdS manifold and the null cone of the ambient space, which models its boundary at
spacelike infinity.

Figure 4. The null cone of the ambient space induces a causal order on the AdS manifold, which is
only local.

6.1. The Analytic Structure of Two-Point Functions

The status of AdS QFT is more similar to that of Minkowski space, and it is possible
to formulate a true spectral condition. This question was studied in full generality in [25].
A simplified account can be found in [26]. The point is that the parameter of the group
of rotations in the (0, d)−plane may be interpreted as a global time variable: the AdS
spectral condition is thus formulated by requiring that the corresponding generator M0d be
represented in the Hilbert space of the theory by a self-adjoint operator whose spectrum is
positive. As in flat space, this requirement is equivalent to the precise analyticity properties
of the n-point functions [25].
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In particular, there are two distinguished complex domains of AdS(c)
d , invariant under

real AdS transformations [25,26], defined as follows (see Figure 5)

Z+ = {z = x + iy ∈ AdS(c)
d ; y2 > 0, ϵ(z) = +1}, (83)

Z− = {z = x + iy ∈ AdS(c)
d ; y2 > 0, ϵ(z) = −1}, (84)

where
ϵ(z) = sign(y0xd − x0yd). (85)

The tubes Z+ and Z− have a definite chirality and wrap the real AdS manifold in opposite
directions. The spaces Z+, Z−, and AdSd have the same homotopy type. Their universal
coverings are denoted as Z̃+ and Z̃−.

The AdS spectral condition implies that a general two-point function satisfies the
following property [25].

Normal analyticity property: W(x1, x2) is the boundary value of a function W(z1, z2) holomor-
phic in the domain Z− ×Z+

W(x1, x2) = ⟨Ψ0, ϕ̂(x1)ϕ̂(x2)Ψ0⟩ = b.v.
Z−∋ z1→x1
Z+∋ z2→x2

W(z1, z2). (86)

Figure 5. Sections of the backward and forward tubes in the complex AdS manifold. The tubes
wrap the real manifold in opposite directions. The arrows are the imaginary parts y of the vectors
z = x + iy parts attached at the end of the real parts x, which varies on the hyperboloid whose radius
is R2 + y2. Here is represented the section at a fixed positive value of y2. Recall that x · y = 0.

AdS invariance and normal analyticity imply the following.

Theorem 4 (Maximal analyticity property). 1. The two-point function W(z1, z2) depends
only on the AdS-invariant variable ζ = z1 · z2.

2. W(z1, z2) can be continued to a function W(z1, z2) analytic in the cut domain

∆1 = {C \ [−1, 1]}. (87)

3. W(z1, z2) is invariant under the action of the complex de Sitter group.
4. The permuted two-point function is the boundary value of W(z1, z2) from the opposite tube

Z21 = Z+ ×Z−.
5. The cut domain ∆1 contains all the non-coinciding Euclidean points

Ė = {z1, z2 ∈ ∆, z1 ∈ Sd, z2 ∈ Hd, z1 ̸= z2}. (88)

The Schwinger function S is the restriction of W(z1, z2) to the non-coincident Euclidean
points Ė . S is analytic in Ė and can be extended as a distribution to the whole Euclidean space
E , including the coinciding points.
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Regarding the global hyperbolicity issue, the maximal analytic structure completely
determines the two-point functions for Klein–Gordon fields and, consequently, selects the
boundary behaviour of the modes.

