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Abstract: We discuss the large N expansion in backgrounds of extended states with a focus on the
implementation of Goldstone symmetries and the construction of the associated Hilbert space. The
formulation is given in the general framework of collective field theory. The case of translational
symmetry is described first as a basic example. The large N thermofield represents the main topics,
with the emergent dynamics of left–right bulk fields and collective symmetry coordinates. These give
the basis for a 1/N expansion.
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1. Introduction

Large N represents the basic non-perturbative scheme for implementing AdS/CFT
and more generally gauge/gravity duality. With 1/N representing Newton’s constant G,
the main confirmations of the duality are most easily seen in a comparison of correlation
functions. Beyond that, of even greater interest are non-perturbative extended states, espe-
cially at finite temperatures. In particular, the thermofield double (TFD) state conjectured to
be dual to a two-sided black hole [1] is of central interest, as is the structure of the emergent
Hilbert space and of the associated 1/N expansion.

Recently, investigations [2,3] into the Hilbert space were seen in the gravitational set-
ting with discussions of observables (and of propagation) inside the horizon. Furthermore,
a general discussion of a possible large N Hilbert space structure of the thermal state was
presented in [4,5].

Three-dimensional O(N) invariant quantum field theories with Higher Spin Gravity
duality [6–8] offer a framework for concrete investigations. Here, an explicit construction
of the TFD state at large N was given in [9,10]. Furthermore, a dynamical symmetry
representing rotations (in the doubled thermofield space) was identified.

In the present work, we concentrate on the construction of the Hilbert space with the
implementation of symmetries. Much like in the case of extended (soliton-type) states
in ordinary QFT [11], central to the understanding of 1/N perturbation expansion is the
implementation of broken (Goldstone) symmetries. These are characterized by large O(N)
expectation values and fluctuations involving zero modes. The implementation of these
symmetries is carried out through collective coordinates with an associated extended
Hilbert space. We discuss this in the large N context and describe a formulation of the
nonlinear theory.

The simple case of translations (relevant to large N soliton states) will be presented
first. Our main focus is the thermofield case. Here, the question of the appropriate gauge
and global symmetries already requires some analysis. Regarding gauging (of U(N) and
O(N) groups), we follow the proposal introduced in [9], which gave arguments for diagonal
gauging of the doubled large N Hilbert space. It was argued that this is required in the high-
temperature phase while the low-temperature phase can be described by direct product
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gauging. Fluctuations and the zero mode structure of the large N TFD were further studied
in [9,10], and a relation with a dynamical symmetry was identified. Both of the above
features will play a central role in developing the structure of the Hilbert space and of
the 1/N expansion. We comment that, even though we find our results through the O(N)
vector model, the emergent structure and the method of implementing symmetries (through
collective coordinates) are general. One can also expect these to be relevant to issues of sub-
region duality and entanglement wedge construction, which have been recently considered
in vector models [12–14].

The content of the paper is as follows: Section 2 gives a summary of Hamiltonian at
large N. The case of translations is then discussed first in Section 3, giving a basic example.
Section 4 concentrates on the TFD state and the corresponding degeneracy and symmetry
structure. Section 5 describes the associated Hilbert space and the general implementation
of Goldstone symmetry in the thermal case. We conclude in Section 6 and outline directions
for future study.

2. The Large N Hamiltonian

A large N QFT in the canonical formalism can be completely described through the
dynamics of collective fields Φ (single trace operators). These dynamics are governed by a
collective Hamiltonian, which is generally of the form

Hcol =
1
2

Π Ω Π + Vcol[Φ] , (1)

with Π = − i δ/δΦ, the canonical conjugate of Φ. Ω = Ω[Φ] is a function(al) of Φ,
whose explicit form depends on the theory. Consider the example of two-matrix quan-
tum mechanics [15]. Let M1 and M2 denote two Hermitian matrices of size N × N, and
the corresponding Hamiltonian is invariant under U(N) transformations. In this case,
the collective fields Φ(C) = tr(C) are U(N) singlets termed as loop variables, where

C = (n1, n2; n′
1, n′

2, . . . ) denoting matrix products Mn1
1 Mn2

2 Mn′
1

1 Mn′
2

2 . . . . In this case, Ω rep-
resents the joining of two loops and thus admits a geometric representation [15]. Also, one
has ω representing the splitting of one loop into two loops [15]. The collective potential has
the general form

Vcol[Φ] =
1
8

ω†Ω−1ω + V[Φ] , (2)

with V[Φ] the original potential represented by Φ’s. For a recent numerical study of large
N multi-matrix systems, one may refer to [15,16].

In this paper, we follow the O(N) vector model as an analytically solvable theory. In
d + 1 dimensional Minkowski space-time, one has the bi-local collective field

Φ(t, x⃗, x⃗′) =
1
N

N

∑
i=1

φi(t, x⃗)φi(t, x⃗′) , (3)

where φi are scalar fields transforming as φi → Oij φj with OTO = 1. In this case, we have
Ω as

Ω(x⃗, x⃗′; y⃗, y⃗′) ≡ N
∫

dd⃗z
N

∑
i=1

δΦ(x⃗, x⃗′)
δφi (⃗z)

δΦ(⃗y, y⃗′)
δφi (⃗z)

(4)

= δd(x⃗′ − y⃗′)Φ(x⃗, y⃗) + δd(x⃗′ − y⃗)Φ(x⃗, y⃗′) + (x⃗ ↔ x⃗′) . (5)

We also have ω as

ω(x⃗, x⃗′) ≡
∫

ddy⃗
N

∑
i=1

δ2Φ(x⃗, x⃗′)
δφi (⃗y)δφi (⃗y)

= 2δd(x⃗ − x⃗′) . (6)
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Substituting these relations into the above formulae, we have the collective Hamiltonian

Hcol =
2
N

Tr(ΠΦΠ) +
N
8

Tr(Φ−1) + NV[Φ] , (7)

where Tr(A) ≡
∫

A(x⃗, x⃗)dd x⃗. In three-dimensional Minkowski spacetime, the O(N)
vector model has two fixed points, the UV fixed point and the Wilson–Fisher IR fixed
point, at which it possesses conformal symmetry and is dual to higher spin theory in
AdS4 [6–8,17,18]. There is an exact map from the bi-local field Φ in O(N) CFT to higher
spin fields H in AdS. For example, in AdS4/CFT3 we have [19]

H( p⃗, pz, θ) =
∫

d2 p⃗1 d2 p⃗2 K( p⃗, pz, θ; p⃗1, p⃗2)Φ( p⃗1, p⃗2) , (8)

with the kernel K({ p⃗}AdS, { p⃗}CFT) representing a canonical transformation of the momenta.
Here, θ is a coordinate in S1 which packages all spin variables.

3. Translations: The Large N Soliton

Generally, the vacuum (ground state) solution is manifestly translational invariant,
namely Φ0(x1 + a, x2 + a) = Φ0(x1, x2) for an arbitrary translational parameter a, with x
describing position at R1. However, in general, one can also have other non-translationally
symmetric solutions, such as large N coherent states and solitons. Concrete examples were
constructed in the nonlinear sigma model representing large N solitons. Denoting such
solution as Φs(x1, x2), one has that the translational symmetry is broken:

Φs(x1 + a, x2 + a) ̸= Φs(x1, x2) , (9)

since the solution does not commute with the momentum operator:

[P, Φs] = − i(∂x1 + ∂x2)Φs ≡ − i ∂12Φs . (10)

In this case, problems arise when performing 1/N expansions around the backgrounds. In
the naive expansion

Φ(x1, x2) = Φs(x1, x2) +
1√
N

Φ̂(x1, x2) , (11)

Π(x1, x2) =
√

N Π̂(x1, x2) . (12)

The collective Hamiltonian becomes

Hcol = M0 + H(2)
col [Π̂, Φ̂] + O(N−1/2) . (13)

The leading term M0 = Vcol[Φs] is the mass of the soliton, and it is of order O(N). The O(1)
term H(2)

col is quadratic:

H(2)
col =

1
2

Tr(Π̂ΩsΠ̂ + Φ̂VΦ̂) . (14)

In this equation, Ωs ≡ Ω[Φs] and V ≡ δ2Vcol[Φs]/δΦ2. In particular, we shall define the
soliton state for the small fluctuations as

|s, 0⟩ = |Φs(x1, x2)⟩ e−
1
2 Tr(Φ̂G−1Φ̂) , (15)

with G the static two-point function

G =
∞

∑
n=0

f ∗n fn

2ωn
, ΩsV fn = ω2

n fn . (16)
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The notion for the state |s, x = 0⟩ indicates that the center of mass of the soliton is located
at x = 0.

We would like to implement translations:

|s, a⟩ = e− i Pa |s, 0⟩ , (17)

with the momentum operator that is expanded as:

P = Tr(Π∂12Φ) ≡ P1 + P2 (18)

≡
√

N Tr(Π̂∂12Φs) + Tr(Π̂∂12Φ̂) , (19)

where we use the shorthand notation ∂12 ≡ ∂x1 + ∂x2 . We note the leading term in this
expansion: P1 is of order

√
N while P2 is of order 1. Due to this N dependence of P, one

cannot manifestly see translations in the naive large N expansion scheme. For example, an
infinite series re-summation is needed to evaluate

ei aP Φ(x1, x2) e− i aP = ei a(P1+P2)(Φs + N−1/2Φ̂) e− i a(P1+P2)

=
∞
∑

n=0

(i a)n

n! adn
P1+P2

(Φs + N−1/2Φ̂)

= Φs(x1 + a, x2 + a) + N−1/2Φ̂(x1 + a, x2 + a) ,

(20)

with adA(B) = [A, B]. Due to the
√

N of the leading operator P1, terms of different orders
in 1/N become mixed up. As a concrete ingredient in this transformation, let us consider
[P1, N−1/2Φ̂]. Since P1 is of order

√
N and N−1/2Φ̂ is of order N−1/2, this gives an order

1 term. As a result, it contributes to transformations of the background term Φs instead of Φ̂.
In matrix models, the leading term P1 is of order N, and the situation becomes even worse.
We will see in subsequent sections that a similar issue also arises in large N expansion
around thermofield double states.

In addition, the presence of the zero mode frequency ω0 = 0 implies that the static
two-point function G is divergent and the propagator is ill defined. The appearance of
the zero mode is related to the breaking of (translational) symmetry: f0 is the Goldstone
mode. In particular, consider the symmetry condition [Hcol, P] = 0; in the large N limit of
the soliton sector, this condition reduces to [H(2)

col , P1] = 0, and yields

V f0 = 0 , f0 = ∂12Φs . (21)

This results in infrared divergences, in the sense that G is singular, due to the zero mode
for n = 0; hence, perturbation in terms of 1/N is not possible.

