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Abstract: We claim that quantum collapse, as per the Copenhagen interpretation of quantum mechan-
ics, follows naturally from the energetics of measurement. We argue that a realistic device generates
an interaction energy that drives a random walk in Hilbert space and generates the probabilistic
interpretation of Born.
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1. Introduction
1.1. What Is the Quantum Measurement Problem?

The discovery of quantum mechanics introduced the perplexing phenomenon of
superposition, where an object is found to be in a combination of states, each with a
different value, for a given observable. However, measuring a state in superposition does
not yield a superposition of values, the measuring device neither displays several values
simultaneously nor returns a random sequence of values with repeated measurement.
Rather, a measurement returns a single value and subsequent measurements of the same
object are consistent with that measurement. Hence the outcomes of future measurements
are correlated with those of past measurements, indicating the long-known result [1,2]
that any quantum measurement causes a state transition of the measured object. This is
commonly described as a “collapse”, in which the components not consistent with the
measured value are discarded and the object’s state is described by a single eigenstate, an
eigenstate of the observable’s operator. However, to simply discard these other components
is a violation of unitarity so a more detailed description of the measurement process
is needed.

1.2. Models of Quantum Measurement

Quantum mechanics is both universal and linear. The former because no experiment
has ever indicated a length or mass scale beyond which quantum mechanics fails [3–6],
and the latter because no one has ever found a nonlinear extension of quantum mechanics
that agrees with experiment. Furthermore, nonlinear additions to the Schroëdinger equation
have long been known to violate relativistic causality [2] in addition to being incompatible
with the superposition principle and, therefore, unitarity. However, it is a long-known result
of von Neumann [1,2] that it is impossible for quantum mechanics to remain unitary/linear
whilst remaining both universal and complete, without invoking either a many-worlds
model, such as that proposed by Everett [7], or a classical observables or collapse model.

Classical observables models rely on the somewhat arbitrary division of observables
into classical and quantum, where the coupling of the latter to the former via measurement
induces a wavefunction collapse in which the other components are discarded. They
are typically variations of the Copenhagen interpretation, in which quantum collapse is
induced by a classical measuring device, although what constitutes such a device is not
well defined.

In objective collapse models, the wavefunctions are constantly collapsing according
to a formula contrived to leave too little time to complete a measurement but enough
for observed interference and other wave effects. While avoiding the need to define the
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measurement, it lacks a mechanism and has been challenged by recent superposition
experiments [4].

In the Penrose model of quantum measurement [8], a superposition of positions
leads to a superposition of spacetime curvatures, with the resulting energy leading to
wavefunction collapse. While this seems difficult to apply to observables in general, our
model also uses the energy due to a superposition, although we are more concerned with
the energetics of the device than with spacetime.

Indeed, the lack of a convincing collapse mechanism has proven sufficiently vexing for
von Neumann to propose, and Wigner to seriously discuss, consciousness as a mechanism
(see [9] for a discussion).

Relative state models, also known as Everett’s many-worlds interpretation, have the
advantage of not needing the introduction of new rules for the collapse, but have nonethe-
less attracted considerable criticism (for examples see references [10,11]), with particular
controversy concerning its reproduction of probabilities (see references [12,13] for examples).

Meanwhile, some authors have abandoned a realistic interpretation of quantum me-
chanics and considered the issue within either a statistical interpretation [14] or a stochastic
model [15].

We propose a mechanism based on conventional physics to explain measurement
collapse and the emergence of probabilities in accordance with Born’s probabilistic inter-
pretation of the wave function. In Section 2, we discuss the energetics of measurement and
demonstrate on these grounds that a classical measuring device cannot typically minimise
its energy when measuring a quantum state in superposition. The emergence of Born’s
probabilistic interpretation from the resulting interaction between the measured state and
the measuring device is described in Section 3, while Section 4 summarises our argument
and discusses some related issues.

2. The Energetics of Measurement
2.1. The Energetics of Classical Measurement

As von Neumann noted decades ago [2], a measuring device is a physical system
whose ground state depends on a specific property of whatever external object is being
measured. (Also see references [16,17] for a discussion of subtle variations.) Since any
physical system will seek to minimise its potential energy, the device’s minimal energy
configuration occurs when its output corresponds to the value being measured, and is in a
non-minimal energy state otherwise.

If the device cannot achieve/maintain its minimum energy configuration, one in
which its output matches the value(s) found by measurement, then the device-state system
remains in an unstable, higher-energy configuration.