6.2. Klein–Gordon Fields and Plane Waves

Klein–Gordon fields display the simplest example of the previous analytic structure.
For a given mass m, the two-point function W(x1, x2) must satisfy the equation

(□xi + m2)W(x1, x2) = 0, i = 1, 2, (89)

with respect to both variables, where □xi is the Laplace–Beltrami operator relative to the
AdS metric. The two-point functions are labelled by the (complex) dimension d and a
(complex) parameter ν as follows:

Wd
ν (z1, z2) = wd

ν(ζ) =
1

(2π)
d
2
(ζ2 − 1)−

d−2
4 e−iπ d−2

2 Q
d−2

2
− 1

2+ν
(ζ) = (90)

=
Γ
(

d−1
2 + ν

)
2π

d−1
2 (2ζ)

d−1
2 +νΓ(ν + 1)

2F1

(
d − 1

4
+

ν

2
,

d + 1
4

+
ν

2
; ν + 1;

1
ζ2

)
(91)

where the various parameters are related as follows:

m2 = ν2 − (d − 1)2

4
. (92)

There are two possible cases:

1. For ν > 1, the spectrum condition uniquely selects one field theory for each given
value of mass parameter ν;

2. For |ν| < 1, there are two acceptable theories for each given mass.

The difference between the two theories lies in their large distance behaviour. More
precisely, in view of [17], Equation (3.3.1.4), one has

wd
−ν(ζ) = wd

ν(ζ) +
sin πν Γ

(
d−1

2 − ν
)

Γ
(

d−1
2 + ν

)
(2π)

d
2

(ζ2 − 1)−
d−2

4 P− d−2
2

− 1
2−ν

(ζ). (93)

The last term in this relation is regular on the cut ζ ∈ [−1, 1] and, therefore, does not
contribute to the commutator. By consequence, the two theories represent the same algebra
of local observables at short distances. But since the second term at the right-hand side
grows faster as |ν| increases (see [17], Equation (3.9.2)), the two theories have drastically
different long-range behaviours.

Let us now proceed to the harmonic analysis in plane waves for the AdS correlation
functions. Here, to keep the discussion as simple as possible, we limit ourselves to the
two-dimensional uncovered anti-de Sitter spacetime AdS2 [27]. A full analysis will be
presented elsewhere.

As for the de Sitter case, the wave solutions of the anti-de Sitter Klein–Gordon equation
may also be parameterised by the choice of a null vector ξ ∈ C2 and a complex number λ,
as follows:

ψλ(z, ξ) = (z · ξ)λ = eλ log(z·ξ). (94)

Since we are considering the uncovered manifold, the parameter λ must be an integer:

λ = ℓ. (95)
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Now, we observe that while Equation (50) maintains its validity in the present context,
for real ξ, η belonging to the null cone C2, it describes spacelike geodesics. Timelike
geodesics would correspond to vectors ξ belonging to the complex cone

C(c)
2 = {ξ ∈ C3 : ξ2 = ξ · ξ = 0}. (96)

This suggests that the harmonic analysis of the AdS correlation function should also be
made in terms of waves parametrised by null complex vectors ξ.

The complex cone C(c)
2 admits the partition C(c)

2 = C2 ∪ C2+ ∪ C2−, where

C2+ = {ξ ∈ C(c); ϵ(ξ) = +}, (97)

C2− = {ξ ∈ C(c); ϵ(ξ) = −}; (98)

and as before,
ϵ(z) = sign[(Im ξ0)(Re ξ2)− (Re ξ2)(Im ξ2)]. (99)

The bases for the cones C2+ and C2− are

(γ
(c)
0 )+ = {ξ = ξ(Φ) = (sin Φ, 1, cos Φ); Φ = ϕ + iη, η > 0}, (100)

(γ
(c)
0 )− = {ξ = ξ(Φ) = (sin Φ, 1, cos Φ); Φ = ϕ + iη, η < 0}. (101)

Let us now consider the integral∫
γ(z1)

[z1 · ξ]ℓ [ξ · z2]
−ℓ−1dµγ(c)(ξ), z1 inZ−, z2 inZ+. (102)

For each z1 in Z−, γ(z1) is a relative cycle in H1(C(c)
2 , {ξ; [z · ξ] = 0}) with support

contained in C2− and end points belonging, respectively, to the two linear generatrices of
the cone C(c)

2 defined by [z1 · ξ] = 0. Being the integral of a closed differential form, (102)
does not depend on the choice of γ(z1) inside its homology class.