In QFT, the canonical way to project out the zero modes and to develop a system-
atic perturbation expansion in terms of the coupling constant is the collective coordinate
method [11,20,21]. In that case, the soliton background ϕs ∼ 1/g with g as the coupling
constant. In the case of the large N nonlinear sigma model, the role of g is played by 1/

√
N.

The collective coordinate is identified with the position of the center of mass of the soliton,
denoted by x̂(t), which is now promoted to a degree of freedom. We are led to work in the
extended Hilbert space: in addition to Φ̂ and Π̂, we would also have x̂ and its conjugate p̂,
with [x̂, p̂] = i. These new variables obey constraints and gauge conditions

( p̂ − P[Π, Φ]) |s, 0⟩ = 0 , (22)

χx̂[Π, Φ] |s, 0⟩ = 0 . (23)

The gauge condition Equation (23) can actually be arbitrary. Here, χ = χ[Π, Φ] denotes an
arbitrary functional of Π and Φ, and χx̂ ≡ e− i x̂P χ ei x̂P. To project out the zero mode in the
simplest way, we choose the linear gauge condition∫

f0Φ(x1 + x̂, x2 + x̂)dx1 dx2 |s, 0⟩ = 0 . (24)
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On the other hand, one can also choose the canonical gauge condition [21](
x̂ −

∫
(x1 + x2)Hcol dx1 dx2

Hcol

)
|s, 0⟩ = 0 , (25)

where Hcol is the collective Hamiltonian density. One can verify that the solutions for these
equations indeed obey the canonical commutation relation. Since this gauge is solved by
x̂ = K/H, where K is the boost operator, using Poincaré algebra, we see that the canonical
commutation relation is guaranteed

[x̂, p̂] =
[

K
H

, P
]
= i . (26)

With this collective coordinate, we are able to make a change to the coordinate sys-
tem through a unitary transformation. We can perform a translation x → x + x̂ to the
soliton frame

Φ′(x1, x2) = ei x̂P Φ(x1, x2) e− i x̂P = Φ(x1 + x̂, x2 + x̂) , (27)

Π′(x1, x2) = ei x̂P Π(x1, x2) e− i x̂P = Π(x1 + x̂, x2 + x̂) , (28)

and similarly for all field degrees of freedom, including their 1/N expansions. The inverse
transformations are

Φ(x1, x2) = Φ′(x1 − x̂, x2 − x̂) = Φ′(x1, x2)− x̂∂12Φ′(x1, x2) + . . . , (29)

Π(x1, x2) = Π′(x1 − x̂, x2 − x̂) = Π′(x1, x2)− x̂∂12Π′(x1, x2) + . . . . (30)

In particular, we can apply a translation to the soliton state |s, 0⟩′ = ei x̂P |s, 0⟩, such that in
coordinate space, the new state becomes

|s, 0⟩′ = |Φs(x1 + x̂, x2 + x̂)⟩ e−
1
2 Tr(Φ̂′G′−1Φ̂′) , (31)

with the zero mode projected out in G′:

G′ =
∞

∑
n=1

f ∗n fn

2ωn
. (32)

Then, |s, 0⟩′ can be translated easily via

|s, a⟩′ = ei ap̂ |s, 0⟩′ . (33)

We also have momentum eigenstates

|s, p⟩′ =
∫

da e− i ap |s, a⟩′ . (34)

As illustrated above, the collective coordinate enables one to implement translations on
states and fields without 1/N expansion of the momentum operator P. On the extended
Hilbert space, translation symmetric forms directly follow. For example, we have for the
form factor (one-point function):

⟨s, p′|′ Φ′
s(x1 − x̂, x2 − x̂) |s, p⟩′ =

∫
dy ei(p−p′)y Φ′

s(x1 − y, x2 − y) . (35)

Or, in the example of the two-point correlation function, we have

⟨Φ(x1, x2, t)Φ(y1, y2, t0)⟩ = ⟨Φ′(x1 − x̂(t), x2 − x̂(t), t)Φ′(y1 − x̂(t0), y2 − x̂(t0), t0)⟩ . (36)
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Generally, the coordinate x̂(t) is treated as a dynamical variable. The transformation
of shifting to x1 − x̂ = ρ1 and x2 − x̂ = ρ2 represents a change in frame. The constraint and
the gauge condition Equations (22) and (24) then become(

p̂ − Tr
(
Π′∂12Φ′)) |s, 0⟩′ = 0 , (37)∫

f0Φ′(ρ1, ρ2)dρ1 dρ2 |s, 0⟩′ = 0 . (38)

In particular, the gauge condition implies that the zero mode is now projected out, and a
systematic 1/N expansion can be developed. Writing

Φ′ = Φ′
s +

1√
N

Φ̂′ , Π′ =
√

N(Π′
s + Π̂′) , (39)

we see that the constraint becomes(
p̂ −

√
N Tr(Π′

s∂12Φ′)−
√

N Tr(Π̂′∂12Φ′
s)− Tr(Π̂′∂12Φ̂′)

)
|s, 0⟩′ = 0 , (40)

and with the requirement
Tr(Π̂′∂12Φ′

s) |s, 0⟩′ = 0 , (41)

one solves for Π′
s to have

Π′
s =

∂12Φ′
s√

N
p̂ − Tr(Π̂′∂12Φ̂′)

Tr(∂12Φ′
s∂12Φ′)

. (42)

Similarly, we can expand the gauge condition, and find at leading order

Tr(Φ̂′∂12Φ′
s) |s, 0⟩′ = 0 . (43)

Thus, the zero mode is projected out from the linear fluctuation fields. Correspondingly,
the wave functional for the small fluctuations Φ̂′ around the soliton background is

Ψ[Φ̂′] = N ei p x e−
1
2 Tr(Φ̂′G′ −1Φ̂′) , (44)

with G′ as the (equal-time) two-point correlators ⟨Φ̂′Φ̂′⟩ with the zero mode excluded.
The Hamiltonian becomes

Hcol =+
M0

2

 p̂ − Tr
(

Π̂′∂12Φ̂′
)

Tr(∂12Φ′
s∂12Φ′)

2

+
1
2

Tr(Π̂′ΩsΠ̂′ + Φ̂′VΦ̂′)

− 1
8
√

N
Tr
(

1
Φ′

s
× Φ̂′ × 1

Φ′
s
× Φ̂′ × 1

Φ′
s
× Φ̂′ × 1

Φ′
s

)
+ O(N−1) ,

(45)

where
M0 = Tr(∂12Φ′

s)
2 , (46)

and can be systematically expanded in 1/N as

Hcol =+
p̂2

2M0
+

1
2

Tr(Π̂′ΩsΠ̂′ + Φ̂′VΦ̂′)

− p̂
M0

Tr(Π̂′∂12Φ̂′)− p̂2

M2
0

Tr(∂12Φ′
s∂12Φ̂′)

− 1
8
√

N
Tr
(

1
Φ′

s
× Φ̂′ × 1

Φ′
s
× Φ̂′ × 1

Φ′
s
× Φ̂′ × 1

Φ′
s

)
+ O(N−1) ,

(47)

providing the basis for the 1/N expansion.
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4. Thermofield Double State at Large N

We follow the Hamiltonian formalism for the Thermofield double (TFD) [22]. The TFD
state |0(β)⟩ is introduced to completely reproduce the thermal averages of various operators:

⟨O⟩β ≡ ⟨0(β)| O |0(β)⟩ = 1
Z(β)

Tr(e−βH O) . (48)

This is achieved through purification by doubling the Hilbert space. Let |ñ⟩ denote the
energy eigenstates in the doubled Hilbert space with ñ = n,

|0(β)⟩ = 1√
Z(β)

∑
n

e−βEn/2 |n⟩ |ñ⟩ . (49)

In the context of AdS/CFT correspondence, such states involve two identical copies of
large N CFTs at two causally disconnected boundaries and are dual to two-sided eternal
black holes in the bulk [1]. The Hamiltonian that governs the dynamics is

Ĥ = H − H̃ . (50)

Obviously, it annihilates the TFD state for all β, i.e., Ĥ |0(β)⟩ = 0. The thermofield
Hamiltonian Ĥ describes the real-time portion of the Schwinger–Keldysh contour, and the
TFD state can be referred to as the thermal vacuum state.

Evolution along the imaginary portion of the Schwinger–Keldysh contour is governed
by the Hamiltonian

H+ = H + H̃ , (51)

and we have
|0(β)⟩ = 1√

Z(β)
e−βH+/4 |I⟩ , (52)

where
|I⟩ ≡

√
Z(0) |0(0)⟩ = ∑

n
|n⟩|ñ⟩ (53)

denotes the maximally entangled state. This relates |0(β)⟩ with the infinite tempera-
ture state |I⟩ through a non-unitary transformation. Most importantly, one has that the
two Hamiltonians commute (representing a symmetry):

[Ĥ, H+] = 0 . (54)

A further dynamical symmetry has been argued at the semiclassical level (in the sense
of large N) in [10]. In the free O(N) model case, we have

Ĝ =
∫

θ(⃗k)Ĝ (⃗k)dd⃗k , Ĝ (⃗k) = i
(

a†i (⃗k)ã†i (⃗k)− ai (⃗k)ãi (⃗k)
)

, tanh θ(⃗k) = e−βω(⃗k)/2 , (55)

with
Oθ := e− i Ĝ O ei Ĝ (56)

representing a Bogoliubov transformation. In [10], a construction of Ĝ to first order in the
coupling is shown. Generally, this appears to be an on-shell symmetry, which, however,
will play a role at the level of fluctuations (in 1/N).

We continue with the O(N) model

H[π, φ] =
∫ [1

2
πiπi +

1
2
∇φi∇φi +

m2

2
φi φi +

c
4N

(φi φi)2
]

dd x⃗ , (57)

which at UV and IR critical points represents the CFT. At finite temperature, the model
has a phase transition [23] with free energy F(T) ∼ NT2 for T > Tc and F(T) ∼ T4 for



Universe 2024, 10, 99 8 of 28

T < Tc. For the TFD scheme, we also have H̃ with φ̃ and π̃, such that the theory generally
has an O(N)× O(N) symmetry. The following structure regarding gauging of the O(N)
symmetry was seen in [9].

