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Abstract: During particle collisions in the vicinity of the horizon of black holes, it is possible to achieve
energies and temperatures corresponding to phase transitions in particle physics. It is shown that the
sizes of the regions of the new phase are of the order of the Compton length for the corresponding
mass scale. The lifetime is also on the order of the Compton time. It is shown that the inverse
influence of the energy density in the electro-weak phase transition in collisions on the space–time
metric can be neglected.

Keywords: black hole; symmetry breaking; phase transitions

1. Introduction

The works of A.A. Friedman [1,2], written 100 years ago, in which solutions were
obtained for an expanding homogeneous isotropic universe [3], are the theoretical basis of the
modern standard cosmological model. The discovery in 1965 of relic radiation [4,5] indicates
that in the model of the expanding early Universe, there were times when the temperature of
matter was so high that phase transitions predicted by the theory of elementary particles could
occur. There are three such phase transitions in the standard model of particle physics [6–8]:

(1) Between quark–gluon plasma and hadrons at the energies E of the order of 200 MeV.
The corresponding temperature T = E/kB ≈ 1012 K, where kB ≈ 1.38 · 10−23 J/K is
the Boltzmann constant, may have taken place in the expanding Universe during the
order of 10−6 s after the Big Bang.

(2) An electro-weak phase transition at energies of the order of EW ≈ 100 GeV. The
corresponding temperature TW ≈ 1015 K could have taken place during the order of
10−12 s after the Big Bang.

(3) The grand unification phase transition at energies.

EGUT ≈ 1016 GeV. The temperature corresponding to the energy of the grand unifi-
cation phase transition TGUT = EGUT/kB ≈ 1029 K may not have been achieved in the
early universe in models with an inflationary stage in which the heating temperature is
significantly lower than TGUT. In models with a radiation-dominant stage in the early
Universe, the temperature TGUT could be reached at times of the order of 10−38 s.

The study of the properties of matter at such temperatures and the phenomena at
these phase transitions is of undoubted theoretical interest. Is it possible to achieve such
temperatures in experiments on the Earth? The maximum high temperature for macro-
scopic parts of the substance is achieved at the time of nuclear explosion and can be on
the order of 108 K. This is significantly less than the temperature of even the quark–gluon
phase transition [9].
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The highest temperature achieved in experiments on Earth refers to microscopic quan-
tities of matter and is obtained when heavy element nuclei collide in particle accelerators.
A temperature of 4 · 1012 K was obtained from a collision of gold nuclei in Brookhaven
National Laboratory (United States) in 2010 [10]. In 2012, it was reported that a temperature
of 5 · 1012 K was reached when the lead nuclei collided at the Large Hadron Collider [11]. At
such temperatures, hadron matter transforms into the quark–gluon plasma state. However,
such temperatures are more than two orders of magnitude less than the temperature of the
electro-weak phase transition.

Thus, macroscopic amounts of matter in the state of phase transition of elementary
particle physics in laboratories on Earth cannot be obtained, and microscopic amounts can
be obtained only for the phase transition in the quark–gluon plasma state.

Is it possible to observe matter at the temperatures of the phase transitions of particle
physics in astrophysical processes at present? Brightly luminous accretion discs formed
when matter falls into black holes have a visible temperature of hundreds of millions of
Kelvin degrees [12]. As shown in our work [13], in the processes of collisions of particles
near the horizon of black holes, it is possible to achieve energies in the system of the center
of mass of colliding particles on the order of the energy scale of the electro-weak phase
transition? A summary of these results is presented in Section 2.

Here we will consider questions about the size of the regions of the phase transition
region obtained in a collision and the lifetime of such a region. To do this, in Section 3,
we apply formulas for the energy density and radiation intensity of a gas of relativistic
particles. The possibility of obtaining an electro-weak phase transition in a macroscopic
volume during a collision in the vicinity of supermassive black holes is studied in Section 4.
The influence of the matter energy–momentum tensor in the phase transition region on the
space–time metric will be evaluated in Section 5.