There is no loss of generality in defining the integration cycle γ(z1) only for points of
the form

z1 = zv = (i sinh v, 0, cosh v), v < 0. (103)

We choose the path

ϕ → ξ(ϕ + iv) = (sin(ϕ + iv), 1, cos(ϕ + iv)), −π

2
< ϕ <

π

2
. (104)

The support of γ(zv) does belong to C2−, and [zv · ξ(ϕ+ iv)] = cos(ϕ) vanishes, as required,
at the boundaries of the cycle.

Since z2 ∈ Z+, the factor [ξ · z2]
−ℓ−1 never becomes singular on the integration cycle

γ(zv). This may be seen by explicitly giving coordinates to Z+ [27]. This suffices to show
the AdS invariance of the integral (102), which is, therefore, a function of the invariant
variable ζ = z1 · z2, holomorphic in the cut domain ∆1.

To actually compute (102), we choose the second point at the origin x0 = (0, 0, 1) so
that z1 · z2 = zv · x0 = cosh v. With a few self-explanatory changes of variables, we obtain
[17], Equation (2), p. 155:∫

γ(zv)
[zv · ξ]ℓ [ξ · x0]

−ℓ−1dµγ(ξ) =

=
∫ π

2

− π
2

cosℓϕ cos−(ℓ+1)(ϕ + iv) dϕ =
∫ ∞

−∞
(cosh v − it sinh v)−(ℓ+1) dt

(1 + t2)
1
2

= 2
∫ ∞

0
(cosh v + cosh u sinh v)−(ℓ+1)du = 2Ql(cosh v). (105)
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Therefore, we can write the following plane-wave expansion of the two-point function:

W2
l+ 1

2
(z1, z2) =

1
π

∫
γ(zv)

[zv · ξ]ℓ [ξ · x0]
−ℓ−1dµγ(ξ). (106)

7. Conclusions and Outlook

There is a unifying feature that connects Minkowski, de Sitter, and anti-de Sitter quan-
tum field theories: the analyticity properties of the correlation functions of the quantum
fields in the relevant tubular domains of the corresponding complex manifolds [10,12,25]
These analyticity properties are, in the Minkowski and the anti-de Sitter cases, a conse-
quence of the spectral condition, i.e., a consequence of the requirement that the Hamiltonian
operator has a positive spectrum in every Lorentz frame. The reconstruction procedures
actually show that the analyticity properties are equivalent to the spectral condition [8,25].
In the de Sitter case, the analyticity of the correlation functions may be taken as a replace-
ment of the spectral condition since there exists no globally defined conserved energy
operator in the de Sitter geometry. Taking seriously the analyticity properties of correlation
functions seriously has produced valuable nontrivial results, which, at the moment, seem
to be out of reach of other methods, such as the Källén–Lehmann representations of two-
point functions [10,21,22] and the calculation of one- and two-loop Feynman diagrams for
both the de Sitter and anti-de Sitter cases. There are many opportunities opened by this
formalism and lots of things to do. This review is also an invitation to readers interested in
either dS or AdS quantum field theory to join the effort.
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Notes
1 Sphaera infinita cuius centrum est ubique, circumferentia tamen nullibi is the second definition of God that can be read in the Liber

XXIV philosophorum, an anonymous medieval treatise attributed to Hermes Trismegistus. Nicolas de Cues applied this definition
to the Universe: The world machine has, so to speak, its centre everywhere and its circumference nowhere (La Docte Ignorance,
1440). Giordano Bruno later adopted this definition in various works. Einstein’s novelty was that his sphere was not infinite but
rather finite and curved.

2 Apart from the nonlinear (and hard to verify) positivity condition of the correlation functions necessary to reconstruct a
Hilbert space.

3 At the very same time, however, a general Källén-Lehmann formula for AdS fields with two different masses was for the first
time published and available [21]. But many subsequent authors seem to have ignored it.
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