For the lower temperature (the AdS-phase), one imposes the singlet constraint on the
original and the doubled Hilbert spaces, namely

Jij |Φ⟩ = 0 , J̃ij |Φ⟩ = 0 , (58)

where Jij and J̃ij are O(N) generators of φ and φ̃. This implies that we have two invariant
bi-local (only in space) fields in the spectrum

Φ11(t; x⃗1, x⃗2) =
1
N

φi(t, x⃗1)φi(t, x⃗2) , Φ22(t; x⃗1, x⃗2) =
1
N

φ̃i(t, x⃗1)φ̃i(t, x⃗2) , (59)

representing a direct product Hilbert spaces of CFT × C̃FT.
For the high-temperature phase, it was proposed in [9] that one needs to relax the

above constraints and has diagonal gauging of O(N)

(Jij + J̃ij) |Φ⟩ = 0 . (60)

Now, in addition to Equation (59), we have two more bi-local fields (cross modes) in the
Hilbert space

Φ12(t; x⃗1, x⃗2) =
1
N

φi(t, x⃗1)φ̃i(t, x⃗2) , Φ21(t; x⃗1, x⃗2) =
1
N

φ̃i(t, x⃗1)φi(t, x⃗2) . (61)

The diagonal gauging [9] was seen to allow an order N free energy at the leading classical
(in the sense of 1/N) level. At the level of fluctuations [9], the cross modes were seen
to be responsible for the presence of evanescent modes and for generating a complete
spectrum in the bulk. The presence of cross modes implies that one cannot have a direct
product of two CFTs, since they interact here through these mixed modes. We note that
at the gravity level, various issues have been discussed for the duality scheme between
CFTL × CFTR and two-sided black hole, in particular in [24–26]. Also, regarding gauging
in CFT, there are recent gravitational studies (for two-sided wormhole space-times) with
diagonal implementation of constraint symmetries [27–29].

Consequently, we use the bi-local collective fields1

Φ(x⃗, y⃗) ≡
(

Φ11 Φ12

Φ21 Φ22

)
(x⃗, y⃗) :=

1
N

(
φi φi φi φ̃i

φ̃i φi φ̃i φ̃i

)
(x⃗, y⃗) , (62)

and their canonical conjugates Π = − i δ/δΦ, to represent the thermofield Hamiltonian Ĥ
as Ĥcol[Π, Φ], namely Ĥ[π, π̃, φ, φ̃] = Ĥcol[Π, Φ] as [9,10]

Ĥcol =
2
N Tr[Π ⋆ (σ3Φ) ⋆ Π] + N

8 Tr
[
σ3Φ−1]+ N

2 Tr
[
(−∇2 + m2) ⋆ (σ3Φ)

]
+Nc

4

∫ {
[Φ11(x⃗, x⃗)]2 − [Φ22(x⃗, x⃗)]2

}
dd x⃗ ,

(63)

with σ3 = diag(1,−1) as the Pauli third matrix, and Tr(A ⋆ B) ≡
∫

A(x⃗, y⃗)B(⃗y, x⃗)dd x⃗ ddy⃗.
To obtain the large N thermal background, we vary Ĥcol with respect to Φ:

δĤcol
δΦ

= 0 , (64)

which gives the equation determining the large N thermal background. Several important
features of this (classical) large N equation were identified in [9,10], foremost being the
appearance of a symmetry (mentioned above). Namely, the equation allows for



Universe 2024, 10, 99 9 of 28

Φ f (x⃗, y⃗) =
∫ dd⃗k

(2π)d
ei k⃗·(x⃗−y⃗)

2ω f (⃗k)

(
ch f (⃗k) sh f (⃗k)
sh f (⃗k) ch f (⃗k)

)
, (65)

a one-parameter family of solutions, with f representing the parameter. The clas-
sical solution corresponds to the thermal two-point function at equal time, namely
Φab

θ (x⃗, y⃗) = ⟨φi
a(t, x⃗)φi

b(t, y⃗)⟩β/N and one then identifies f (⃗k) = 2θ(⃗k), with θ(⃗k) in Equation (55).
The solution is manifestly translational invariant, as in the zero-temperature case. The
dispersion relation ω f (⃗k) obeys a thermal gap Equation [10]. It was understood in the
previous work [10] that this degeneracy can be attributed to Ĝ symmetry, and the large N
thermal background is related to the zero temperature background Φ0 via (note that the
signs are opposite to those in Equation (56))

Φ f ≡ ei Ĝ f Φ e− i Ĝ f
∣∣∣
Φ=Φ0

. (66)

In general, Ĝ appears to be an on-shell symmetry, in particular in the general interacting
case. Consequently, it manifests itself in the semi-classical approximation (in the sense of
1/N) as above. It will also manifest itself at the level of fluctuations.

We emphasize that this property is not limited to the O(N) vector model, but also ap-
plies to more complicated theories, such as matrix quantum mechanics at finite temperature
(to be presented in future works).

For simplicity, in the following, we will consider the free massless theory case. One per-
forms a shift around the thermal background

Π →
√

Nπ , Φ → Φθ +
1√
N

η . (67)

We will write η and its conjugate π as vectors whose components are bi-local fields in
momentum space:

π =


π11

π12

π21

π22

 , η =


η11

η12

η21

η22

 . (68)

The collective Hamiltonian has a systematic 1/N expansion:

Ĥcol[π, η] =
∞

∑
n=0

N1− n
2 Ĥ(n)

col [π, η] = Ĥ(2)
col +

1√
N

Ĥ(3)
col + . . . . (69)

This implies that
Ĥ(0)

col = Ĥ(1)
col = 0 . (70)

The first equality states that in the strict large N limit, Ĥ must annihilate the TFD state. The
second one states that thermal backgrounds correspond to the saddle point solutions of
Equation (64). At order 1 (i.e., n = 2), we have a quadratic form (the trace is taken in the
bi-local momentum space).

Ĥ(2)
col =

1
2

Tr[πTKπ + ηTVη] , (71)

The kinetic matrix K is given by

K(⃗k1, k⃗2) =


c1 + c2 s2 s1 0

s2 −c1 + c2 0 −s1
s1 0 c1 − c2 −s2
0 −s1 −s2 −c1 − c2

 , (72)
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where

ci ≡
ch 2θ(⃗ki)

ω(⃗ki)
, si ≡

sh 2θ(⃗ki)

ω(⃗ki)
, (73)

The potential matrix is V is given by

V (⃗k1, k⃗2) = ω2 (⃗k1)ω
2 (⃗k2)


c1 + c2 −s2 −s1 0
−s2 −c1 + c2 0 s1
−s1 0 c1 − c2 s2

0 s1 s2 −c1 − c2

 . (74)

We now turn to the TFD wave functional Ψβ[η], which is an eigenstate of Ĥ(2)
col :

Ĥ(2)
col Ψβ[η] = 0 . (75)

Based on our previous results [10], we have :

Ψβ[η] = N exp

[
−1

2

∫
ηT (⃗k1, k⃗2) G−1 (⃗k1, k⃗2) η(⃗k1, k⃗2)

dd⃗k1

(2π)d
dd⃗k2

(2π)d

]
, (76)

where one has the equal-time two-point functions of η’s at finite temperature

Gab,cd (⃗k1, k⃗2) =
∫ dd⃗k3

(2π)d
dd⃗k4

(2π)d ⟨η
ab (⃗k1, k⃗2)η

cd (⃗k3, k⃗4)⟩β . (77)

Explicitly (at c = 0),

G−1 (⃗k1, k⃗2) = ω2 (⃗k1)ω
2 (⃗k2)


c1c2 −c1s2 −s1c2 s1s2
−c1s2 c1c2 s1s2 −s1c2
−s1c2 s1s2 c1c2 −c1s2
s1s2 −s1c2 −c1s2 c1c2

 . (78)

However, it should be stressed that the solution for Ψβ is not unique. As discussed

in [10], the non-uniqueness is related to the singular structure of Ĥ(2)
col , i.e., its zero modes.

This singular structure and the zero modes appear to be related to the symmetry pointed
out above.

Normal Modes and Bulk Fields

In general, there exists a basis (normal modes) such that the quadratic Hamiltonian
is diagonalized. In particular, continuing with the c = 0 case both K and V can be
simultaneously diagonalized through a linear transformation (θa ≡ θ(⃗ka))

ηθ (⃗k1, k⃗2) = M[−θ1,−θ2]η(⃗k1, k⃗2) . (79)

Let
ci ≡ ch θ(⃗ki) , si ≡ sh θ(⃗ki) , (80)

M[θ(⃗k1), θ(⃗k2)] is a matrix given by

M[θ1, θ2] =


c1c2 c1s2 c2s1 s1s2
c1s2 c1c2 s1s2 c2s1
c2s1 s1s2 c1c2 c1s2
s1s2 c2s1 c1s2 c1c2

 . (81)
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The M matrix preserves the canonical commutation relations and generates a two-(functional)-
parameter group. Its inverse thus is given by M−1[θ1, θ2] = M[−θ1,−θ2]. It is also a
symmetric matrix so that M = MT. Thus, the canonical conjugate π transforms as

πθ (⃗k1, k⃗2) = M[θ1, θ2]π(⃗k1, k⃗2) . (82)

For a comprehensive summary, we refer the reader to Appendix B.
The importance of M is that it diagonalizes the matrices K (72) and V (74) simultane-

ously. For K, we have

M[−θ1,−θ2]K(⃗k1, k⃗2)M[−θ1,−θ2]
T = K0 (⃗k1, k⃗2) , (83)

with

K0 (⃗k1, k⃗2) =
1

ω1ω2


ω1 + ω2

ω1 − ω2
−ω1 + ω2

−ω1 − ω2

 . (84)

For V we have
M[θ1, θ2]

TV (⃗k1, k⃗2)M[θ1, θ2] = V0 (⃗k1, k⃗2) , (85)

with

V0 (⃗k1, k⃗2) = ω1ω2


ω1 + ω2

ω1 − ω2
−ω1 + ω2

−ω1 − ω2

 . (86)

With this simultaneous diagonalization, we can represent the free thermofield Hamil-
tonian Equation (71) in terms of πθ and ηθ . Both K and V have zero modes, as we will see
in the following section. To illustrate the singular behaviors, it is necessary to separate

Ĥ(2)
col = Ĥ(2)

col,ns + Ĥ(2)
col,s . (87)

The non-singular part is

Ĥ(2)
col,ns =

1
2

∫
|⃗k1|̸=|⃗k2|

(
πT

θ K0πθ + ηT
θ V0ηθ

)
(⃗k1, k⃗2)

dd⃗k1

(2π)d
dd⃗k2

(2π)d , (88)

and the singular part is

Ĥ(2)
col,s =

1
2

∫
|⃗k1|=|⃗k2|

(ω1 + ω2)
(

1
ω1ω2

[π11
θ (⃗k1, k⃗2)]

2 + ω1ω2[η
11
θ (⃗k1, k⃗2)]

2

− 1
ω1ω2

[π22
θ (⃗k1, k⃗2)]

2 − ω1ω2[η
22
θ (⃗k1, k⃗2)]

2
)

dd⃗k1
(2π)d

dd⃗k2
(2π)d .