2. The High-Energy Collisions Near the Horizon of Black Holes

The Kerr metric of a rotating black hole [14] in the Boyer–Lindquist coordinates [15]
has the following form:

ds2 =
ρ2∆
Σ2 c2dt2 − sin2θ

ρ2 Σ2 (dφ − ωdt)2 − ρ2

∆
dr2 − ρ2dθ2, (1)

where

ρ2 = r2 +
a2

c2 cos2θ, ∆ = r2 − 2GMr
c2 +

a2

c2 , (2)

Σ2 =

(
r2 +

a2

c2

)2

− a2

c2 sin2θ ∆, ω =
2GMra

Σ2c2 , (3)

G is the gravitational constant, c is the speed of light and M and aM are the mass and
angular momentum of the black hole, respectively. We accept that 0 ≤ a ≤ GM/c. The
event horizon of the Kerr black hole has the radial coordinate

r = rH ≡ G
c2

(
M +

√
M2 −

( ac
G

)2
)

. (4)

According to [16], the squared energy of a collision of two particles with a mass m
with the angular momenta L1 and L2 in the center-of-mass system, which are nonrelativistic
at infinity and are freely incident on a black hole with the angular momentum aM, is given
by the expression
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E2
c.m

m2c4 =
2

x(x2 − 2x + A2)

[
2A2(1 + x)− 2A(l1 + l2)− l1l2(x − 2) + 2(x − 1)x2 (5)

−
√

2(A−l2)2− l2
2 x + 2x2

√
2(A−l1)2− l2

1 x + 2x2

]
,

where x = rc2/GM, l = Lc/GmM and A = ac/GM. Expression (5) has a singularity on the
event horizon. In the general case, the limit value of the collision energy for two particles
with masses m1, m2, energies E1, E2 and angular momenta J1, J2 is

E2
c.m(r → rH) =

c6(J1H J2− J2H J1)
2

G2M2(J1H− J1)(J2H− J2)
+ m2

1c4
[

1 +
J2H− J2

J1H− J1

]
+ m2

2c4
[

1 +
J1H− J1

J2H− J2

]
, (6)

where JnH = 2EnrH/A. If the angular momentum of one of the particles tends to JnH , then
the expression for the energy (6) diverges. This is the so-called Banados–Silk–West effect.
Note that despite the unlimited increase in collision energy in the center of mass system,
the energy that can be extracted at a large distance from a black hole cannot exceed E1 + E2
(assuming no Penrose effect [17]). This follows from the law of energy conservation.

A particle having a critical angular momentum value can travel from infinity to the
event horizon of a black hole only in the case of an extremely rotating black hole A = 1.
In other cases, particles with large angular momentum values are prevented from falling
onto the horizon by the potential barrier of the effective potential. As shown in [18,19], the
super high center-of-mass energy can be achieved in multiple collisions near nonextreme
black holes. To reach the horizon, particles incident from infinity should have an angular
momentum low in absolute value. The angular momentum of one of the particles necessary
for a high-energy collision can be acquired either in multiple collisions or in the interaction
with the electromagnetic field of the accretion disk. A similar effect for electrically charged
black holes was discovered in [20]. Real astrophysical black holes are surrounded by
matter (for example, they have an accretion disk). The possibility of particles colliding with
unlimited energy near the horizon of such “dirty” black holes also takes place [21].

The value of the collision parameters corresponding to the temperature of the elemen-
tary particles phase transitions may depend on the type of black holes. In the case of Kerr
black holes, the estimates for the distance from the horizon, where the collision energies
required for phase transitions of elementary particles, can be achieved are given in our
work [13]. So, for elementary particles with a mass m, the value of the temperature T is
reached near the extreme rotating black hole at the distance

r − rH ≈ 2rH

(
mc2

kBT

)2

. (7)

For the proton mass, the electro-weak temperature can be reached at the distance r −
rH = 2 × 10−4rH . This amounts to tens of centimeters for stellar-mass black holes and
hundreds of thousands of kilometers for supermassive black holes. In the mechanism of
multiple collisions near the horizon of (not extreme) rotating black holes, such temperatures
can be achieved at larger distances [13]. Therefore, collisions in which phase transition
temperatures are reached can, in principle, occur in the vicinity of stellar-mass black holes
for elementary particles and in the case of supermassive black holes for macroscopic bodies.

Next, we estimate the size of the phase transition region and the lifetime of the state
with the new phase.

