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Abstract: A survey of the calculations of the isovector axial vector form factor of the nucleon using
lattice QCD is presented. Attention is paid to statistical and systematic uncertainties, in particular
those due to excited state contributions. Based on a comparison of results from various collaborations,
a case is made that lattice results are consistent within 10%. A similar level of uncertainty is in the
axial charge gu−d

A , the mean squared axial charge radius ⟨r2
A⟩, the induced pseudoscalar charge g∗P,

and the pion–nucleon coupling gπNN . Even with the current methodology, a significant reduction in
errors is expected over the next few years with higher statistics data on more ensembles closer to the
physical point. Lattice QCD results for the form factor GA(Q2) are compatible with those obtained
from the recent MINERνA experiment but lie 2–3σ higher than the phenomenological extraction from
the old ν–deuterium bubble chamber scattering data for Q2 > 0.3 GeV2. Current data show that the
dipole ansatz does not have enough parameters to fit the form factor over the range 0 ≤ Q2 ≤ 1 GeV2,
whereas even a z2 truncation of the z expansion or a low order Padé are sufficient. Looking ahead,
lattice QCD calculations will provide increasingly precise results over the range 0 ≤ Q2 ≤ 1 GeV2,
and MINERνA-like experiments will extend the range to Q2 ∼ 2 GeV2 or higher. Nevertheless,
improvements in lattice methods to (i) further control excited state contributions and (ii) extend the
range of Q2 are needed.

Keywords: axial vector form factors; axial charge; lattice QCD; nucleon correlation functions; excited
state contributions; neutrino-nucleus cross-section

1. Introduction

The axial charge, gu−d
A , gives the strength of the coupling of the weak current to

the nucleons. It has been determined very accurately from the asymmetry parameter A
(relative to the plane defined by the directions of the neutron spin and the emitted electron)
in the decay distribution of the neutron, n → p + e− + νe. The best determination of the
ratio of the axial to the vector charge, gA/gV , comes from using (i) polarized ultracold
neutrons (UCN) using the the UCNA collaboration, 1.2772(20) [1,2], and (ii) cold neutron
beam using the PERKEO III, 1.27641(45)(33) [3,4]. Note that, in the SM, gV = 1 up to
second-order corrections in isospin breaking [5,6] as a result of the conservation of the
vector current.

The axial charge enters in many analyses of nucleon structure and of the Standard
Model (SM) and probes of beyond-the-SM (BSM) physics [7,8]. For example, it enters in
the relation between the Cabibbo–Kobayashi–Maskawa (CKM) matrix element Vud and the
neutron lifetime, τn. High precision extraction of Vud, knowing τn and gA, is important for
the test of the unitarity of the first row of the CKM matrix [9–11]. It is needed in the analysis
of neutrinoless double-beta decay [12] and in the rate of proton–proton fusion [13], which is
the first step in the thermonuclear reaction chains that power low-mass hydrogen-burning
stars like the sun.

The axial vector form factor (AVFF) gives the dependence of this coupling on the
momentum squared transferred by the weak current to the nucleon. It is an input in the
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theoretical calculation of the neutrino–nuclei scattering cross-section needed for the analy-
sis of neutrino oscillation experiments [14–16]. The cleanest experimental measurement
would be from scattering neutrinos off liquid hydrogen targets; however, these are not
being carried out due to safety concerns. Extractions from ongoing neutrino scattering
experiments (T2K, NOvA, MINERvA, MicroBooNE, SBN) have uncertainty due to the lack
of precise knowledge of the incoming neutrino energy and the reconstruction of the final
state of the struck nucleus and thus of the cross-section.

The MINERνA experiment [17] has recently shown that the axial vector form factor of
the nucleon can be extracted from the charged current elastic scattering process νµH → µ+n
in which the free proton in hydrogen (H) (part of the hydrocarbon in the target) is converted
into a neutron. This opens the door to direct measurements of the nucleon axial vector form
factor without the need for extraction from scattering off nuclei, whose analysis involves
nuclear corrections that have unresolved systematics. On the theoretical front, lattice QCD
provides the best method for first principal nonperturbative predictions with control over
all sources of uncertainty [14,15].

A recent comparison [18] of results for the AVFF from lattice QCD [19], the MINERνA
experiment [17], and the phenomenological extraction from neutrino–deuterium data from
1980s and 1990s [20] showed that, in the near term, the best prospects for determining the
AVFF will be a combination of lattice QCD calculations and MINERνA-like experiments.
Lattice QCD will provide the best estimates for Q2 ≲ 0.5 GeV2 and be competitive with
MINERνA for 0.5 ≲ Q2 ≲ 1 GeV2. For Q2 ≳ 1 GeV2; new ideas are needed for robust
predictions using lattice QCD.

The goal of theory efforts in support of neutrino oscillation experiments is robust
calculations of the cross-section for targets, such as 12C, 16O, and 40 Ar, being used in
experiments. This involves a four step process: a precise determination of the AVFF, nuclear
models of the ground state of the nuclei from which the neutrino scatters, the intranucleus
evolution of the struck nucleon using many-body theory to include complex nuclear effects
up to ≈ 5 GeV for the DUNE experiment, and the evolution of the final state particles to the
detectors. The overall program requires complete implementation of these within Monte
Carlo neutrino event generators [14–16]. The output of the generators provides the input
essential to experimentalists for determining neutrino oscillation parameters from current
and future experiments.