(89)

Both terms are diagonal. We see that η12
θ (k⃗1, k⃗2), η21

θ (⃗k1, k⃗2) and their canonical conjugates

with |⃗k1| = |⃗k2| are completely absent from Ĥ(2)
col .

One also has the corresponding decomposition of the TFD wave functional (76) :

Ψβ[η] = Ψns
β [η]Ψs

β[η]Ψc
β[η] , (90)

where Ψns
β and Ψs

β are Gaussian forms associated with Ĥ(2)
col,ns and Ĥ(2)

col,s, respectively. Ψc
β

is the wave functional of the missing modes η12
θ (⃗k1, k⃗2) with |⃗k1| = |⃗k2|. They are the zero

modes of Ĥ(2)
col and will be seen to be associated with symmetry operators. For notational

simplicity we will denote η0 ≡ η12
θ and π0 ≡ π12

θ . Since Ĥ(2)
col,c = 0 we have that Ψc

β is not
determined by Equation (75). A full understanding of it will be seen in the framework of
Section 5. Details of the decomposition are given for completeness in Appendix A.
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The normal modes of the linearized thermofield Hamiltonian Ĥcol are closely related to
bulk-free fields. In the following, we discuss in detail the construction of these bulk fields Aθ

and Ãθ . We emphasize that these bulk fields are found to be in one-to-one correspondence
with the collective fields. As such, they should not be confused with the often-used notion
of ‘generalized free fields’, which are boundary CFT operators. The collective field degrees
of freedom provide both the bulk wave functions and the creation-annihilation operators
in the bulk. To be more explicit, Aθ consists of bi-local annihilation operators αθ and γθ

(to be seen in below), while Ãθ consists of bi-local annihilation operators α̃θ and γθ . We
would like to emphasize that these bulk fields Aθ and Ãθ cannot be simply interpreted
as boundary operators purely from either the left or the right CFT, because the bi-local
operator γθ (cross modes) involves both of the left and the right CFT boundary operators.
To avoid notation clutters, we will restrict our attention to 3D CFT, but higher dimensional
CFTs follow similarly.

Let us introduce mode expansions for bi-local fields ηθ and πθ as follows

ηθ( p⃗1, p⃗2) =
1√

2| p⃗1|| p⃗2|


αθ( p⃗1,− p⃗2)
γθ( p⃗1, p⃗2)

γ̃θ(− p⃗1,− p⃗2)
α̃θ(− p⃗1, p⃗2)

+ h. c. , (91)

πθ( p⃗1, p⃗2) = − i

√
| p⃗1|| p⃗2|

2


αθ( p⃗1,− p⃗2)
γθ( p⃗1, p⃗2)

γ̃θ(− p⃗1,− p⃗2)
α̃θ(− p⃗1, p⃗2)

+ h. c. . (92)

To avoid over-counting the degrees of freedom, we should not integrate over the entire R2

which is spanned by p⃗1 and p⃗2. Instead, for a given p⃗2, the integration region for p⃗1 is D2

with a radius | p⃗2| and an antipodally identified boundary, which is homeomorphic to RP2.
More explicitly,{

( p⃗1, p⃗2)
∣∣∣| p⃗1| < | p⃗2| ∪

(
| p⃗1| = | p⃗2| ∩ arcsin

p⃗1 × p⃗2

| p⃗1|| p⃗2|
∈ [0, π)

)}
. (93)

For simplicity, we will abuse our notations and denote this integration region by RP2.
Then, the quadratic Hamiltonian can be rewritten as

Ĥ(2)
col =

∫
RP2

dp⃗1

(2π)2
dp⃗2

(2π)2 (| p⃗1|+ | p⃗2|)
[
α†

θ( p⃗1,− p⃗2)αθ( p⃗1,− p⃗2)− α̃†
θ(− p⃗1, p⃗2)α̃θ(− p⃗1, p⃗2)

]
+
∫
RP2

dp⃗1

(2π)2
dp⃗2

(2π)2 (| p⃗1| − | p⃗2|)
[
γ†

θ ( p⃗1, p⃗2)γθ( p⃗1, p⃗2)− γ̃†
θ (− p⃗1,− p⃗2)γ̃θ(− p⃗1,− p⃗2)

]
.

(94)

With the mass-shell condition
k2

z = E2 − |⃗k|2 , (95)

and the Jacobian

J( p⃗1, p⃗2) =

√
2| p⃗1|| p⃗2| − 2p⃗1 · p⃗2

| p⃗1|| p⃗2|
, (96)

the bulk fields are defined by

Aθ(E, k⃗, ϕ) =
∫
RP2

dp⃗1dp⃗2 J1/2( p⃗1, p⃗2)δ(| p⃗1|+ | p⃗2| − E)δ( p⃗1 + p⃗2 − k⃗)

× δ

(
arctan

2p⃗1 × p⃗2

(| p⃗1| − | p⃗2|)kz
− ϕ

)
αθ( p⃗1,− p⃗2) ,

(97)
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Cθ(E, k⃗, ϕ) =
∫
RP2

dp⃗1dp⃗2 J1/2( p⃗1, p⃗2)δ(−| p⃗1|+ | p⃗2| − E)δ(− p⃗1 + p⃗2 − k⃗)

× δ

(
arctanh

2p⃗1 × p⃗2

(| p⃗1|+ | p⃗2|)kz
− ϕ

)
γθ( p⃗1, p⃗2) ,

(98)

Ãθ(E, k⃗, ϕ) =
∫
RP2

dp⃗1dp⃗2 J1/2( p⃗1, p⃗2)δ(| p⃗1|+ | p⃗2| − E)δ( p⃗1 + p⃗2 − k⃗)

× δ

(
arctan

2p⃗1 × p⃗2

(| p⃗1| − | p⃗2|)kz
− ϕ

)
α̃θ(− p⃗1, p⃗2) ,

(99)

C̃θ(E, k⃗, ϕ) =
∫
RP2

dp⃗1dp⃗2 J1/2( p⃗1, p⃗2)δ(−| p⃗1|+ | p⃗2| − E)δ(− p⃗1 + p⃗2 − k⃗)

× δ

(
arctanh

2p⃗1 × p⃗2

(| p⃗1|+ | p⃗2|)kz
− ϕ

)
γ̃θ(− p⃗1,− p⃗2) .

(100)

Notice that the integration region guarantees that the energy E is bounded from below by
0. We would like to emphasize that Aθ and Ãθ are time-like or light-like operators, while
Cθ and C̃θ are space-like operators. It is the latter that corresponds to evanescent modes
and consists of soft modes with zero energy and non-zero momentum. Collectively, we
denote both Aθ and Cθ as

Aθ(E, k⃗, ϕ) =

{
Aθ(E, k⃗, ϕ) for E2 ≥ |⃗k|2
Cθ(E, k⃗, ϕ) for 0 ≤ E2 < |⃗k|2

(101)

and similarly for Ãθ . Here, we have the extensive field with energy E ranging in [0, ∞).
Notice that the zero modes η0 and π0 in the boundary exactly correspond to the soft modes
in the bulk. The bulk free fields satisfy the regular commutation relations

[Aθ(E, k⃗, ϕ),A†
θ(E′, k⃗′, ϕ′)] = [Ãθ(E, k⃗, ϕ), Ã†

θ(E′, k⃗′, ϕ′)] = δ(E − E′)δ(2) (⃗k − k⃗′)δ(ϕ − ϕ′) , (102)

which implies that the spectrum is complete. In terms of the bulk free fields, the quadratic
Hamiltonian can be recast into the form

Ĥ(2)
col =

∫ ∞

0

dE
2π

∫ d2⃗k
(2π)2

∫ 2π

0

dϕ

2π
E
[
A†

θ(E, k⃗, ϕ)Aθ(E, k⃗, ϕ)− Ã†
θ(E, k⃗, ϕ)Ãθ(E, k⃗, ϕ)

]
. (103)

Furthermore, let us denote AL and AR the inverse Bogoliubov transformation of Aθ and
Ãθ induced by Ĝ:

AL(E, k⃗, ϕ) = ei Ĝ Aθ(E, k⃗, ϕ) e− i Ĝ ,

AR(E, k⃗, ϕ) = ei Ĝ Ãθ(E, k⃗, ϕ) e− i Ĝ ,
(104)

with
tanh θ(E) = e−βE/2 . (105)

They satisfy the canonical commutation relations

[AL(E, k⃗, ϕ),A†
L(E′, k⃗′, ϕ′)] = [AR(E, k⃗, ϕ),A†

R(E′, k⃗′, ϕ′)] = δ(E − E′)δ(2) (⃗k − k⃗′)δ(ϕ − ϕ′) . (106)

As before, these operators annihilate the ground state |0⟩ instead of the thermal state |0(β)⟩.
Their thermal expectation values are

⟨AL(E, k⃗, ϕ)A†
L(E′, k⃗′, ϕ′)⟩θ = ch2 θ(E)δ(E − E′)δ(2) (⃗k − k⃗′)δ(ϕ − ϕ′) , (107)

⟨A†
L(E, k⃗, ϕ)AL(E′, k⃗′, ϕ′)⟩θ = sh2 θ(E)δ(E − E′)δ(2) (⃗k − k⃗′)δ(ϕ − ϕ′) , (108)
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and similarly for AR.
For Ĝ we can expand it in the 1/N:

Ĝ =
√

NĜ(1) + Ĝ(2) + . . . . (109)

Here, Ĝ(1) is linear in the bi-local fields, and will be eliminated by the collective coordinate
method in Section 5. Ĝ(2) can be expressed in terms of bulk fields as

Ĝ(2) = i
∫ ∞

0

dE
2π

∫ d2⃗k
(2π)2

∫ 2π

0

dϕ

2π
θ(E)

[
A†

θ(E, k⃗, ϕ)Ã†
θ(E, k⃗, ϕ)−Aθ(E, k⃗, ϕ)Ãθ(E, k⃗, ϕ)

]
, (110)

such that it gives the correct Bogoliubov transformation on Aθ

AL(E, k⃗, ϕ) = ch θ(E)Aθ(E, k⃗, ϕ) + sh θ(E)Ã†
θ(E, k⃗, ϕ) , (111)

and similarly for AR. Therefore at the quadratic order, in (103) and (110) Aθ and Ãθ can be
replaced by AL and AR

Ĥ(2)
col =

∫ ∞

0

d2E
2π

∫ d⃗k
(2π)2

∫ 2π

0

dϕ

2π
E
[
A†

L(E, k⃗, ϕ)AL(E, k⃗, ϕ)−A†
R(E, k⃗, ϕ)AR(E, k⃗, ϕ)

]
, (112)

Ĝ(2) = i
∫ ∞

0

dE
2π

∫ d2⃗k
(2π)2

∫ 2π

0

dϕ

2π
θ(E)

[
A†

L(E, k⃗, ϕ)A†
R(E, k⃗, ϕ)−AL(E, k⃗, ϕ)AR(E, k⃗, ϕ)

]
. (113)

To summarize, from collective fluctuations, we see a complete spectrum of left and
right bulk-free fields AL and AR satisfying commutation relations (106). These are exten-
sive, with 0 ≤ E < ∞, and reflect bulk spectra in the presence of a horizon. The Hilbert
space is a product of the left and right commuting sub-algebras

{AL} ⊗ {AR} . (114)

We have also seen that the Ĝ symmetry has re-emerged at the level of quadratic fluctuations,
taking the form of bulk-level Bogoliubov transformations. Note also that the zero modes
(with E = 0) are actually not present in the Hamiltonian H(2)

col . These will be replaced by
collective coordinates in the full treatment in Section 5.

