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Abstract: Swarm intelligence (SI) methods are nature-inspired metaheuristics for global optimization
that exploit a coordinated stochastic search strategy by a group of agents. Particle swarm optimization
(PSO) is an established SI method that has been applied successfully to the optimization of rugged
high-dimensional likelihood functions, a problem that represents the main bottleneck across a variety
of gravitational wave (GW) data analysis challenges. We present results from the first application of
PSO to one of the most difficult of these challenges, namely the search for the Extreme Mass Ratio
Inspiral (EMRI) in data from future spaceborne GW detectors such as LISA, Taiji, or Tianqin. We
use the standard Generalized Likelihood Ratio Test formalism, with the minimal use of restrictive
approximations, to search 6 months of simulated LISA data and quantify the search depth, signal-
to-noise ratio (SNR), and breadth, within the ranges of the EMRI parameters, that PSO can handle.
Our results demonstrate that a PSO-based EMRI search is successful for a search region ranging
over ≳ 10σ for the majority of parameters and ≳ 200σ for one, with σ being the SNR-dependent
Cramer–Rao lower bound on the parameter estimation error and 30 ≤ SNR ≤ 50. This is in the
vicinity of the search ranges that the current hierarchical schemes can identify. Directions for future
improvement, including computational bottlenecks to be overcome, are identified.

Keywords: LISA; gravitational waves; EMRI; PSO; likelihood ratio

1. Introduction

Spaceborne gravitational wave (GW) detectors, namely LISA [1] and the planned
Taiji [2,3] and Tianqin [4], are expected to observe long-lived signals from a variety of
sources in the mHz regime. Among these would be the large population of compact
object binaries [5–7] in the Milky Way, the binaries of massive black holes [8–10], and
Extreme Mass Ratio Inspirals (EMRI) [11–15], consisting of a massive black hole orbited by
a much smaller one. Extracting individual GW signals from this crowded superposition
poses a huge data analysis challenge that has mostly been addressed only for specific
types of sources. For example, much work has been done to address the extraction of
individual signals from the Galactic Binary population, where both the global fit [16,17]
and iterative subtraction approaches [18–21] have been developed to a mature level. On
the other hand, progress in the detection and estimation of even single EMRI signals has
been much more modest given the extreme challenges that it involves: it is estimated
that a deterministic matched filter-based search for a single EMRI signal would require
∼1040 distinct template waveforms [11]. Given that the correlation of ∼2 years of data
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with an equally long template involves ∼106 floating point operations, the computational
cost of the straightforward approach is insurmountable, even with projected advances in
computing hardware.

The sheer complexity of the data analysis challenge confronting space-based GW
detection necessitates the exploration and development of diverse methods. To provide
a common baseline for the comparison of these methods, a series of public data analysis
challenges have been provided by the community. Among these, the Mock LISA Data
Challenges (MLDCs) [22,23], now called the LISA Data Challenges (LDCs) [24], and the
recent Taiji Data Challenge [25] have fostered the development of a number of new data
analysis methods. These include a number of different lines of attack for the EMRI problem
that may be roughly divided into parametric and nonparametric approaches, with some
overlap between the two. Parametric methods use parametrized waveform models, either
physical or empirical, while nonparametric methods [26] avoid their use. It is important
to note here that the calculation of the exact EMRI waveform is itself an open problem
that is being actively addressed by several groups. Hence, all parametric approaches use
surrogate models that are assumed to be sufficiently realistic while being computationally
cheap to calculate. Among the main surrogate waveforms used in the literature, and
also the one used in the mock data challenges, is the Analytical Kludge (AK) developed
in [27], which is based on the quadrupolar waveform for an eccentric orbit [28,29] with
post-Newtonian corrections to the procession of the pericenter and orbital plane, as well
as the GW radiation reaction-driven inspirals. The AK waveform can be expressed as a
sum over sinusoidal signals with harmonically separated frequencies that change over time
following orbital evolution.

The end goal for all parametric methods is to find the global maximum of a fitness
function defined over the high-dimensional space of EMRI signal parameters, with the
fitness function in most cases being the log-likelihood ratio (LLR) [30] or the closely related
Bayesian posterior probability [31]. The LLR at a given point in the signal parameter space
for the case of Gaussian noise is simply the projection (modulo terms that take care of signal
normalization) of the given data on the signal waveform, called the template, corresponding
to that point. As mentioned earlier, the global maximization task is computationally
infeasible if addressed using a brute force deterministic strategy, which leaves a stochastic
global optimization method or a hierarchical search strategy (or their combination) as
the only viable way forward. The trade-off here is between the computational feasibility
and the lack of certainty in locating the global optimum, since stochastic or hierarchical
methods are not provably convergent in a time-limited search (but may be asymptotically
convergent).