2.2. The Energetics of Quantum Measurement

Every measuring device is comprised of causally interacting components that propa-
gate information to each other, typically along either atomic bonds or electrically conductive
structures. For example, if the measured value is indicated by a needle, the position of
its tip, though ultimately determined by the measured quantity, is driven by mechanical
forces along the needle at the speed of sound.

Causal interactions are driven by potentials. In the case of a measuring device, the
potential is determined by the difference in value between the measured observable and the
corresponding output of the device. We henceforth refer to it as the “measurement potential”.

Prior to measurement, the device and all its subsystems are in a state independent of
the measured observable. Since the measurement potential is generated by the difference
in measured values, the device, and its subsystems, evolve towards states corresponding to
the components of the measured state in proportion to the magnitude of their coefficients.
We might naïvely expect the measuring device to end up in a corresponding superposition
but we shall demonstrate that a single-component state has lower energy.
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2.3. The Measurement Interaction Energy

To study the effect of measurement potential, we give the quantum state being mea-
sured by |ψ(t)⟩, where t is the length of time from when measurement commences. It
decomposes into the eigenstates |ψi⟩ of the operator whose observable is being measured as

|ψ(t)⟩ = ∑
i

λi(t) |ψi⟩ , (1)

where at any given t
∑

i
∥λi∥2(t) = 1. (2)

The variation of λi(t) depends on the specific details of the measuring device and the
initial quantum state and is typically unavailable.

Interaction between the device and the measured object cannot be longer than the
timescale of the quantum fluctuations or the device will measure a mean value; so, we
assume that fluctuations in the λi are on a timescale much shorter than the relaxation state
of the device. We shall simplify the notation henceforth by not indicating time dependence
explicitly but instead trusting that it has been sufficiently indicated already.

Remembering from the previous section that the measurement potential is generated
by a mismatch between the observables and their measured values, we expect each com-
ponent |ψi⟩ of the wave function to energetically prefer an output of Ai corresponding
to its observable value ai, so the measurement energy of each component |ψi⟩ receives a
contribution from all the other wave function components and is given by

M ∑
j;j ̸=i

|λj|2 = M ∑
j;j ̸=i

⟨ψ| λj |ψj⟩ , (3)

for some large positive real M, which is independent of the index i. Summing this over all
|ψi⟩, weighted by their probability amplitudes λi then yields

M ∑
i,j;j ̸=i

⟨ψ| λj |ψj⟩ ⟨ψ| λi |ψi⟩ (4)

=
M
2 ∑

i,j;j ̸=i
(⟨ψ| λi |ψi⟩ ⟨ψj| λ∗

j |ψ⟩+ ⟨ψ| λj |ψj⟩ ⟨ψi| λ∗
i |ψ⟩)

= ⟨ψ| M
2 ∑

i,j;j ̸=i

(
λiλ

∗
j |ψi⟩ ⟨ψj|+ λjλ

∗
i |ψj⟩ ⟨ψi|

)
|ψ⟩

= ⟨ψ|M |ψ⟩ , (5)

where the last line implicitly defines the measurement energy operator M to be

M ≡ M
2 ∑

i,j;j ̸=i

(
λiλ

∗
j |ψi⟩ ⟨ψj|+ λjλ

∗
i |ψj⟩ ⟨ψi|

)
. (6)

3. The Resultant Random Walk Leads to the Emergence of Born’s
Probabilistic Interpretation

From the form of the measurement potential operator M, given in Equation (6), we
see that it couples between orthogonal components symmetrically, up to a phase, thus
leading to transitions of equal likelihood each way. Acting on the wave function over time,
this symmetric coupling of the operator M between all pairs of components drive the
wave function to constantly fluctuate randomly towards some components at the expense
of others. These fluctuations describe a random walk in the subspace of Hilbert space
generated by the superposition’s components.

The random walk is restricted by unitarity to unit distance from the origin in Hilbert
space so that the sum of the squares of the coefficients is fixed. When it reaches a direc-
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tion orthogonal to one of its components that component vanishes and can no longer be
transitioned to.

Consider, for example, a superposition of two eigenstates |a⟩ , |b⟩ with complex coeffi-
cients A, B, respectively, written

A |a⟩+ B |b⟩ , ∥A∥2 + ∥B∥2 = 1, (7)

any change in ∥A∥2 is exactly offset by a corresponding but opposite change in ∥B∥2, so that
|a⟩ , |b⟩ may be said to be randomly exchanging (δ∥A∥)2 for (δ∥B∥)2 in parallel to Huygen’s
statement of the gambler’s ruin problem [18]. This problem considers two gamblers
repeatedly wagering equal amounts in a fair game until one of them goes bankrupt,
and asks each one’s chances of winning overall. The long-known solution is that the
chances of each are in proportion to the amount of money they started with.