5. 1/N Expansions and Collective Coordinates

Quantization around the thermal and extended soliton cases share similarities. In
both cases, quadratic fluctuations are characterized by zero modes which are related to
the associated symmetries. In the TFD we have two operators H+ and Ĝ that commute
with the Hamiltonian Ĥ. These symmetry operators, respectively, give two classes of zero
modes, ul and vl (to be revealed below). These operators when expanded at large N again
start with a linear term of order

√
N. The leading term of H+ is a c-number of order N,

representing the thermal energy, which we subtract. These ‘large operators’ therefore also
present problems in the naive 1/N expansions: the symmetry transformations are only
implemented after an infinite re-summation. We will implement them through collective
coordinates. There is a difference, however, between the two symmetries H+ and Ĝ, with
the latter acting through a unitary transformation. In particular, the counterpart for the
center of mass of the soliton is the hyperbolic angle θ(⃗k), and the state |s, x = 0⟩ corresponds
to the zero temperature state |0⟩. Also, the analog of the zero modes f0 is vl (zero modes of
the potential matrix V) in TFD. To implement the collective coordinate method, we should
impose the gauge condition (

ĝ(⃗k)− Ĝ (⃗k)
)
|0(β)⟩ = 0 . (115)
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The gauge condition can be chosen arbitrarily, and we will require

H+,−q̂ (⃗k) |0(β)⟩ = 0 , (116)

with q̂ the canonical conjugate of ĝ.

5.1. Zero Modes and Large Operators

Let us first briefly discuss the relation between symmetry operators and zero modes.
Here, we will be schematic, and the complete expressions of the formulae will be pre-
sented in detail in the following subsections. Consider the quadratic Hamiltonian that we
established in the previous section:

Ĥ(2)
col =

1
2

Tr[πTKπ + ηTVη] .

The kinetic matrix K (72) and the potential matrix V (74) were both seen to posses zero
modes [10]:

Tr(Kuk) = 0 , (117)

and

Tr(Vvk) = 0 , (118)

with k ≡ |⃗k| representing a label of the zero modes. These zero modes are associated with
the order

√
N terms of the symmetry operators. We have2

H(1)
+ = Tr

[
c1uTη

]
, (119)

Ĝ(1) = Tr
[
c2vTπ

]
, (120)

with c1 and c2, some functions of |⃗k| (see the following for their precise expressions). We
will see that these zero modes arise from the symmetry conditions when expanded order
by order in 1/N. Especially, at order

√
N we have

0 = [H(1)
+ , Ĥ(2)

col ] = Tr
(

c1πTKu
)

, (121)

0 = [Ĝ(1), Ĥ(2)
col ] = Tr

(
c2ηTVv

)
. (122)

Detailed calculations of these will be presented in the following.
These results are not limited to vector models. In matrix models, these zero modes

will appear in order N in terms of the symmetry operators. In particular, for large N matrix
quantum mechanics, we will have one u and one v, and

H(1)
+ = c′1uTη , (123)

Ĝ(1) = c′2vTπ , (124)

with η denoting a complete set of single trace operators and π its canonical conjugate. We
stress that the symmetries H+ and Ĝ explain zero modes of the kinetic and potential term
in the quadratic Ĥ(2)

col . We also note that (in this vector case) the space (of zero modes)
induced by Ĝ is larger than the space induced by H+. In the quantum mechanical matrix
model case, these sets are the same as both generate a one-parameter symmetry.



Universe 2024, 10, 99 16 of 28

5.2. H+

We will first give the 1/N expansion properties of H+ and also give its collective coor-
dinate version. The full Hamiltonian H+, when written in terms of collective fields, reads:

H+,col =
2
N

Tr[Π ⋆ Φ ⋆ Π] +
N
8

Tr
[
Φ−1

]
+

N
2

Tr
[
−∇2Φ|x⃗=y⃗

]
. (125)

Expanding it around the thermal background generates a 1/N expansion series

H+,col[π, η] = ∑∞
n=0 N1− n

2 H(n)
+,col[π, η]

= NH(0)
+,col +

√
NH(1)

+,col + H(2)
+,col + . . . .

(126)

The leading order (i.e., n = 0), however, is non-zero, and gives (twice) the average energy
E(β) at inverse temperature β:

E(β) = NH(0)
+,col = N Tr[ω ch(2θ)] . (127)

At the same time, the sub-leading term (i.e., n = 1) does not vanish and is given by

√
NH(1)

+,col =
√

N Tr
[
ω2 sh(2θ)uTη

]
. (128)

Within the trace, we have

ul (⃗k1, k⃗2) = δ(|⃗k1| − l)δd (⃗k1 − k⃗2)


− sh 2θ(⃗k1)

ch 2θ(⃗k1)

ch 2θ(⃗k1)

− sh 2θ(⃗k1)

 , (129)

and we are integrating ul ≡
∫

ul (⃗k1, k⃗2)dd⃗k1 dd⃗k2. They are zero modes of K [9,10] given in
Equation (129): ∫

K(⃗k1, k⃗2) · ul (⃗k1, k⃗2)dd⃗k1 dd⃗k2 = 0 , (130)

which appear as the consistency condition that H+ and Ĥ must commute with each other:

[H+,col, Ĥcol] =
∞

∑
n=3

n−1

∑
m=2

N2− n
2 [H(n−m)

+,col , Ĥ(m)
col ] = 0 . (131)

In the large N limit, this gives a set of consistency equations at each order of 1/N:
n−1

∑
m=2

[H(n−m)
+,col , Ĥ(m)

col ] = 0 , n = 3, 4, . . . . (132)

Taking n = 3, we have

[H(1)
+,col, Ĥ(2)

col ] = i
∫

ω2
θ sh[2θ(⃗k)]πT (⃗k, k⃗)K(⃗k, k⃗)uk

dd⃗k
(2π)d = 0 , (133)

which explicitly shows that u must be the zero mode of K.
In principle, we can treat H+ as a collective coordinate. To apply the collective

coordinate method, we demand the constraint equation to be(
ĥ − H+

)
|0(β)⟩ = 0 . (134)
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We consider the critical point for simplicity, such that we can use conformal symmetry.
Then, we can choose the canonical gauge condition(

q̂ − D+

H+

)
|0(β)⟩ = 0 , (135)

where D+ = D1 + D2 is the dilatation operator, such that

[ĥ, q̂] = i . (136)

One can shift the appearance of β to β + iq̂ by redefining the states and operators in the
following way

O′(q̂) = eiq̂H+O e− i q̂H+ , (137)

so that the oscillators are factorized into three commuting sets

{AL} ⊗ {q̂, ĥ} ⊗ {AR} . (138)

5.3. Ĝ as a Collective Coordinate

Let us then demonstrate the implementation of the collective coordinate method with
Ĝ in TFD. First, we reveal the zero mode problems and the issues of Ĝ-transformation
at large N. For simplicity, we will again consider the free theory case. In this case, the
potential matrix V (86) has zero modes [10] (we omit the normalization factors):

vl (⃗k1, k⃗2) = δ(|⃗k1| − l)δd (⃗k1 − k⃗2)


sh 2θ(⃗k1)

ch 2θ(⃗k1)

ch 2θ(⃗k1)

sh 2θ(⃗k1)

 . (139)

They obey ∫
V (⃗k1, k⃗2)vl (⃗k1, k⃗2)dd⃗k1 dd⃗k2 = 0 . (140)

The appearance of these modes has been understood well in [10]: they are the Goldstone
modes and thus can be computed directly via

vl (⃗k1, k⃗2) =
δΦθ (⃗k1, k⃗2)

δθ(⃗l)
, (141)

up to some coefficients, with Φθ (⃗k1, k⃗2) the Fourier transform of the thermal background
solution. We note that ul (⃗k1, k⃗2) and vq (⃗k1, k⃗2) obey the orthogonality condition∫

ul (⃗k1, k⃗3)
Tvq (⃗k3, k⃗2)dd⃗k3 = 2δ(l − q)δd (⃗k1 − k⃗2) . (142)

This relation implies that a class of degrees of freedom is completely missing in Ĥ, as we
have seen above. In addition, it also reveals that H+ and Ĝ are not unrelated.