3. Size and Lifetime of the New Phase

The energy density of the photon gas can be calculated by the known formula:
(see (63,14) in [22])

ε =
4σ

c
T4, (8)
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where σ is the Stefan–Boltzmann constant,

σ =
π2k4

B

60h̄3c2
≈ 5.67 · 10−8 W

m2 · K4 , (9)

and h̄ is the reduced Planck constant. At ultra-high temperatures, other elementary particles
should also contribute to the energy density of matter. Their contribution is taken into
account using the factor geff, which describes the number of effective massless degrees of
freedom of particles of the standard model of particle physics.

ε = geff
π2k4

B

30h̄3c3
T4 = geff

2σ

c
T4. (10)

Under this definition, the photon’s contribution to geff is two, according to the photon’s
two polarization states. In the general case, one has the following [6]

geff = ∑
i= bosons

gi

(
Ti
T

)4
+

7
8 ∑

i= fermions
gi

(
Ti
T

)4
. (11)

Here, it is assumed that the equilibrium temperature Ti of particles of type i may differ
from T. For example, in the Universe at present the temperature of cosmic microwave
background radiation is equal to 2.7 K, and estimates for the temperature of the neutrino
gas give 1.95 K. Photon gas after the moment of the last collisions of the cosmological
neutrinos with cosmological plasma at energies of 2–3 MeV was still heated up in the
annihilation process of cosmological positrons with electrons.

The value of geff in the standard model of particle physics depends on temperature.
For T in the interval 1 MeV < T < 100 MeV, which takes neutrinos into account, electrons
and positrons lead to geff = 10.75. At temperatures above 300 GeV, all standard model
particles (photons, W±, Z0 bosons, eight gluons, three generations of quarks and leptons
and the Higgs boson) must contribute to (10), which leads [6] to the value of geff = 106.75.
The graph of geff, which depends on temperature, is presented in [6] on page 65, Figure 3.5.

Denoting kBT = mc2, where m is the characteristic mass scale, we obtain from (10) for
the energy density of radiation of all types of particles

ε = geff
π2m4c5

30h̄3 = geff
π2

30
mc2

l 3
C

, (12)

where lC = h̄/mc is the (reduced) Compton wavelength corresponding to the mass m. The
pressure corresponds to a value three times less

p =
ε

3
= geff

π2

90
mc2

l 3
C

. (13)

The size R0 of the area in which the heated drop of a new phase of matter can form
after a collision is estimated from the relation

Ec.m. =
4
3

πR3
0ε, (14)

It is assumed that the region of the new phase is a sphere with the radius R0. Then, one
obtains

R0 =
lC
π

3

√
45

2geff

Ec.m.

mc2 . (15)

Assuming that the collision energy is of the order of magnitude Ec.m. ∼ geff mc2, we find
that the size of the region phase transition is of the order of the Compton wavelength lC for
a particle of mass m.
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Let us estimate the lifetime of a drop of a new phase formed as a result of a collision,
generalizing the formula for the radiation intensity of the black body to the case of the
presence of additional degrees of freedom described by the quantity geff

J = geff
π2k4

B

120h̄3c2
T4 =

geff
2

σT4. (16)

Let us write the energy balance equation for an infinitesimal time interval dt

d(εV) = −JSdt, (17)

where V is the volume of new phase drop and S is its surface area. When obtaining estimates
by the order of magnitude, we assume that the drop is spherical, and the radius may depend
on time due to expansion into the surrounding space. We also assume that during the life of
a drop of a new phase, thermodynamic equilibrium takes place in it, and, therefore, we can
talk about the temperature of the entire drop, the dependence of temperature on time and
use formulas for the equilibrium state of the corresponding relativistic gas. Then, from (17),
we obtain

R
3

dε = −(Jdt + εdR). (18)

Using (10) and (16), we obtain the equation

16
3

R
c

dT
T

= −
(

1 +
4
c

dR
dt

)
dt. (19)

By integrating this equation, we obtain

T(t) = T(t0) exp

− 3c
16

t∫
t0

(
1 +

4
c

dR
dt

)
dt
R

. (20)

If the drop radius does not change, i.e., R ≈ R0 = const, then the solution is

T(t) = T(t0) exp
[
− 3

16
c(t − t0)

R0

]
. (21)

Thus, the temperature decreases exponentially, and the lifetime of the new phase is of the
order τ ≈ R0/c. Since, according to the Equation (15), the size of the new phase region is
assumed to be Compton, the lifetime corresponds to Compton time τC = h̄/(mc2) for a
particle of a mass m, corresponding to the phase transition energy.