Here, I review the status of lattice QCD calculations of the axial charge, gu−d
A , and the

AVFF. In addition, note that the flavor diagonal axial charges gu,d,s,c,b
A provide the contribu-

tion of each quark flavor to the spin of the nucleon, whose calculation is computationally
more expensive due to the additional disconnected contributions. The current status of the
results for these nucleon charges has been reviewed by the Flavor Lattice Averaging Group
(FLAG) in 2019 and 2021 [21,22]). Including results post FLAG 2021 [23–27], the values
from the various calculations with 2+1- and 2+1+1-flavors of sea quarks lie in the ranges
1.22 ≲ gu−d

A ≲ 1.32, 0.74 ≲ gu
A ≲ 0.89, −0.48 ≲ gd

A ≲ −0.38, and −0.06 ≲ gs
A ≲ −0.025.

There have been no substantial new results for flavor diagonal charges since the FLAG
reports, so I will not discuss them further in this work.

Based on the results in Refs. [19,23,26–29], I present the case that lattice results for
AVFF, over the range 0 < Q2 ≤ 1 GeV2, are also available with ≲ 10% uncertainty and
agree with MINERνA results to within a combined sigma as discussed in Ref. [18] but
disagree with the neutrino–deuterium results for Q2 > 0.3 GeV2. At the same time, I
also highlight the need for much higher statistics and better control over excited state
contributions to nucleon correlators in lattice calculations for the uncertainty to be reduced
to the few percent level.

The outline of this review is as follows. I will summarize the methodology and steps
in the calculation of the axial and pseudoscalar form factors in Section 2. This includes a
discussion of the nucleon three-point correlation functions calculated in Section 2.1, how
form factors are obtained from them in Section 2.2, and possible excited state contributions
(ESC) that must be removed in Section 2.3. I then review the operator constraint imposed
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on the three form factors, the axial, GA(Q2), the induced pseudoscalar, G̃P(Q2), and the
pesudoscalar GP(Q2) by the axial Ward–Takahashi (also referred to in the literature as the
partially conserved axial current (PCAC)) identity in Section 2.4, and how it provides a
data-driven method for validating the enhanced contributions of multihadron, Nπ, excited
states. These enhanced excited state contributions are due to the coupling of the axial and
pseudoscalar currents to a pion, i.e., the pion pole dominance hypothesis. Extrapolation
of the lattice results in the physical point defined by the continuum (a = 0) and infinite
volume (Mπ L → ∞) limits at physical light quark masses in the isospin symmetric limit,
i.e., mu = md set using the neutral pion mass (Mπ0 = 135 MeV) is discussed in Section 2.5.
A consistency check on the extraction of the axial charge is discussed in Section 2.6. I will
then review the results for the AVFF obtained by the various lattice collaborations after
extrapolation to the physical point in Section 3, the comparison of the lattice QCD result,
the recent MINERνA data, and the phenomenological extraction from the old neutrino–
deuterium scattering data, along with my perspective on future improvements in Section 4.
I end with a few concluding remarks in Section 5.

2. Calculation of the Axial Vector form Factors Using Lattice QCD

The quark line diagrams for the two-point C2pt and the three-point C3pt
J (q; t, τ) (with

the insertion of the axial, Aµ, and pseudoscalar, P, currents) correlators are shown in
Figure 1. The methodology for calculating these is the same in all ongoing calculations.
For C3pt

J (q; t, τ), two kinds of quark propagators are calculated—the original moving for-
ward from the source point (say from the left blob), and a sequential propagator moving
backwards from a nucleon source with definite momentum p f at the sink (the right blob).
This nucleon source is constructed by tying together two original propagators shown by
the two bottom quark lines. The insertion of the current with three-momentum q between
the source and sink nucleons then reduces to that between the original propagator and the
sequential propagator, as shown by the top line. By momentum conservation, the source
nucleon is projected to momentum pi = q + p f . The Euclidean four-momentum transfer
squared is given by Q2 = q2 − (EN − MN)

2.

τ

Vµ, Aµ

τ

t

Figure 1. Quark line diagrams for the gauge-invariant time-ordered correlation functions C2pt(p; τ)

and C3pt
J (q; t, τ). The gluon lines are shown to indicate that all possible gluon exchanges between

quarks are included, i.e., it is a fully nonperturbative calculation. The electromagnetic and axial form
factors are calculated by inserting the vector, Vµ, and axial, Aµ, currents with momentum q at times t
in between the nucleon source and sink separated by time τ.

In current calculations (standard method) the nucleon interpolating operator, N ,
used is

N (x) =ϵabc
[

qaT
1 (x)Cγ5

1 ± γ4

2
qb

2(x)
]

qc
1(x) , (1)

where C = γ4γ2, and the optional factor 1 ± γ4 projects on to positive parity nucleon states
propagating forward/backward in time for zero momentum correlators. Developing a
variational basis of interpolating operators that includes all significant Nπ states, the holy
grail of taming the ESC, is still a work in progress [30,31].