The most popular class of stochastic global optimization methods for the EMRI prob-
lem so far has been those based on modifications of the Markov Chain Monte Carlo (MCMC)
sampler [32–38]. Hierarchical searches [32,33,35–38] use several levels of progressively
higher-fidelity approximations to the fitness function to find, with a manageable com-
putational cost, promising search regions in the parameter space that can be handed off
to a computationally expensive stochastic or deterministic global optimizer. The fitness
approximations are often implemented through waveform restrictions, such as limiting
the number of harmonics or duration. Most methods proposed so far need to combine
elements of both the stochastic and hierarchical approaches to work well. Due to the
various possibilities in how the fitness function approximations can be implemented, as
well as the large number of tunable parameters that they create, the methods proposed so
far tend to be quite complex in nature and involve many ad hoc design choices.

In addition to reducing the computational cost of the fitness evaluation, one of the
objectives of the approximations is to mitigate the problem of secondary maxima in the
exact fitness function [32,36,39] arising from complex degeneracies between the EMRI
parameters and the overlap of multiple harmonics. These secondary maxima are numerous
and widely dispersed in the parameter space, with values that are comparable to the global
maximum. While their presence makes the problem of detection fairly easy, since locating
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any strong peak is an indication that the data are not pure noise, they have the adverse
effect of creating large errors in the estimated signal parameters. In a multiple signal
resolution problem, such as the one that all space-based detectors will face, the parameter
estimation problem is equally important to that of detection, because individual sources
must be fitted out from the data in order to reveal weaker sources.

It is commonly assumed, although by no means proven, that a hierarchical search
should narrow down the search range to ≈100σ in each signal parameter [36], where σ is
the Cramer–Rao lower bound (CRLB) on the estimation error [30] obtained from the Fisher
information matrix (FIM) at a certain signal-to-noise ratio (SNR). While serving well as a
rule of thumb, we note that the search ranges suggested in the Mock LISA Data Challenge
(MLDC) [22,23,40] do not obey this rule (when scaled to the same data duration) and
deviate significantly from 100σ in all directions, ranging from ∼20σ to ∼500σ for some of
the signal parameters at an SNR = 50 over 0.5 year data.

In this paper, we present a novel approach to the challenge of EMRI data analysis
using the particle swarm optimization (PSO) [41–43] algorithm for the global optimization
of the LLR. While PSO is a well-known stochastic optimization method that has been
highly successful in a wide variety of GW data analysis problems [44–53], as well as related
problems in high-dimensional statistical regression [54–56], it has not been applied to the
EMRI problem yet (the application of PSO to the EMRI problem has been proposed in [35]
but not actually implemented). The key feature of PSO that sets it apart from MCMC-
based searches and makes its application to the EMRI problem attractive is its small set
of tunable parameters (only two in most cases) and the significantly smaller number of
LLR evaluations that it typically needs for successful convergence to the global optimum.
For example, in the search for binary inspiral signals using a network of ground-based
detectors, PSO has been demonstrated to need ≈10 times fewer LLR evaluations [45–47]
than MCMC searches.

Our main objective in this paper is to conduct an ab initio investigation that removes
as many ad hoc choices from the search method as possible and to focus on the end stage
of any hierarchical search in which the global optimization is over the approximation-
free LLR. In particular, we wish to empirically establish the baseline that a hierarchical
search should target when narrowing down the search space range. We lift as many
restrictions on the fitness function as computationally feasible, such as using a template
waveform that includes the 10 loudest harmonics instead of 3 [32]. Similarly, we do not
use approximations that attempt to subdivide the set of signal parameters into analytically
maximized extrinsic and numerically maximized intrinsic, since, strictly speaking, such
a division does not exist for the EMRI waveform, except for the overall distance to the
source. Instead, we numerically maximize over all the parameters (except the distance),
albeit using different maximization algorithms for the different subsets. Thus, our study
provides a good foundation on which to build a PSO-based hierarchical search method in
the future, which could provide another competitive and promising approach to address
the EMRI data analysis challenge.

Within the present computational resource constraints on our analysis, we find that
the PSO-based search can successfully handle the global optimization problem for EMRI
signals in ≳0.5 years of data over search ranges of ≳10σ for the majority of parameters
and up to ≳200σ for one parameter. This is demonstrated over progressively weaker
signal-to-noise ratios (SNRs) ranging from 50 to 30, with σ dependent on the SNR. We
also report on the parameter estimation accuracy achieved in each case. We note that all
our results establish lower bounds on the search ranges, since our code is not yet fully
optimized to take advantage of graphics processing units (GPUs), and we have not been
able to extend the number of PSO iterations or runs to the levels that may be needed at the
lowest SNR. Nonetheless, our results show that the basic PSO is already able to handle
search ranges that are in the vicinity of rule-of-thumb values, without requiring overly
restrictive approximations.
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The rest of the paper is organized as follows. Section 2 sets the foundation for the EMRI
data analysis problem, with a review of the TDI combinations, noise, and signal models
used in this paper. Section 3 describes the search method, along with the implementation
and computational details. We provide a brief review of the PSO algorithm in Section 4
that is not comprehensive but suffices for the purposes of this paper. We present our results
in Section 5, followed by a discussion in Section 6.