Taking into account the possible expansion of the area of the new phase, the lifetime of
the new phase can only decrease. Let us give formulas under the assumption of a constant
expansion rate dR/dt = v ≈ const. Then,

R(t) = R0 + v(t − t0) (22)

and, after the integration of (19), we obtain a dependence of the temperature of the region
with a new phase on the time as follows

T(t) = T(t0)

(
1 +

v(t − t0)

R0

)− 3
16 (4+ c

v )
. (23)

In the limit v/c → 0, one obtains the expression (21).
Thus, the lifetime of the new phase obtained in a collision of elementary particles has

the order of Compton time h̄/(mc2) for a particle of the characteristic mass scale m. For
the quark–gluon phase transition, this time is τ ≈ 3 · 10−24 s. For the electro-weak phase
transition, this time is τ ≈ 7 · 10−27 s.
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4. Phase Transition in Macroscopic Volume

To perform a quark–gluon or electro-weak phase transition in a macroscopic volume,
it is necessary to collide with ultra-relativistic energies of macroscopic amounts of matter.
When ordinary macroscopic bodies collide with such energies, the regions of the new phase
can make up a macroscopic volume only if the density of the bodies is comparable to
the Compton density characteristic of the phase transition of the mass m (see (12)). Only
in this case, the lifetime of the new phase can significantly exceed the Compton time τC.
Such density of matter occurs only in neutron stars. Collisions of macroscopic objects with
ultra-relativistic velocities are possible in the vicinity of the horizon of extremal rotating
black holes [13]. The collision of compact objects with star masses near supermassive black
holes was considered in [23].

When falling towards the event horizon of a black hole, macroscopic bodies can be
destroyed by tidal gravitational forces. Let us estimate the mass of black holes in which it is
possible to fall to the event horizon of neutron stars without destruction by tidal forces. For
evaluation, we assume that a star is destroyed if the tidal forces for the points of the center
of mass and the surface exceed the force of attraction of the points of the surface to the
center of the falling body. Let us assume that the falling object (neutron star) is a uniform
ball of a density ρ and radius R. Also, let us consider only the nonrotating black hole and
radial tidal forces. Then the condition for falling to the horizon without destruction has
the form

2GM
r3

g
R <

G4πρR3

3R2 (24)

or (after simple transformations)

M >
c3

4G3/2

√
3

πρ
,

M
M⊙

> 1.9 · 108
√

ρw

ρ
, (25)

where M⊙ is the Sun mass, ρw = 103 kg/m3 is the water density. Neutron stars have the
density ρ ∼ 1017–1018 kg/m3. Therefore, neutron stars fall to the horizon of black holes
with a mass of M > 20M⊙ without destruction. Of course, a collision with ultra-relativistic
velocities of neutron stars in the vicinity of a massive black hole should be considered a
very unlikely event. Estimates in [13] show that in the collision near the vicinity of the
horizon of an extremal rotating black hole with a mass of 109M⊙ at points with a radial
coordinate rH + 7 · 105 km, the maximum collision energy in the center-of-mass system can
reach 100 mc2. In nucleon–nucleon collisions, this is the electro-weak unification energy.
The masses of neutron stars range from one to three solar masses, and their radii are
about 10–20 km. The gravitational radius of a black hole with a mass of 100 solar masses
is approximately 300 km. Therefore, with such collision energy of two neutron stars, a
black hole should form, and it will not be possible to obtain a substance in a state of an
electro-weak phase transition outside the event horizon.

Thus, it is impossible to obtain the macroscopic quantities of a substance with an
electro-weak phase transition with a lifetime significantly exceeding the Compton time for
the electro-weak scale due to collisions in the vicinity of black holes.