A short description of the six steps in the calculation of the AVFF that are common to
all fermion discretization schemes and independent of the selection of input simulation
parameters is given next in Sections 2.1–2.6.
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2.1. Correlation Functions C 2pt and C3pt
J (q; t, τ)

Two kinds of smeared sources have been used to generate the original and sequential
quark propagators in most lattice calculations: (i) the Wuppertal source [32] and (ii) the
exponential source [25]. These quark propagators are stitched together to construct the
gauge-invariant time-ordered correlation functions C2pt(p; τ) and C3pt

J (q; t, τ) shown in
Figure 1, whose spectral decompositions are

C2pt(p; τ) ≡⟨Ω|T (N (τ)N (0))|Ω⟩ = ∑
i=0

|A′
i|2e−Eiτ , (2)

and

C3pt
J (q; t, τ) ≡⟨Ω|T (N (τ)JΓ(t)N (0))|Ω⟩ ,

= ∑
i,j=0

A′
i
∗Aj⟨i′|JΓ|j⟩e−Eit−Mj(τ−t) , (3)

where JΓ = Aµ = ψγµγ5ψ, JΓ = P = ψγ5ψ is the quark bilinear current inserted at time

t with momentum q, and |Ω⟩ is the vacuum state. In the C3pt
J (q; t, τ), the nucleon state |j⟩

is, by construction, projected to zero momentum, i.e., pj = (M, 0), whereas ⟨i′| is projected
onto definite momentum pi = (E, p), with p = −q by momentum conservation. The prime
in ⟨i′| indicates that this state can have nonzero momentum. Consequently, the states on
the two sides of the inserted operator J are different for all q ̸= 0. The goal is to extract the
ground-state matrix elements (GSME), ⟨0′|J|0⟩, from fits to Equation (3).

A major challenge in the analysis of all nucleon correlators is that the signal-to-noise
ratio decays exponentially as e−(MN−1.5Mπ)τ with the source–sink separation τ [33,34].
In current calculations (O(105) measurements), a good signal in C2pt(p; τ) and C3pt

J (q; t, τ)
extends to ≈2 and ≈1.5 fm, respectively.

At these τ, the residual contribution of many theoretically allowed radial and multi-
hadron excited states are observed to be significant. These states arise because the standard
nucleon interpolating operator N , defined in Equation (1), used to construct the correla-
tion functions in Equations (2) and (3), couples to a nucleon and all its excitations with
positive parity including multihadron states, the lowest of which are N(p)π(−p) and
N(0)π(0)π(0). Since it is not known a priori which excited states contribute significantly
to a given C3pt

J (q; t, τ), the first goal is to develop methods to identify these and remove
their contributions. Operationally, this boils down to determining the energies Ei to put
in fits to data using the theoretically rigorous spectral decomposition given in Equation (3).

2.2. Extracting the form Factors

Once the GSME, ⟨0′|J|0⟩, have been extracted, their Lorentz covariant decomposition
into the axial GA, induced pseudoscalar G̃P, and pseudoscalar GP form factors is

⟨N(p f )|Aµ(q)|N(pi)⟩

= u(p f )

[
GA(Q2)γµγ5 + qµγ5

G̃P(Q2)

2M

]
u(pi) , (4)

and

⟨N(p f )|P(q)|N(pi)⟩ = u(p f )
[

GP(Q2)γ5

]
u(pi) , (5)

where u(pi) is the nucleon spinor with momentum pi, q = p f − pi is the four-momentum
transferred by the current, and Q2 = −q2 = q2 − (E(p f )− E(pi))

2 is the space-like four-
momentum squared transferred. On the lattice, the discrete momenta are p = 2πn/La =
2π(nx, ny, nz)/La with ni ∈ ±{0 . . . L}. The spinor normalization used is



Universe 2024, 10, 135 5 of 15

∑
s

u(p, s)u(p, s) =
E(p)γ4 − iγ · p + M

2E(p)
. (6)

It is important to note that the excited states have to be removed from the C, which
have the spectral decomposition given in Equation (3), and not from the form factors,
i.e., after the decompositions. Equations (4) and (5) are only valid for the GSME. If there
are residual ESC, then additional “transition” form factors have to be included in the rhs of
Equations (4) and (5).

Assuming the GSME and choosing the nucleon spin projection to be in the “3” direc-
tion, the explicit forms of the decompositions in Equations (4) and (5) become

CA{1,2}(q) →K−1

[
−q{1,2}q3

G̃P
2M

]
, (7)

CA3(q) →K−1

[
−q2

3
G̃P
2M

+ (M + E)GA

]
, (8)

CA4(q) →K−1q3

[
(M − E)

G̃P
2M

+ GA

]
, (9)

CP(q) →K−1q3GP , (10)

where the kinematic factor K ≡
√

2E(E + M). In each case, data with all equivalent
momenta that have the same q2 are averaged to improve the statistical signal. These
correlation functions are complex valued, and the signal for the CP symmetric theory is in
Im CAi , Re CA4 , and Re CP.

It is clear that GP is determined uniquely from CP (Equation (10)) and for certain mo-
menta G̃P from CA{1,2} using Equation (7). The CA3(q) and CA4(q) give linear combinations

of GA and G̃P, and Equation (8) gives only GA when q3 = 0.