In the soliton problem, the zero mode f0 can be derived from the symmetry condition
[H, P] = 0. We can also show that the zero modes vl can be derived from [Ĝ (⃗k), Ĥ] = 0.
Let us give a brief demonstration, again using the free theory to simplify calculations.
Since Ĝ (⃗k) itself is invariant under the Bogoliubov transformation, we can write it as
(see Equation (55))
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Ĝ (⃗k) =
√

NĜ(1) (⃗k) + O(1) (143)

=
2
√

N
ω

π12
θ (⃗k, k⃗) + O(1) (144)

=
2
√

N
ω

vT
k π(⃗k, k⃗) + O(1) . (145)

In the last step, we use Bogoliubov transformation to write π12
θ (⃗k, k⃗) = vT

k π(⃗k, k⃗). Here,
vk ≡

∫
vk (⃗k1, k⃗2)dd⃗k1 dd⃗k2, with the integrand the zero mode of V (⃗k1, k⃗2). Then, we

compute the commutator to obtain

0 = [Ĥ(2)
col , Ĝ (⃗k)] = 2 i

√
N

ω
ηT (⃗k, k⃗)V (⃗k, k⃗)vk + O(1) , (146)

which indicates that v must be zero modes of V.
Due to the dependence on N, issues arise when performing Ĝ-transformations. We

perform a 1/N expansion for Ĝ:

Ĝ =
√

NĜ(1) + Ĝ(2) , (147)

with
Ĝ(1) = i

∫
θ(⃗k) Ĝ(1) (⃗k)dd⃗k . (148)

Due to the appearance of this order
√

N term in Ĝ, we have a similar problem when
transforming fields as in the soliton case. Again, let us illustrate this in an analogous
pattern. We consider the following transformation of the bi-local field Φ(x⃗1, x⃗2), before
which each field is expanded in 1/N:

e− i Ĝ Φ(x⃗1, x⃗2) ei Ĝ = e− i
√

NĜ(1)−i Ĝ(2)+···(Φ0 + N−1/2η) ei
√

NĜ(1)+i Ĝ(2)+··· (149)

=
∞

∑
n=0

(− i)n

n!
adn√

NĜ(1)+Ĝ(2)+···(Φ + N−1/2η) (150)

= Φθ(x⃗1, x⃗2) + N−1/2ηθ(x⃗1, x⃗2) , (151)

Here, adA(B) = [A, B]. In the first step in Equation (149), we expand both Ĝ and Φ in 1/N.
Note that Φ0 is the large N background at zero temperature. We expect the results would
be Equation (151). However, we see from Equation (150) that this computation cannot be
carried out unless we know the full series of the 1/N expansions: different orders in 1/N
become mixed. For example, considering the commutator [

√
NĜ(1), N−1/2η], we see that

the result gives an order 1 term, and hence contributes to the background, and shifts Φ0.
Next, to decouple variables in the gauge condition, we can make a change to the

reference frame. Since θ(⃗k) only depends on the magnitude k ≡ |⃗k|, we will write θ(k)
instead. In O(N) vector TFD, we have the Ĝ operator as

Ĝ =
∫

θ(k)(ϕi (⃗k)π̃i (⃗k) + ϕ̃i (⃗k)πi (⃗k))dd⃗k . (152)

Define

∆(k1, k2) =


0 θ(k1) θ(k2) 0

θ(k1) 0 0 θ(k2)
θ(k2) 0 0 θ(k1)

0 θ(k2) θ(k1) 0

 . (153)

Then, the bi-local collective field representation of Ĝ is given by

Ĝ = Tr
(

ΠT ∆ Φ
)

, (154)
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where
Tr
(

ΠT∆Φ
)
≡
∫

dd⃗k1 dd⃗k2 ΠT (⃗k1, k⃗2)∆(k1, k2)Φ(⃗k1, k⃗2) . (155)

To introduce the collective coordinate, we need to extract the function θ(⃗k). This can be
carried out by introducing

Ql(k1, k2) =


0 δk1,l δk2,l 0

δk1,l 0 0 δk2,l
δk2,l 0 0 δk1,l

0 δk2,l δk1,l 0

 , (156)

such that
∆(k1, k2) =

∫
dl θ(l) Ql(k1, k2) . (157)

The Ĝ operator then can be written as

Ĝ =
∫

dk θ(k)Ĝ(k) , Ĝ(k) ≡
∫

dΩd kd−1 tr
(

ΠT Qk Φ
)

, (158)

where we write the integral in spherical coordinates, and ‘tr(·)’ denotes the matrix trace.
We then introduce the collective coordinate q̂(k) to define

Ĝq̂ =
∫

dk q̂(k)Ĝ(k) . (159)

This is the analog of x̂P in the one-soliton case. There, we only have one zero mode, and
hence we have one collective coordinate x̂. Here, we have infinitely many zero modes,
each labeled by k, and thus we introduce q̂(k). One can redefine the states and collective
operators in the following way

O′ ≡ O−q̂ = e− i Ĝq̂ O ei Ĝq̂ . (160)

For bi-local field, we can write down the explicit transformation

η′ (⃗k1, k⃗2) = M[−q̂(k1),−q̂(k2)]η(⃗k1, k⃗2) . (161)

We then introduce the constraint and the gauge condition(
ĝ(k)− Ĝ[Π, Φ](k)

)
|0(β)⟩ = 0 , (162)

χ−q̂[Π, Φ](k) |0(β)⟩ = 0 . (163)

Here, ĝ(k) is the canonical conjugate of q̂(k). The oscillators are factorized into three com-
muting sets

{AL} ⊗ {q̂, ĝ} ⊗ {AR} . (164)

The gauge condition is chosen to be of this form so that the Ĝq̂-transformation can be
undone and the q̂-dependence can be eliminated by switching to the center frame of
reference. To be more explicit, we make a transformation

Φ′ (⃗k1, k⃗2) = e− i Ĝq⃗ Φ(⃗k1, k⃗2) ei Ĝq⃗ = exp
[
−
∫

dk q̂(k)Qk(k1, k2)

]
Φ(⃗k1, k⃗2) , (165)

Π′ (⃗k1, k⃗2) = e− i Ĝq⃗ Π(⃗k1, k⃗2) ei Ĝq⃗ = exp
[∫

dk q̂(k)Qk(k1, k2)

]
Π(⃗k1, k⃗2) . (166)
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Consequently, the constraint and the gauge condition become(
ĝ(k)− Ĝ[Π′, Φ′](k)

)
|0(β)⟩′ = 0 , (167)

χ[Π′, Φ′](k) |0(β)⟩′ = 0 . (168)

We then perform a 1/N expansion of the fields

Φ′ = Φ′
θ +

1√
N

η′ , Π′ =
√

N(π′
θ + π′) . (169)

One can check that the zero modes are given by

uk (⃗k1, k⃗2) = Qk(k1, k2)Φ−θ (⃗k1, k⃗2) , zero modes of K , (170)

vk (⃗k1, k⃗2) = Qk(k1, k2)Φθ (⃗k1, k⃗2) , zero modes of V . (171)

Using these relations, the constraint is expanded to be(
ĝ(k)−

√
N Tr

(
π′

θQkΦ′)−√
N Tr

(
π′vk

)
− Tr

(
π′Qkη′)) |0(β)⟩′ = 0 . (172)

We have the exact solution of π′
θ :

π′
θ =

u′
k√
N

ĝ(k)− Tr(π′Qkη′)

Tr
(
u′

kQkΦ′) . (173)

This solution can be expanded in 1/N,

π′
θ =

u′
k⃗

2
√

N
ĝ(k)−

u′
k

2
√

N
Tr
(
π′Qkη′)− u′

k
4N

ĝ(k)Tr
(
u′

kQkη′)+ O(1) . (174)

At the same time, the zero modes v are projected out from π′:

Tr
(
π′v′k

)
|0(β)⟩′ = 0 . (175)

The gauge condition χ can be arbitrary. We choose the simplest gauge

Tr
(
η′u′

k
)
|0(β)⟩′ = 0 , (176)

such that with Equation (175) the zero modes are projected out from the fluctuations (they are
replaced by the collective coordinates {q̂, ĝ}). For these, one has the subsidiary conditions:(

q̂(k) +
i

8ω(k)N
ĝ(k)

)
|0(β)⟩ = 0 , (177)

explained in Appendix C, which leads to the center part of the wave functional

Ψc[q] = Nc exp
[
−N

∫
4ω(k)q2(k)dd⃗k

]
. (178)

Therefore the total wave function of the TFD state reads

Ψ[q, η′] =N exp
[
−N

∫
4ω(k)q2(k)dd⃗k

]
× exp

[
−1

2

∫
η′T (⃗k1, k⃗2) G′−1 (⃗k1, k⃗2) η′ (⃗k1, k⃗2)

dd⃗k1

(2π)d
dd⃗k2

(2π)d

]
.

(179)
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As a result, the thermofield Hamiltonian becomes

Ĥ(2)
col =

1
2

Tr
(

π′TK′π′ + η′TV′η′
)

. (180)

Comparing with the translational case, the collective coordinates ĝ and their canonical
conjugates q̂ are completely absent from the thermofield Hamiltonian, which is consistent
with the fact that

[Ĝ, Ĥ] = 0 .

One now has that both Ĥ and H+ are expanded in 1/N

Ĥ =Ĥ(2) +
1√
N

Ĥ(3) + · · · , (181)

H+ =NH(0)
+ + H(2)

+ +
1√
N

H(3)
+ + · · · , (182)

with the large
√

NĤ(1)
+ being put to zero (due to the gauge condition). They together with

the well-defined propagator allow for a systematic 1/N expansion. At the quadratic level
(and therefore the Hilbert space), the structure is similar to the one predicted by Witten [4]
on very general grounds. However, in regard to perturbation, expansion issues have been
brought up in [4], which might be solved in the present treatment.

6. Conclusions

In the present work, we have addressed the structure of the Hilbert space and the 1/N
expansion in perturbation around large N extended states. Fluctuations around these states
are singular and are characterized by zero modes associated with broken symmetries. This
is generally addressed by the introduction of quantum mechanical collective coordinates
with a Hilbert space containing these in addition to the fluctuating bulk fields. In the
TFD state case, the diagonal gauging of O(N) was emphasized, which as it was seen
appears appropriate for a two-sided ER bridge space-time. Even though in the vector
theory that was used in this study the dual higher spin (HS) theory involves all spins,
one still expects that in the thermal case, the appropriate linearized fluctuations are to be
in gravitational two-sided backgrounds with a horizon. Clearly, this is to be understood
from an analogous study at the HS level. Also, gauging in CFT, one has a parallel in
recent gravitational studies (in two-sided wormhole space-times) [24–26] with the diagonal
implementation of constraint symmetries. Finally, the structure of the large N Hilbert
space and implementation of Goldstone symmetries that we have exhibited with explicit
evaluations in the large N vector case applies more generally, in particular in matrix type
models [15], string theory [30] and cosmology [31]. This follows from the general structure
of the Hamiltonian collective field theory.
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Appendix A. TFD State Decomposition

We now turn to the discussion of the TFD state. To illustrate the TFD wave func-
tional, it is more illustrative to work in the normal modes basis. We have already seen
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that M diagonalizes the matrices K (72) and V (74) simultaneously. In addition, it also
diagonalizes G−1:

M[θ1, θ2]
TG−1 (⃗k1, k⃗2)M[θ1, θ2] = ω1ω2
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Appendix A. TFD State Decomposition

We now turn to the discussion of the TFD state. To illustrate the TFD wave functional,
it is more illustrative to work in the normal modes basis. We have already seen that " diag-
onalizes the matrices  (72) and+ (74) simultaneously. In addition, it also diagonalizes �−1:

" [\1, \2]T�−1 ( ®:1, ®:2)" [\1, \2] = l1l214 . (A1)

This simple relation reveals that the TFD wave function is diagonalized in terms of the
normal modes:

ΨV [η)] = N exp

[
−1

2

∫
l1l2ηT

\η\
d3 ®:1

(2c)3
d3 ®:2

(2c)3

]
. (A2)

In particular, in terms of the normal modes η\ , we can decompose the TFD wave
functional ΨV [η] into three pieces:

ΨV [η] = Ψns
V [η] Ψs

V [η] Ψc
V [η] . (A3)

Ψns
V [η] corresponds to the non-singular part of the thermofield Hamiltonian �̂ (2)col,ns (88):

Ψns
V [η] = Ψns

V [η\ , | ®:1 |≠ | ®:2 |]

= Nns exp

[
−1

2

∫
| ®:1 |≠ | ®:2 |

l\ ( ®:1)l\ ( ®:2) ηT
\ ( ®:1, ®:2)η\ ( ®:1, ®:2) d3 ®:1

(2c)3
d3 ®:2

(2c)3

]
.