5. The Influence of Spontaneous Symmetry Breaking on the Space–Time Metric

Let us consider a real scalar field with self-action [24]

V(φ) = −µ2

2
φ2 +

λ2

4
φ4 +

µ2

4λ2 . (26)

Here, µ = µ̃c/h̄, µ̃ is a mass parameter and λ is the dimensionless self-action constant.
Stable equilibrium states of such a field are located at two points

φ = ±φ0, φ0 =
µ

λ
. (27)
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The potential function (26) can be written as

V(φ) =
λ2

4

(
φ2 − φ2

0

)2
. (28)

Both lower states have zero energy, and the unstable equilibrium with φ = 0 has an energy
density of

ε = h̄cV(0) = h̄c
µ4

4λ2 . (29)

Using the representation φ = φ0 + χ, one obtains

V(χ) = λ2 φ2
0χ2 + λ2 φ0χ3 +

λ2

4
χ4. (30)

Thus, the mass of the χ field is
√

2λφ0 =
√

2µ. In the case of the Higgs boson, mH =
125.3 GeV, and we have

εH = h̄cV(0) = h̄c
m4

Hc4

16h̄4λ2
=

1
16λ2

mHc2

(lH
C )3

, (31)

where lH
C = h̄/(mHc).

For the electro-weak interaction, quantum corrections lead to limitation [24]

λ ≥ α =
e2

4πε0h̄c
≈ 1

137
, (32)

where e is the elementary electric charge and ε0 is the electric constant.
To estimate the inverse influence of the scalar field on the curvature of space–time, we

use Einstein’s equations

Rik −
1
2

Rgik + Λgik = −8π
G
c4 (T

(0)
ik + Tik), (33)

where Λ is the cosmological constant, T(0)
ik is the energy–momentum tensor of the back-

ground matter. The energy–momentum tensor for a constant scalar field with minimal
coupling to curvature is [25]

Tik = gik h̄cV(φ) (34)

and is similar to the contribution of an additional cosmological constant. Upon the appear-
ance of a non-zero cosmological constant under spontaneous symmetry breaking, this was
indicated in the work [26]. Phase transition in electro-weak interactions was discussed in
cosmology by Kirzhnits and Linde [27,28], Weinberg [29] and others. Estimates of changes
in the value of the cosmological constant during phase transitions in the early Universe
were made in work [30].

If there is only a constant scalar field and the energy–momentum tensor of the back-
ground matter is equal to zero T(0)

ik = 0, then the solution to Einstein’s Equation (33) will
be the de Sitter space–time. In de Sitter space, one has

Rik =
R
4

gik, (35)

and it follows from (33) that

R = 4
(

Λ + l2
Pl 8πV(φ)

)
, (36)

where lPl is the Planck length
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lPl =

√
Gh̄
c3 = 1.6162 · 10−35 m. (37)

For the electro-weak case under φ = 0, from (31), we have

R = 4

(
Λ +

π

2λ2
l2
Pl

(lH
C )4

)
. (38)

For the radius of curvature, we obtain

r ∼
(lH

C )2

lPl
∼ 0.1 m. (39)

This value is many orders of magnitude greater than the Compton wavelength of the
particle and the size of the region in which the phase transition occurs. It should be
expected that in order for special collisions with ultra-high energy to occur, in the volumes
r3, there must be a large number of particles falling onto the black hole. Their total mass
will be much greater than the mass of the electro-weak scale. Thus, the inverse effect of
energy density in the electro-weak phase transition in collisions on the space–time metric
can be neglected.

6. Conclusions

An integral part of the standard model of particle physics is the mechanism of sponta-
neous symmetry breaking. The discovery at the Large Hadron Collider of the Higgs boson
in 2012 makes us take seriously the possibility of a phase transition from one vacuum to
another at high temperatures, as is the case in quantum nonrelativistic many-body theory,
where the ground state plays the role of the vacuum. In our work [13], it was shown that
in the processes of collisions of particles near the horizon of black holes, it is possible to
achieve energies in the system of the center of mass of the order of the energy scale of the
electro-weak phase transition.

In this article, we showed that the region of the phase transition in such collisions
is microscopic. In the order of magnitude, the size of the region is equal to the Compton
wavelength of the Higgs boson. Using formulas for black body radiation, we show that
the lifetime of such region is of the order of the Compton time for the electro-weak phase
transition scale.

During a phase transition, such as in the case of spontaneous symmetry breaking,
the energy–momentum tensor corresponds to the emergence of an effective cosmological
constant. It is shown that for phase transitions occurring during particle collisions, its
influence on the space metric in the phase transition region can be neglected.

Note that despite the short time existence and microscopic volumes of a new phase
of matter during an electro-weak phase transition in collisions in the vicinity of the black
hole horizon, its very existence is of fundamental importance for the study of elementary
particle physics in the ultra-high energy region, which is unattainable on Earth.
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