2.3. Extracting the Ground State Matrix Elements: Exposing and Incorporating Nπ States

The most direct way to extract ⟨0′|J|0⟩ is to make fits to Equation (3) keeping as
many intermediate states as allowed by the data’s precision that demonstrate convergence.
The problem is that even unconstrained two-state fits are numerically ill behaved. The next
option is to take the Ai and Ei from C2pt(p; τ), as N creates the same set of states in C2pt

and C3pt
J and input these in fits to C3pt

J (q; t, τ), either by doing simultaneous fits or via
priors within say a bootstrap process to correctly propagate the errors. Of these, the ground
states A′

0, A0, and E0 are well determined from fits to the two-point function. Similarly,
one would expect that E1 can also be taken from C2pt. This was the strategy used until 2017
when it was shown in Ref. [35] that the resulting form factors do not satisfy the constraint
imposed on them by the PCAC. Deviations from the PCAC due to discretization effects
of about ≈ 5% were expected; however, almost a factor of two was found on the physical
pion mass ensembles.

The reason was provided by Bär [36,37] using χPT: enhanced contributions to ME
from multihadron, Nπ , . . ., which are excited states that have much smaller mass gaps
than those of radial excitations, with the lowest being ≈ 1230 versus N(1440). These states
were not evident in fits to C2pt(p; τ), as they have small amplitudes. A different approach
to analysis to include the Nπ states was needed.

It turned out that two-state fits to C3pt
A4

provided a data-driven method [38] that
exposed these states and confirmed that the lowest of the tower of N(p)π(−p) states
makes a very significant contribution. By itself, C3pt

A4
is dominated by excited states and

fits to it using the Ei from C2pt, which gave very poor χ2/do f . Making fits leaving E1 a
free parameter dramatically improved the χ2/do f (compare left two panels in top row of
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Figure 2), and the resulting output values of E1 on either side of operator insertion were
roughly consistent with N(p)π(p) as shown in Figure 3 (reproduced from Ref. [38]). An
illustration of the current understanding of the transitions contributing to the GSME and of
the lowest-contributing excited states is shown in Figure 4 (right).

t − τ/2

τ : ∞ 19 17 15 13
-3

-2

-1

0

1

2

3

4

5

-10 -5 0 5 10

ΔE1 = 0.20(4), ΔM1 = 0.18(5)
χ2/28 = 5.80, p = 0.00
eR54(n2 = 1) = 0.91(27)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
-3

-2

-1

0

1

2

3

4

5

-10 -5 0 5 10

ΔeE1 = 0.08(0), Δ eM1 = 0.11(1)
χ2/30 = 1.26, p = 0.16
eR54(n2 = 1) = 0.007(25)

071m170

{4Nπ,2A4}

t − τ/2

τ : ∞ 19 17 15 13
30

40

50

60

70

80

90

100

110

-10 -5 0 5 10

ΔE1 = 0.20(4), ΔM1 = 0.18(5)
χ2/28 = 1.84, p = 0.00
GP(n2 = 1) = 66.7(5.1)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
30

40

50

60

70

80

90

100

110

-10 -5 0 5 10

ΔeE1 = 0.09(1), Δ eM1 = 0.10(1)
χ2/126 = 1.48, p = 0.00
GP(n2 = 1) = 94.2(3.4)

071m170

{4Nπ,2sim}

t − τ/2

τ : ∞ 16 14 12 10
1.20

1.25

1.30

1.35

1.40

1.45

-10 -5 0 5 10

ΔE1 = 0.24(3), ΔM1 = 0.24(3)
χ2/19 = 1.39, p = 0.12
GA(n2 = 1) = 1.336(14)

091m170L

{4,3∗}

t − τ/2

τ : ∞ 16 14 12 10
1.20

1.25

1.30

1.35

1.40

1.45

-10 -5 0 5 10

ΔeE1 = 0.12(1), Δ eM1 = 0.13(1)
χ2/90 = 2.00, p = 0.00
GA(n2 = 1) = 1.412(26)

091m170L

{4Nπ,2sim}

t − τ/2

τ : ∞ 19 17 15 13
1.00

1.05

1.10

1.15

1.20

−10 −5 0 5 10

ΔE1 = 0.19(4), ΔM1 = 0.18(5)
χ2/28 = 0.80, p = 0.76
GA(n2 = 4) = 1.050(17)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
1.00

1.05

1.10

1.15

1.20

−10 −5 0 5 10

ΔeE1 = 0.11(0), Δ eM1 = 0.19(1)
χ2/126 = 1.47, p = 0.00
GA(n2 = 4) = 1.068(19)

071m170

{4Nπ,2sim}

t − τ/2

τ : ∞ 19 17 15 13
0.95

1.00

1.05

1.10

1.15

−10 −5 0 5 10

ΔE1 = 0.22(4), ΔM1 = 0.18(5)
χ2/28 = 0.99, p = 0.48
GA(n2 = 5) = 0.999(16)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
0.95

1.00

1.05

1.10

1.15

−10 −5 0 5 10

ΔeE1 = 0.11(0), Δ eM1 = 0.22(1)
χ2/158 = 1.92, p = 0.00
GA(n2 = 5) = 1.017(20)

071m170

{4Nπ,2sim}

t − τ/2

τ : ∞ 19 17 15 13
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

−10 −5 0 5 10

ΔE1 = 0.23(4), ΔM1 = 0.18(5)
χ2/28 = 1.27, p = 0.16
GA(n2 = 10) = 0.765(27)

071m170

{4,3∗}

t − τ/2

τ : ∞ 19 17 15 13
0.75

0.80

0.85

0.90

0.95

1.00

1.05

−10 −5 0 5 10

ΔeE1 = 0.13(1), Δ eM1 = 0.28(2)
χ2/158 = 1.97, p = 0.00
GA(n2 = 10) = 0.803(22)