2. Data Description

The design of all space-based GW detectors consists of a constellation of spacecraft on
near-Keplerian orbits, with the continuous measurement of the inter-spacecraft distances
through the exchange of laser light signals. The technique of time-delay interferometry
(TDI) [57] is used to reduce the dominant noise source, namely laser frequency noise, to a
level where the distance fluctuations caused by incident GW signals become detectable. In
TDI, the measured time-dependent inter-spacecraft distances along each arm and direction
of laser light propagation are combined after being shifted by known time delays relative
to each other. The combinations of delays and single-arm measurements must take a
number of physical effects into account, with an increasing number of effects incorporated
in successively better generations of TDI. We discuss below the TDI combinations used in
this paper, followed by the description of the noise and signal models. Throughout the
paper, we follow the coordinate conventions defined in [58].

2.1. TDI Combinations

In this paper, we use first-generation TDI and the combinations called A, E, and T
that have mutually independent noise. They are constructed out of the Michelson TDI
combinations X, Y, and Z using

A =
Z − X√

2
,

E =
X − 2Y + Z√

6
,

T =
X + Y + Z√

3
,

(1)

where the combinations X, Y, and Z are obtained from the single-arm length measurements,
yslr, following

X =y1−32,32−2 + y231,2−2 + y123,−2 + y3−21 − y123,−2−33 − y3−21,−33 − y1−32,3 − y231 ,

Y =y2−13,13−3 + y312,3−3 + y231,−3 + y1−32 − y231,−3−11 − y1−32,−22 − y2−13,1 − y312 ,

Z =y3−21,21−1 + y123,1−1 + y312,−1 + y2−13 − y312,−1−22 − y2−13,−11 − y3−21,2 − y123 ,

(2)

with s and r labeling the sender and receiver spacecraft, respectively, and l labeling the
direction of laser light propagation. The expression for the single-arm response to GW,
yGW

slr (t), is given by

yGW
slr (t) =

Φl(t − k̂ · R̂s − Ll)− Φl(t − k̂ · R̂r)

2(1 − k̂ · n̂l)
, (3)

where the vectors R̂i, n̂l , k̂ denote the position of the i-th spacecraft, the unit vector along
the l-th arm, and the direction of GW propagation, respectively. The length, Li, of the i-th
arm is approximated as constant in the first-generation TDI. The quantity Φl , given by

Φl = F+
l h+ + F×

l h× , (4)
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is the strain response of arm l in the long-wavelength approximation, with F+,×
l being

antenna pattern function and h+,× being the two GW polarization waveforms of a plane
wave in the transverse-traceless gauge. The antenna patterns are defined by[

F+
l

F×
l

]
=

[
cos(2ψ) − sin(2ψ)
sin(2ψ) cos(2ψ)

][
U+

l
U×

l

]
, (5)

with ψ being the polarization angle and the U+,×
l defined by

U+
l =(n̂l ⊗ n̂l) : ϵ+ , (6)

U×
l =(n̂l ⊗ n̂l) : ϵ× , (7)

where ϵ+,× are the polarization tensors in the fiducial wave frame (as defined in [58]),
which depend on the sky location of the GW source. Here, the symbol U : V = ∑i,j UijVij
denotes the contraction operation on arbitrary tensors U and V, and, for arbitrary vectors
a and b, (a ⊗ b)ij = aibj. Of the three TDI combinations, A, E, and T, the first two carry a
significantly larger GW strain response from a given source than the latter. Therefore, the
combination T is generally omitted fro GW search considerations. When generating the TDI
combinations for a given source, we compute the 24 time-delayed single-arm responses,
yslr, before linearly combining them, following Equation (2), to obtain X, Y, Z.