(A4)

Similarly Ψs
V [η] corresponds to the singular part of the thermofield Hamiltonian �̂ (2)col,s (89):

Ψs
V [η] = Ψs

V [[11
\ , | ®:1 |= | ®:2 |

, [22
\ , | ®:1 |= | ®:2 |

]

= Ns exp

[
−1

2

∫
| ®:1 |= | ®:2 |

l\ ( ®:1)l\ ( ®:2)
(
[[11
\ ( ®:1, ®:2)]2 + [[22

\ ( ®:1, ®:2)]2
) d3 ®:1

(2c)3
d3 ®:1

(2c)3

]
.

(A5)

Lastly, the central sector of the TFD wave functional Ψc
V [η] corresponds to the central

part, and cannot be determined from �̂ (2)col . To obtain Ψc
V [η], we may add a regulator the

�̂ (2)col of the form (in the following we take [0 ( ®:1, ®:2) ≡ [12
\ ( ®:1, ®:2) | | ®:1 |= | ®:2 | and similarly for

its canonical conjugate)

Δ�̂ =
1
2

∫
[<( ®:1)c2

0 ( ®:1, ®:2) + `( ®:1)[2
0 ( ®:1, ®:2)] d3 ®:1

(2c)3
d3 ®:2

(2c)3 , (A6)

with the functions <( ®:) and `( ®:) only depending on the norm of the momentum, and
obeying

<( ®:1) → 0 , `( ®:1) → 0 , with

√√
`( ®:1)
<( ®:1)

= 2l\ ( ®:1) fixed. (A7)

This regulator commutes with both�+ and �̂ (and also Ĝ), since we take the limit<( ®:1) → 0.
It’s useful to the zero mode as

j(:) =
∫

3Ω3
(2c)3 [

12
\ (: ,Ω3) , (A8)

4 . (A1)

This simple relation reveals that the TFD wave function is diagonalized in terms of the
normal modes:

Ψβ[ηθ ] = N exp

[
−1

2

∫
ω1ω2ηT

θ ηθ
dd⃗k1

(2π)d
dd⃗k2

(2π)d

]
. (A2)

In particular, in terms of the normal modes ηθ , we can decompose the TFD wave
functional Ψβ[η] into three pieces:

Ψβ[η] = Ψns
β [η]Ψs

β[η]Ψc
β[η] . (A3)

Ψns
β [η] corresponds to the non-singular part of the thermofield Hamiltonian Ĥ(2)

col,ns (88):

Ψns
β [η] = Ψns

β [η
θ,|⃗k1|̸=|⃗k2|

]

= Nns exp

[
−1

2

∫
|⃗k1|̸=|⃗k2|

ωθ (⃗k1)ωθ (⃗k2) ηT
θ (⃗k1, k⃗2)ηθ (⃗k1, k⃗2)

dd⃗k1

(2π)d
dd⃗k2

(2π)d

]
.

(A4)

Similarly Ψs
β[η] corresponds to the singular part of the thermofield Hamiltonian Ĥ(2)

col,s (89):

Ψs
β[η] = Ψs

β[η
11
θ,|⃗k1|=|⃗k2|

, η22
θ,|⃗k1|=|⃗k2|

]

= Ns exp

[
−1

2

∫
|⃗k1|=|⃗k2|

ωθ (⃗k1)ωθ (⃗k2)
(
[η11

θ (⃗k1, k⃗2)]
2 + [η22

θ (⃗k1, k⃗2)]
2
) dd⃗k1

(2π)d
dd⃗k1

(2π)d

]
.

(A5)

Lastly, the central sector of the TFD wave functional Ψc
β[η] corresponds to the central

part, and cannot be determined from Ĥ(2)
col . To obtain Ψc

β[η], we may add a regulator the

Ĥ(2)
col of the form (in the following we take η0 (⃗k1, k⃗2) ≡ η12

θ (⃗k1, k⃗2)||⃗k1|=|⃗k2|
and similarly for

its canonical conjugate)

∆Ĥ =
1
2

∫
[m(⃗k1)π

2
0 (⃗k1, k⃗2) + µ(⃗k1)η

2
0 (⃗k1, k⃗2)]

dd⃗k1

(2π)d
dd⃗k2

(2π)d , (A6)

with the functions m(⃗k) and µ(⃗k) only depending on the norm of the momentum,
and obeying

m(⃗k1) → 0 , µ(⃗k1) → 0 , with

√
µ(⃗k1)

m(⃗k1)
= 2ωθ (⃗k1) fixed. (A7)

This regulator commutes with both H+ and Ĝ (and also Ĝ), since we take the limit
m(⃗k1) → 0. It’s useful to the zero mode as

χ(k) =
∫ dΩd

(2π)d η12
θ (k, Ωd) , (A8)

where we denote k ≡ |⃗k| and Ωd as the solid angle variables in momentum space, the
thermofield Hamiltonian Ĥ(2)

col + ∆Ĥ then has information for this zero mode, from which
we can easily obtain Ψc

β:

Ψc
β[η] = Ψc

β[η
12
θ,|⃗k1|=|⃗k2|

] = Nc exp
[
−
∫

dk Gc(k, k)−1χ2(k)
]

. (A9)
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The normalization factors satisfy N = Nns Ns Nc. Another way to see this is that the TFD
wave functional is related to the equal-time thermal two-point functions of bi-local fields, as
indicated in Equation (77). Using the non-vanishing two-point functions (cf. Equation (77))

Gc(k, k′) = 4 ⟨χ(k)χ(k′)⟩β =
1

ωθ(k)ωθ(k′)
, (A10)

we immediately recover the central part of the wave function Ψc
β[η].

Notice that the density fields for H(0)
+,col and W ≡ H(1)

+,col are given by

H(0)
+ (k) = ωθ(k) ch(2θ(k)) , (A11)

W(k) = −2ω2
θ(k) sh 2θ(k)kd−1χ(k) , (A12)

we may write Ψc
β as

Ψc
β[η] = Nc exp

−1
4

∫ ∞

−∞

W2(k)∣∣∣∂βH
(0)
+ (k)

∣∣∣ dk

 . (A13)

We would like to compare our result with Witten’s [4]. Here, we briefly review Witten’s
treatment. In the thermofield double state, we have two copies of algebra AL,0 and AR,0,
with respect to the left and right systems, with non-trivial commutators. Consider the
regularized left and right Hamiltonian

H′
L,R = HL,R − ⟨HL,R⟩ (A14)

subtracted by the thermal expectation value. They do not have a well-defined large N
limits, but their difference Ĥ = H′

R − H′
L does exist as an operator acting on the thermofield

double Hilbert space HTFD, which implies that HTFD is not a simple tensor product of
left and right Hilbert spaces acted on by the algebras AL,0 and AR,0. In fact, Witten
pursuits an asymmetric treatment and identifies an operator U only from the regularized
right Hamiltonian

U =
1
N

H′
R , (A15)

which becomes central and commutes with AR,0 in the N → ∞ limit. This is analogous to
our W(k)/N, a.k.a. the first order term of the collective Hamiltonian density H0

+ in the
symmetric setting. Then, one can define an extended algebra AR as a tensor product

AR = AR,0 ⊗AU , (A16)

where AU is the abelian algebra of bounded functions of U. Since Ĥ has a well-defined large
N limit, Ĥ/N vanishes at N = ∞, so AU also commutes with AL,0, in precise agreement
of what we found in TFD state decomposition. Furthermore, AR acts on the extended
thermofield double Hilbert space

ĤTFD = HTFD ⊗ L2(R) , (A17)

where L2(R) is the space of square-integrable functions of U. Note that the connected
k-point functions vanish in the large N limit for k > 2, together with its variance

⟨U2⟩ = − 1
N2 ∂β ⟨HR⟩ (A18)

the central wavefunction must be Gaussian of the form

exp

− N2U2

4
∣∣∣∂β H(0)

+

∣∣∣
 , (A19)
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which is analogous to our central wavefunction (A13).

Appendix B. Symmetry Transformations

We summarize various Bogoliubov transformation of the thermofield dynamics in free
O(N) vector model. In TFD formalism, for an operator O, its Bogoliubov transformation is
given through the Ĝ operator by

Oθ := e− i Ĝ O ei Ĝ , (A20)

which satisfies
⟨0, 0̃|O|0, 0̃⟩ = ⟨0(β)| Oθ |0(β)⟩ . (A21)

Thus, the Ĝ-transformation preserves symplectic structures. Recall that in free theory
Ĝ(2) (55) is given by

Ĝ(2) =
∫

dd⃗k i θ(⃗k)
(

a†i (⃗k)ã†i (⃗k)− ai (⃗k)ãi (⃗k)
)

. (A22)

O(N) vector fields.

Let ξ i (⃗k) = (ai, ãi, a†i, ã†i)(⃗k), by a direct calculation one can show

ξ i
θ (⃗k) = e− i Ĝ ξ i (⃗k) ei Ĝ = U[−θ(⃗k)]ξ i (⃗k) , (A23)

with the Bogoliubov transformation matrix U as

U[−θ(⃗k)] =


ch θ(⃗k) 0 0 − sh θ(⃗k)

0 ch θ(⃗k) − sh θ(⃗k) 0
0 − sh θ(⃗k) ch θ(⃗k) 0

− sh θ(⃗k) 0 0 ch θ(⃗k)

 . (A24)

The U matrices obey U[θ(⃗k)]U[θ(⃗p)] = U[θ(⃗k) + θ(⃗p)], such that they form a one-(functional)-
parameter group. Furthermore, we have U ∈ Sp(4,R), implying that it induces a canonical
transformation.