071m170

{4Nπ,2sim}

Figure 2. Data for the ratio C3pt
J (q, t, τ)/

√
C2pt(q, t)C2pt(0, τ − t) that, in the limits (τ − t) → ∞ and

t → ∞, should be independent of τ and t, i.e., lie on a horizontal line in the center about t = τ/2 with
value that is the GSME. Current data show large ESC, and the gray band is the estimate of the GSME
given by the fit to Equation (3). In each row, the data in each pair of panels are the same, but the fit on
the left is without the Nπ state and on the right is with the state . The top row (panels 1 and 2) show
the data and fit to J = A4 with n = (0, 0, 1). These two panels illustrate (i) the improvement (χ2/do f )
in the fit to J = A4 data with the inclusion of the Nπ state and (ii) a very large ESC indicated by the
large slope slowly rotating counterclockwise to the expected horizontal band. The right two panels
show the data and fits to J = P with n = (1, 0, 0) that should give GP. These two panels illustrate
that the difference in the GP without and with including the Nπ state is about 50% (enhanced ESC),
and the χ2/do f is better with the Nπ state. The panels in rows two and three show the data and fit to
J = A3 with n = (1, 0, 0), n = (2, 0, 0), (2, 1, 0), (3, 1, 0) that should give the GA for τ → ∞. These
pairs of panels illustrate that the difference in the GA without and with including the Nπ state is
a few percent, and the χ2/do f of the two fits is comparable. Note the change in the behavior: the
n = (1, 0, 0) data converge from below, while for (1,1,1) and higher momenta the data are rotating
clockwise to the expected horizontal line, and the fits become less robust with n. See Ref. [27] for
details on the data and the fits.
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1 from four-state fits to the nucleon two-point correlator (black circles). Note that

the difference between them (black circles versus blue triangles), and consequently the difference
between the form factors extracted increases as Mπ → 135 MeV and n2 → 0 (equivalently Q2 → 0).
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The fact that there is an enhancement of the ME in the axial channel has been under-
stood for over 60 years as the “pion pole dominance” (PPD) hypothesis. On the lattice,
the creation of a Nπ state by N is suppressed by the 3D volume compared to just the nu-
cleon, as each state has a normalization factor of 1/V for a point (local) source N . The axial
current can, however, couple to this pion, and because the pion is light, this coupling can
occur anywhere in the time slice at which the current is inserted with momentum q (see
Figure 4 (left)). This gives a factor of V enhancement, thus approximately canceling the
normalization factor 1/V [36,37]. Thus, the ME obtains an enhanced contribution that is
an artifact to be removed when the the pion comes on shell. Note that since energy is not
conserved on the lattice, both the neutron and the pion can come on shell, however, since
momentum is conserved, and possible excited states must have the same total momentum
as the neutron state. PPD tells us that the axial current with momentum q can be viewed as
the insertion of a pion with q, and this has a large coupling to the nucleon. These processes
are illustrated in Figure 4.

Having identified large contributions from the N(p = 1)π(p = −1) state, certainly
in the extraction of G̃P and GP, the question is—do we need to include other multihadron
and radial excited state contributions if we want results with percent level precision? What
about in GA? Note that, in addition to the enhanced contribution shown in Figure 4, χPT
also indicates that the one-loop contributions due to the diagram shown in Figure 5 (again a
Nπ contribution) could be O(5%) in all the five C3pt

J . Thus, the Nπ state could be significant
for extracting GA (the GSME ⟨0′|A3|0⟩) from CA3 at the percent precision desired. Based
on these arguments, it is clear that one needs at least three-state fits to the five C3pt

J in
Equation (3)—the ground state, the Nπ state, and one other that effectively accounts for all
other excited state contributions.

The caption of Figure 2 points out some of the features of the ESC observed in current
data and the efficacy of fits to the spectral decomposition of C3pt

J with and without including
the lowest Nπ state to remove the ESC.

In my evaluation, the details of the fits made to remove ESC are the most significant
differences between the calculations performed by the different collaborations. With the
current methodology, higher statistics data are needed to improve these fits and reduce the
dependence on exactly how the analyses are done.

Figure 4. The quark line diagrams illustrating the contribution of Nπ states. (Left) the current Aµ

annihilates the pion produced by the source. (Right) The states involved in the transitions: the
ground state process is shown above the quark line diagram, and that involving an excited state on
one side of the current insertion is shown below.

Figure 5. The one-loop correction to the three-point function.
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A very important point to keep in mind is that fit parameters in a truncated ansatz (the
Ai and Ei in say a three-state fit in our case) try to incorporate the effects of all contributions.
Thus, the connection between parameters coming out of fits to a truncated Equation (3)
and physical states made in Figures 3 and 4 are very approximate at best.