Translating back to quantum measurement, it follows that any component’s probability
of being chosen is the square of its own coefficient, in agreement with Born’s probabilistic
interpretation of the wavefunction. To generalise this argument from two to arbitrary
numbers of components consider each component in turn competing with the combination
of all the others. Hence, each component is found with a likelihood given by the square of
its coefficient.

4. Discussion
4.1. A Natural Definition of a Measuring Device/System

It would seem highly contrived indeed for the apparent collapse of a quantum super-
position into a single eigenstate to occur only in modern physics laboratories. A satisfying
model must surely accommodate and expect such events under natural conditions prior
to modern physics or even the evolution of conscious beings. A true understanding of
quantum measurement clearly requires that we can characterise the physical systems that
induce measurement collapse. In this paper, we have argued that sufficient conditions are:

1. That the lowest energy state be restricted by the value of the measured observable;
2. That the interaction between the measured state and the measuring system be shorter

than the timescale of fluctuations of the superposition.

Any device capable of measuring a superposed observable must fulfil the first two
of these criteria. The first condition is true of any measuring device by definition, and if
the second condition does not hold then the device will only return a mean value of the
superposition.

4.2. Natural Emergence of Quantum Collapse and Born’s Interpretation

Other collapse models require the introduction of new rules to govern quantum
collapse. The original Copenhagen interpretation has the classical measurement with a
macroscopic device as a trigger, without clearly defining what it means for a device to be
macroscopic. Intuitively, it is taken to mean something on a similar length or mass scale to
our everyday experience but no length or mass scale has been identified at which physical
systems seem to transition to being macroscopic. Indeed, there is mounting evidence
that there are no such scales with interference patterns observed with molecules tens of
thousands of times more massive than the hydrogen atom [4,5] and EPR phenomenology
demonstrated via satellite [3]. Spontaneous collapse models, on the other hand, simply
assert that collapses are constantly occurring according to empirically determined rules.

Our claim is that collapse under conditions universal, but not exclusive, to measure-
ment in the sense of von Neumann [2] follows from simple energetics. The Copenhagen
interpretation then emerges as an effective model, and we have plausibly argued that
Born’s probabilistic interpretation then follows from a random walk and the gambler’s
ruin problem. At the same time, the natural occurrence of measurement-induced collapse
through simple conventional physics leaves no incentive for additional edgy phenomena,
like consciousness or the many worlds of Everett’s model.
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4.3. Other Considerations
4.3.1. Quantum Non-Locality

How do the apparently local laws of classical physics emerge from non-local quantum
mechanics? EPR phenomenology has been demonstrated over distances as long as 1200 km
via satellite [3]. We have made no attempt to address the issue in this paper, but the question
arises as to whether our energy-driven mechanism of quantum collapse is reconcilable with
quantum non-locality.

One might object that the collapse is triggered through interaction with a classical,
localised device. However, while this is true, the final state and measured value arise from
the measured state’s random walk, which is driven by its self-interaction. The measured
state is already non-local in an EPR-relevant situation so, without pretence of rigour, it
should not be surprising if its self-interaction were also. This could be argued to support
the claim by Aharanov et al. [16,17] that the wave function is a real entity. The notion is
contentious, with other authors arguing to the contrary [19].

Alternatively, the random directions taken in the state’s random walk might also be
driven by non-local vacuum fluctuations.

4.3.2. Is the Walk Random?

Our model predicts Born’s statistical interpretation of the wave function through
the mechanism of a random walk generated by self-interaction. However, the sequence
of transitions still appears to be random, and is certainly not predicted by this work.
Whether it is truly random as conventionally believed or driven by unknown or inherently
unknowable effects remains an open question.

5. Conclusions

We have argued that the wave function collapse of the Copenhagen interpretation
occurs naturally in quantum measurement due to conventional energetics. The resulting
interaction energy leads to the quantum state performing a random walk in Hilbert space
in which one of the components is selected. The fact that each component’s probability of
being selected is given by Born’s interpretation follows naturally from the gambler’s ruin
problem and this is important support for our model. We therefore find that measurement
collapse occurs both naturally and inevitably from the Schroëdinger equation without
additional rules or phenomena.
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