We can also study the Bogoliubov transformations of the fields φi, φ̃i and their canoni-
cal conjugates. Let χi (⃗k) = (φi, φ̃i, πi, π̃i)(⃗k), the Ĝ-transformation can be written as

χi
θ (⃗k) = e− i Ĝ χi (⃗k) ei Ĝ = U′[−θ(⃗k)]χi (⃗k) . (A25)

The new Bogoliubov transformation matrix U′ is now block-diagonal:

U′[−θ(⃗k)] =

(
S[−θ(⃗k)] 0

0 S[θ(⃗k)]

)
, S[θ(⃗k)] =

(
ch θ(⃗k) sh θ(⃗k)
sh θ(⃗k) ch θ(⃗k)

)
. (A26)

One can check that U′ still obeys the properties listed above. At the same time, The S
matrices also form a one-(functional)-parameter group, and S[θ(⃗k)] ∈ SU(1, 1).

Bi-local collective fields.
Let us consider the Bogoliubov transformations induced by Ĝ of the bi-local fields η:

ηθ (⃗k1, k⃗2) = e− i Ĝ η(⃗k1, k⃗2) ei Ĝ (A27)

We find (θa ≡ θ(⃗ka))
ηθ (⃗k1, k⃗2) = M[−θ1,−θ2]η(⃗k1, k⃗2) . (A28)

Let
ci ≡ ch θ(⃗ki) , si ≡ sh θ(⃗ki) , (A29)
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M[θ(⃗k1), θ(⃗k2)] is the tensor product of S[θ(⃗k1)] and S[θ(⃗k2)] Equation (A26), and can be
written as:

M[θ1, θ2] = S[θ1]⊗ S[θ2] =


c1c2 c1s2 c2s1 s1s2
c1s2 c1c2 s1s2 c2s1
c2s1 s1s2 c1c2 c1s2
s1s2 c2s1 c1s2 c1c2

 (A30)

We have two important properties of M:

1. M is a two-(functional)-parameter group:

M[θ1, θ2]M[θ3, θ4] = M[θ1 + θ3, θ2 + θ4] , (A31)

so that its inverse is
M[−θ1,−θ2] = (M[θ1, θ2])

−1 . (A32)

2. M ∈ SU(2, 2). Let D = diag{1,−1,−1, 1}, then we have

M[θ1, θ2]DM[θ1, θ2]
T = D . (A33)

Collective oscillators.
It is convenient to define matrices of the bi-local operators as in [9]:

Aθ (⃗k1, k⃗2) =

(
Aθ (⃗k1, k⃗2) Cθ (⃗k1, k⃗2)

Cθ (⃗k2, k⃗1) Ãθ (⃗k1, k⃗2)

)
, A†

θ (⃗k1, k⃗2) =

(
A†

θ (⃗k1, k⃗2) C†
θ (⃗k1, k⃗2)

C†
θ (⃗k2, k⃗1) Ã†

θ (⃗k1, k⃗2)

)
, (A34)

and

Bθ (⃗k1, k⃗2) =

(
Bθ (⃗k1, k⃗2) D†

θ (⃗k1, k⃗2)

Dθ (⃗k2, k⃗1) B̃θ (⃗k1, k⃗2)

)
. (A35)

The definition and the algebra of these composite operators A, B, C and D are summarized
in Appendix A of [10]. Here, we will discuss their Bogoliubov transformations, and also
the counterpart for their 1/N expansions.

In the large N limit, these operator have 1/N expansions. To linear order we have3

Aθ =
√

2N
(

αθ γθ

γ̃θ α̃θ

)
(⃗k1, k⃗2) + O

(
1√
N

)
, (A36)

and similarly for its hermitian conjugates A†
θ . On the other hand, B does not have linear

terms. From the Bogoliubov transformation for bulk fields (104), we can read off the
corresponding transformation for large N bi-local oscillators

α( p⃗1, p⃗2) =
2

ch 2θ1 + ch 2θ2

[
ch θ1 ch θ2αθ( p⃗1, p⃗2) + sh θ1 sh θ2α̃†

θ( p⃗1, p⃗2)
]

, (A37)

γ( p⃗1, p⃗2) =
2

− ch 2θ1 + ch 2θ2

[
ch θ1 sh θ2γθ( p⃗1, p⃗2) + sh θ1 ch θ2γ̃†

θ ( p⃗1, p⃗2)
]

, (A38)

and similarly for α̃ and γ̃. They annihilate the zero temperature vacuum state |0⟩ and obey
the regular commutation relations

[α( p⃗1, p⃗2), α†( p⃗3, p⃗4)] =δd( p⃗1 − p⃗3)δ
d( p⃗2 − p⃗4) , (A39)

[γ( p⃗1, p⃗2), γ†( p⃗3, p⃗4)] =δd( p⃗1 − p⃗3)δ
d( p⃗2 − p⃗4) , (A40)

and similarly for α̃ and γ̃. As a byproduct, the bulk fields can be expressed in terms of large
N bi-local oscillators in the same way as (97), except that the subscripts θ are dropped on
both hand-sides of the equation.

H+ transformations.



Universe 2024, 10, 99 26 of 28

Let us now study in detail the total Hamiltonian H+. It induces a non-unitary trans-
formation, under which some certain combinations of operators annihilate the TFD state.
According to Equation (52), we find

e−βH+/4 [ai (⃗k1)ai (⃗k2)− ai (⃗k1)ã†i (⃗k2)
]

eβH+/4 |0(β)⟩ = 0 . (A41)

These simple relations are the basics of the work [32] for building the TFD states. One can
of course insert other oscillators a†i, ãi and ã†i to make transformations of other collective
fields. These transformations are easily computed in free theory, but not in interacting
theories, in which case H+ is quite involved. Nevertheless it is in principle calculable. To
study the large N limit, two procedures are involved: (1) H+ transformation, and (2) the
1/N expansion in collective representation. The process (1) → (2) is well defined and one
can in principle perform it. On the other hand, as we will see below, the problem is much
harder if we perform (2) → (1), which resembles the translational issues in the soliton case.
In the latter procedure, the 1/N expansion loses its power since we will need to taking the
whole series of the 1/N expansion into account. This represents similar issues as in the
soliton case.

The presence of this order
√

N operator (i.e.,
√

NH(1)
+,col) reveals that thermal back-

grounds are not saddle point solutions of H+,col. Indeed, H+,col has only one stationary
point, which is also the minimum: the ground state. It meanwhile causes severe issues
when applying to transformations of operators: it gives shifts of order

√
N which is not de-

fined in the large N limit. As illustrated above, W ≡ H(1)
+,col commutes with the thermofield

Hamiltonian Ĥ, so it becomes central in the large N limit, as discussed by Witten [4]. Let
us now take O as a collective operator which under the transformation of H+ annihilates
the TFD state, e.g., O = aiai − ai ã†i as in Equation (A41). In the collective representation
Ocol = O can be expanded in 1/N:

Ocol =
∞

∑
n=0

N1− n
2 O(n)

col . (A42)

However, to compute its H+ transformation

e−
β
4 Hcol,+ Ocol e

β
4 Hcol,+ , (A43)

one has to carry out an infinite computation. This is because terms of order
√

N and order
1/

√
N get mixed, so the evaluation can be carried out by expanding:

e−
√

NβW/4 Ocol e
√

NβW/4 =
∞

∑
n=0

∞

∑
m=0

N1− n
2 +

m
2

1
m!

(
− β

4

)m
adm

W(O(n)
col )

=
∞

∑
r=0

N1− r
2 O(r)

col ,
(A44)

with adW(O) = [W,O] denoting the adjoint transformation, and

O(r)
col =

∞

∑
n=r

1
(n − r)!

(
− β

4

)n−r
ad(n−r)

W (O(n)
col ) . (A45)

Here, to make simplification, we only expand H+ to its order
√

N term. The transformation
thus reorganizes the all higher order terms 1/N expansion series into lower order ones.
This is a universal property that does not only arise in the O(N) vector model, but in TFD
states for all large N theories. This is illustrated in the diagram below: the process (1) → (2)
is calculable and gives a systematic 1/N expansion of the H+ transformation of O. The
other process (2) → (1) is much more involved, and one needs to take the whole 1/N
expansion series of O into account.
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O, H+ Ocol[π, η], H+,col[π, η]

e−
β
4 H+ O e

β
4 H+ O(n)

col transformed

(2) 1/N

(2) 1/N

(1) H+ (1)
√

NW

Appendix C. Constraint of Thermofield Double State

To recover the central part wave functional, using the bi-local operators

C(⃗k1, k⃗2) = ai (⃗k1)ãi (⃗k2) , C† (⃗k1, k⃗2) = ai † (⃗k1)ãi † (⃗k2) , (A46)

we can write Ĝ(k) (158) as

Ĝ(k) = i
∫

dΩd kd−1
[
C† (⃗k, k⃗)− C(⃗k, k⃗)

]
. (A47)

Recall that the vacuum state is annihilated by C:

C(⃗k, k⃗) |0⟩ = 0 , (A48)

we can write C(k) ≡
∫

dΩd kd−1C(⃗k, k⃗) such that C(k) |0⟩ = 0. Thus,

C†(k) + C(k) + i Ĝ(k) |0⟩ = 0 , (A49)

where C†(k) is defined similarly as C(k). We therefore have

C†
θ (k) + Cθ(k) + i Ĝ(k) |0(β)⟩ = 0 . (A50)

We note that the first two terms can be written in terms of the collective coordinate

C†
θ (k) + Cθ(k) = 8Nω(k)q̂(k) +O(1) . (A51)

Using the constraint we can also write the last term i Ĝ(k) as i ĝ(k). Thus, we have

q̂(k) +
i

8ω(k)N
ĝ(k) |0(β)⟩ = 0 . (A52)

Note that ĝ is of order O(
√

N), and thus q̂ is of order O(N−1/2).

Notes
1 A bit explanation of the notations: Here, Φab(x⃗, y⃗) ≡ φi

a(x⃗)φi
b (⃗y)/N with φi

1 = φ and φi
2 = φ̃i. In the context of AdS/CFT,

one also denotes φi
R ≡ φi and φi

L ≡ φ̃i.
2 Here, inside the traces one has one bi-local field and some c-numbers, and the notation means Tr

[
c1uTη

]
≡
∫ dd⃗k

(2π)d c1 (⃗k)ukη(⃗k, k⃗),
and similarly in the following discussions.

3 Here, to emphasize the Bogoliubov transformation of fields, we put a subscript θ for the fields. Comparing with the notations
in [9], we have αthere ≡ αθ,here, and similarly for other bi-local oscillators.
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