2.4. Satisfying PCAC

The nonsinglet PCAC relation between the bare axial, Aµ(x), and pseudoscalar, P(x),
currents is the following:

∂µ Aµ = 2m̂P , (11)

where the quark mass parameter m̂ ≡ ZmmudZPZ−1
A includes all the renormalization fac-

tors, and mud = (mu + md)/2 = ml is the light quark mass in the isospin symmetric
limit. Using the decomposition in Equations (4) and (5) of the GSME, the PCAC relation
requires that the three form factors GA, G̃P, and GP must satisfy on each ensemble up to
discretization errors; thus, the relation is

2MNGA(Q2)− Q2

2MN
G̃P(Q2) = 2m̂GP(Q2) . (12)

All prior Ref. [35] calculations did not check this relation and missed observing that
the data showed large deviations. Calculations subsequent to Ref. [38] that include the
lowest mass gap state N(p = 1)π(p = −1) in the analysis obtain form factors that already
satisfy the PCAC to within ≈10% at a lattice spacing of a ≈ 0.09 fm. (The ETMC result is an
exception, as explained in Ref. [23] ). An illustration of the size of the deviation from unity

of R1 + R2 ≡ 2m̂GP(Q2)
MN GA(Q2)

+ Q2G̃P(Q2)

4M2
N G)A(Q2)

, without and with the lowest Nπ state included, is

shown in Figure 6 taken from Ref. [19].
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Figure 6. (Left) Results for R1 + R2 on 10 ensembles from fits to C3pt
J without including the Nπ state,

i.e., the spectrum taken from fits to C2pt. (Right) Including the Nπ state. For PCAC to be satisfied,
R1 +R2 should express unity up to discretization errors. The dotted lines show the 5% deviation band.

To summarize, satisfying the PCAC relation in Equation (12) provides a strong and
necessary constraint on the extraction of the three axial form factors. χPT analysis by
Bär [36,37] and data-driven validation in Ref. [29,30,38] show that the lowest N(p = 1)
π(p = −1) state makes a large contribution and needs to be included in the analysis.
For percent level precision, the next question is—what other states need to be included?
Current analyses include up to three states, where the third state, if the parameters are
left free, is effectively trying to account for all of the residual ESC. Such fits have been
implemented in different ways. For example, in Ref. [29], the Nπ state is hardwired, and
the third state is taken to be the lowest excited state in fits to C2pt. In Refs. [19,27,38],
a simultaneous fit to all five J = Aµ and P correlators is made wherein the A4 correlator
fixes E1 to being close to the Nπ state. Over time, with much higher statistics data, results
from various methods and collaborations should converge.
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2.5. Extrapolating Lattice AVFF to The Physical Point for Use in Phenomenology

The next step, once ESC have been removed and form factors have been extracted from
GSME on a given ensemble, is to extrapolate these data to the physical point to provide a pa-
rameterized form for GA and G̃P that can be used in phenomenology. The challenge is that
the discrete set of Q2

i values at which the data are obtained are different on each ensemble.
One simple way to implement this consists of the following three steps:

1. Parameterize the GA(Q2
i ) data on each ensemble. Depending on the number of Q2

i
values, it could be a suitably truncated z expansion or a Padé. The expected 1/Q4

asymptotic behavior can be built in by using sum rules in the z expansion [39] or
through an {n, n + 2} Padé in Q2. The Mainz collaboration [26] combines the removal
of the ESC at various values of Q2

i and the Q2 parameterization on a given ensemble
to include correlations.

2. Pick n values, Q2
k , over a range of say 0 ≤ Q2 ≤ 1 GeV2. Extrapolate the data at each

of these values of Q2
k using a simultaneous fit in {mq, a, Mπ L} to the physical point.

(Note that I use Mπ or mq to define the light quark mass interchangeably.) A typical
ansatz used for such chiral continuum finite volume (CCFV) extrapolations is

g(Mπ , a, Mπ L) = g0 + c1a + c2M2
π

+
c3M2

π exp (−Mπ L)√
Mπ L

, (13)

where I have kept only the lowest order corrections in each of the {mq, a, Mπ L}
variables and assumed that discretization errors start at O(a).

3. Having obtained the form factor in the continuum limit at Q2
k points with k = 1 . . . n,

carry out the final parameterization again using a truncated z expansion or a Padé.

This three-step process can be done within a single bootstrap procedure to propagate
errors as has been done in Ref. [19,27] to produce the NME and PNDME results shown in
Figure 7. Or, these steps can be combined, especially if there are correlations between them.
For example, as can be done in step (ii) to account for correlations between the coefficients
of the CCFV fits for different values of Q2

k .
The plots in Figure 7 provide two comparisons. In the panels on the left, the physical

point results from the RQCD [24,29], ETMC [23], NME [27], and Mainz [26] collaborations
are compared against those from the PNDME [19]. On the right, they are overlaid and
compared to the phenomenological extraction from the old neutrino–deuterium bubble
chamber data [20]. The PNDME, RQCD, and NME data mostly overlap, whereas the
ETMC and Mainz data overlap and fall off slower for Q2 ≳ 0.3 GeV2. On the other hand,
the neutrino–deuterium (νD) data [20] fall off much faster for Q2 ≳ 0.2 GeV2. Overall,
as shown in the right plot, the five lattice QCD estimates are consistent within 1σ and lie
about 2σ above the νD band for Q2 ≳ 0.3 GeV2.

There also are results from the CalLAT [16], PACS [25,40], and LHP+RBC+UKQCD [41]
collaborations, which have not been included in the comparison because they have not
been extrapolated to the physical point. The Fermilab collaboration [31] has embarked on
the much harder problem of calculating transition matrix elements as well, e.g., N → ∆ or
N → Nπ.

From the analysis of the NME and PNDME data, my understanding is that the
differences in exactly how the ESC values are handled by the various collaborations and the
uncertainty in the final results should be considered as a work in progress. The uncertainty
from the differences in the overall procedure for parameterization and CCFV extrapolation
is, I believe, smaller, especially since the data do not show a large dependence on any of
the three parameters {mq, a, Mπ L}, especially for a ≲ 0.1 fm and Mπ L ≳ 4, as illustrated in
Figure 8 [19,27]. Hopefully, the next generation calculations will shed light on and possibly
resolve the various differences.
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Figure 7. (Left) Comparison of the nucleon axial vector form factor GA
(
Q2) as a function of Q2,

the momentum transfer squared, obtained by the (i) PNDME 23 [19] shown by the turquoise band;
(ii) RQCD 19 [29] (light faun band); ETMC 21 [23] (faun band); NME 22 [27] (light brown band);
and Mainz 22 [26] (brown band). (Right) These five lattice results for GA

(
Q2) are shown together

along with the νD band which is the fit to the deuterium data given in Ref. [20].
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Figure 8. The data for renormalized GA(Q2) on 13 HISQ ensembles show small variations in
{a, Mπ , Mπ L}. The a06m135 data are statistics limited. Figure reproduced from Ref. [19].

Other findings in Refs. [19,27] are that (i) the dipole ansatz GA(Q2) = gA
(1+cQ2/M2

N)2

gives poor fits (very low p values) to data on many ensembles. My conclusion, therefore, is
that the lattice data already show that the dipole ansatz does not have enough parameters
to capture the Q2 behavior over the range 0 ≤ Q2 ≤ 1 GeV2. The second finding is that
(ii) The PPD relation between GA and G̃P works very well.

2.6. Consistency Check in the Extraction of the Axial Charge gu−d
A

There are two ways in which one can extract the axial charge gu−d
A . The first is from the

forward matrix element using CA3 in Equation (8) with q = 0, and the second is by extrap-
olating the form factor GA(Q2 ̸= 0) to Q2 = 0. I am considering them as separate because
the extraction from the forward matrix element is computationally clean: CA3(q = 0) has
the smallest errors, and the verification of the symmetry of the data about τ/2 is a good test.
The errors grow with q, as shown in Figure 2. On the other hand, GA(Q2) is constrained by
being part of the PCAC relation, Equation (12), that has to be satisfied. The two results must
agree after CCFV extrapolation. Based on the data in Ref. [19], I conclude the following:

• The difference between gu−d
A extracted without and with including Nπ states is

O(≈ 5%), i.e., 1.218(39) → 1.294(48) on including one (the lowest) Nπ state in the
analysis. Note that the errors in each result are O(≈ 3%).
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• The difference between gu−d
A = GA(Q2 → 0) extracted by extrapolating GA(Q2)

data obtained without and with including the lowest Nπ state is also O(≈ 5%),
i.e., 1.213(39) → 1.289(56). Again, the errors in each are O(≈ 4%).

Thus, for each of the two cases, without and with including Nπ states, we obtain consistent
estimates for the charge from the two methods; however, the results including the Nπ state
are about 6% larger. This difference is consistent with the expected ∼ 5% one-loop correc-
tion to the charge in χPT; however, it is roughly a one combined σ effect and, therefore,
needs validation. My pick for the final result is the analysis including the Nπ state, since
it gives form factors that satisfy the PCAC relation. Higher precision data are needed to
further clarify the other significant ESCs and how to include them.

3. Comparison of Charges Obtained by Various Lattice Collaborations

The results for the axial charge, gu−d
A , the charge radius squared, ⟨r2

A⟩, the induced
pseudoscalar coupling g∗P, and the pion–nucleon coupling gπNN extracted from GA and G̃P
by various collaborations using the relations result in the following:

GA(Q2) = gA(1 −
⟨r2

A⟩
6

Q2 + · · · ) , (14)

g∗P ≡
mµ

2MN
G̃P(Q∗2) , (15)

gπNN ≡ lim
Q2→−M2

π

M2
π + Q2

4MN Fπ
G̃P(Q2) . (16)

which are summarized in Table 1. Here, mµ is the muon mass, Q∗2 = 0.88m2
µ is the energy

scale of muon capture, and Fπ = 92.9 MeV is the pion decay constant.

Table 1. Comparison of gA, ⟨r2
A⟩, g∗P, and gπNN from recent calculations: PNDME 23 [19],

RQCD [24,29], ETMC [28], PACS [25,40], Mainz [26], and NME [27]. Results for gu−d
A are in the

MS scheme at scale 2 GeV. Earlier results for gu−d
A have been reviewed in the FLAG reports [21,22].

Collaboration gu−d
A ⟨r2

A⟩ fm2 g∗P gπNN

PNDME 23 1.292(53)(24) 0.439(56)(34) 9.03(47)(42) 14.14(81)(85)
RQCD 19/23 1.28428

27 0.449(88) 8.68(45) 12.93(80)
ETMC 23 1.283(22) 0.339(46)(6) 8.99(39)(49) 13.25(67)(69)
PACS 23 1.264(14)(1) 0.316(67)
Mainz 22 1.225(39)(25) 0.370(63)(16)
NME 21 1.32(6)(5) 0.428(53)(30) 7.9(7)(9) 12.4.(1.2)

The results show about 10% variation in gu−d
A , g∗P, and gπNN and about 25% in ⟨r2

A⟩.
Part of this is likely due to different methodologies used in the analysis, in particular how
and if the lowest Nπ state is included in the analysis. These results will improve over time.

4. Comparison of the Differential Cross-Section Using Lattice AVFF with
MINERνA Data

A comparison of the antineutrino–nucleon charged current elastic cross sections cal-
culated using predictions of AVFF from lattice (PNDME 23 [19]) and neutrino–deuterium
analysis [20] with MINERvA measurement [17,42] is presented in Figure 9, which is re-
produced from Ref. [18]. A χ2 test was performed to determine the significance of the
differences between the three. No significant difference was found between MINERvA–
lattice QCD (PNDME) and between MINERvA–deuterium results. A ≈ 2.5σ tension was,
however, found between the PNDME and the deuterium results. Based on data shown in
Figure 7, the deviation in the deuterium–Mainz and deuterium–ETMC will be even larger.
To assess the scope for future progress, three regions of Q2 with different prospects for the
extraction of AVFF from lattice QCD and MINERvA-like experiments were identified.
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Figure 9. (Left) Comparison of the parameterized nucleon axial vector form factor GA(Q2) versus
Q2 up to 2 GeV2 obtained from (i) fit to the deuterium bubble-chamber data [20] shown by blue
solid lines with error band; (ii) fit to recent MINERvA antineutrino–hydrogen data [17], shown by
black dashed lines and turquoise error band; and (iii) lattice QCD result obtained by the PNDME
Collaboration [19] shown by red solid lines without a band. (Right) A comparison of antineutrino–
nucleon charged current elastic differential cross section using AFF from (i) lattice QCD by the
PNDME collaboration [19] (red bands) and (ii) the deuterium bubble-chamber data [20] (black
bands) with the MINERvA antineutrino–hydrogen data [17] (black circles). These figures are taken
from Ref. [18].

For Q2 ≲ 0.2 GeV2, LQCD predictions and fits to the deuterium bubble chamber
data are in good agreement. In this region, the experimental errors in the measurement
on hydrogen by MINERvA are large, whereas the errors in the parameterization of the
deuterium bubble chamber data are smaller. The νD result has often been used as a
benchmark; however, note that there is unresolved uncertainty in the deuterium data as
discussed in Ref. [20]. Also, no new deuterium data are expected in the near-term, so I do
not comment on its future prospects. Lattice QCD data are competitive and will improve
steadily. This region will be well characterized by the axial charge, the axial charge radius,
and well parameterized by a low-order z expansion or a Padé.

For 0.2 GeV2 ≲ Q2 ≲ 1 GeV2, the AVFF from PNDME has the smallest errors, and
the predicted differential cross-section lies above the hydrogen and νD values, i.e., the
same ordering as for the AVFF shown in Figure 9 (left). Future improvements in both the
hydrogen data and lattice calculations will provide robust crosschecks in this region.

The region Q2 ≲ 0.5 GeV2 is where lattice QCD data, even with current methodology,
will improve rapidly as more simulations are done closer to Mπ = 135 MeV, a → 0 and on
larger volumes, because on a given ensemble and for given statistics, the value of Q2|max
with a good signal (usually specified by the lattice momentum n2) decreases in these limits.

For Q2 ≳ 1 GeV2, current LQCD data have large statistical errors and systematic
uncertainties—these are discretization and residual excited state contributions. With the cur-
rent methodology, the lattice AVFF comes mostly from simulations with Mπ ≳ 300 MeV [19].
New methods are needed to obtain data from simulations with physical pion masses,
Mπ ≈ 135 MeV. Similarly, improvements further MINERvA and follow-up experiments
are needed to cover the full range of Q2 relevant for DUNE.

5. Concluding Remarks

Extensive calculations of the AVFF are being carried out by at least the following nine
lattice QCD collaborations: PNDME [19], RQCD [24,29], ETMC [23], NME [27], Mainz [26],
CalLAT [16], PACS [25,40], LHP+RBC+UKQCD [41], and Fermilab [31]. As shown in
Sections 3 and 2.5, we now have results to within 10% precision. The major of the uncer-
tainty comes from resolving and removing excited state contributions.

The good news is that the methodology for the calculation of the correlation functions,
C2pt and C3pt

J , is robust. The bad news is that the exponentially falling signal-to-noise ratio
in them means that ESC are large at source–sink separations possible in today’s calculations.
Second, it is also clear that multihadron, Nπ, excited states give large contributions and
must be included in the analysis to remove them. Unfortunately, it is not yet known how
many of these states will need to be included in the analysis for percent level precision.
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The operator constraint that the form factors satisfy the PCAC relation in Equation (12)
provides a valuable check that must be carried out in all calculations. The third challenge
is obtaining data at large Q2, because the discretization and statistical errors grow with
Q2 on a given ensemble, and the Q2|max, i.e., the lattice momenta 2πn/La with the largest
n2 that has a good signal-to-noise ratio, decreases as simulations are done closer to the
physical point. Thus, to obtain data for Q2 ≳ 1 GeV2 on physical pion mass ensembles will
need/benefit from new methodology.

I estimate that a factor of ten increase in statistics will reduce the statistical errors to a
level that will provide much more clarity in removing the ESC. Similary new developments,
including variational methods [30] with multihadron states and momentum smearing [43],
will improve the calculations and extend the range of Q2. I anticipate improvements in
both statistics and methods will provide LQCD predictions of AVFF for nucleons in the
range Q2 ≲ 1 GeV2 (hopefully higher) with percent level precision by about 2030 in concert
with DUNE producing data.
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