In data analysis, one works with a finite-length, uniformly sampled time series rep-
resented as a row matrix d = (d0, d1, . . . , dN−1), where dk = d(tk) and tk = k∆, with ∆
being the sampling interval. Typically, mock LISA data are generated with ∆ = 15 s, which
corresponds to a maximum frequency bandwidth of 1/30 ≈ 33 mHz, following the Nyquist
sampling theorem. In searches for specific types of signals, computational savings may be
obtained by resampling the data to have a higher ∆ if the maximum frequency bandwidth
of the signals involved is lower. However, directly undersampling a TDI combination by
computing the samples of the single-arm responses, yGW

slr , with a larger ∆, causes significant
numerical error when introducing the time shifts required in Equation (3) since they are
smaller than even the sampling interval of 15 s. Therefore, in this paper, we keep the
original LDC sampling interval when generating the GW strain responses and the TDI
combinations, although the implementation of downsampling is clearly an easy choice to
speed up our codes in the future.

Each TDI combination can be described by the data model,

d
I
= h

I
+ nI , (8)

where d
I

denotes the TDI combination I, with I ∈ {A, E, T}; h
I

denotes the GW strain
signal; and nI denotes the noise realization. Note that in the case of multiple overlapping

GW signals, h
I

can be split into a sum of resolvable signals and unresolved signals. The
latter contribute to the noise realization along with sources of instrumental noise. In this
paper, in line with most other studies of the EMRI problem, we consider the simplified

problem where nI is purely instrumental noise and h
I

is the signal from a single GW source.

2.2. Noise Model and Signal-to-Noise Ratio

Due to the lack of real data, the noise realization in most studies of LISA data analysis
is assumed to be from a stationary Gaussian noise process. The LDC manual [58] provides
theoretically derived analytical expressions for the power spectral densities (PSDs) of the
noise processes in the TDI combinations. For the PSDs of the A and E combinations, the
expressions are

SA
n ( f ) = SE

n ( f ) = 8 sin2 ωL
[
4(1 + cos ωL + cos2 ωL)SAcc + (2 + cos ωL)SIMS] . (9)
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where f is the Fourier frequency, w = 2π f is the corresponding angular frequency, and
L is the (assumed constant) arm length. Under the specific noise model called SciRDv1,
the acceleration noise SAcc and the Instrumental/Optical Metrology System noise SIMS are
given by [59]

SAcc( f ) =9.0 × 10−30[1 + (0.4 mHz
f

)2][1 + ( f
8 mHz

)4] ,

SIMS( f ) =2.25 × 10−22[1 + (
2 mHz

f
)4] .

(10)

Given the PSD Sn( f ) and the assumption of Gaussianity, a natural inner product can be
defined on the vector space of equal-length finite time series as

(a|b) = 1
T

N−1

∑
k=0

ãk b̃∗k + ã∗k b̃k

Sn( fk)
, (11)

where x̃ denotes the DFT of a time series x = (x0, x1, . . . , xN−1),

x̃ = FxT , (12)

Flm = e−2πilm/N , (13)

and fk = k/T, k = 0, 1, . . . , N − 1, with T being the data duration in seconds. We note that,
logically, the inner product notation above should also carry the TDI index I ∈ {A, E, T}
due to the dependence on the respective PSD. However, we only deal with the combinations
A and E in this paper, and the two have identical PSDs. Therefore, for simplicity of notation,
we have dropped the index on the inner product symbol. In terms of the inner product,
one can define the SNR of a signal as

SNR2 = (h
A|hA

) + (h
E|hE

) . (14)

It should be noted that, due to the presence of noise, the SNR of an estimated signal
will differ by a random amount from that of the true signal in the data. It is also useful to

define the overlap between two signals, h
I
1, h

I
2 as

ffAE =
(h

A
1 |h

A
2 ) + (h

E
1 |h

E
2 )√

(h
A
1 |h

A
1 ) + (h

E
1 |h

E
1 )

√
(h

A
2 |h

A
2 ) + (h

E
2 |h

E
2 )

. (15)

The overlap plays a key role [22] in the context of resolving multiple sources to
determine if an estimated signal matches any of a set of true signals. In the case of a
single EMRI signal, the overlap between the estimated and true signals (in simulated
data) can serve to indicate the presence of degeneracies in the parameter space that show
up as a large overlap despite large parameter estimation errors. In addition to using
both TDI combinations for overlap, one can also define the overlap between individual
combinations by setting the other combination to zero. These will be designated as fA and
fE, corresponding to setting hE

1,2 = 0 and hA
1,2 = 0, respectively, in Equation (15).

2.3. Signal Model: EMRI Waveform

As mentioned earlier, the current standard EMRI waveform used in studies of data
analysis methods as well as the LDCs is the AK waveform. In total, the AK waveform
is characterized by 14 parameters: { µ, M, λ, S/M2, e0, ν0, θs, ϕs, θk, ϕk, ϕ0, γ̃0, α0, D }.
Here, µ and M represent the masses of the compact objects (COs) and the massive black
hole (MBH), respectively. The parameter λ corresponds to the inclination angle between
the angular momentum of the COs and the spin direction of MBH. S/M2 denotes the
magnitude of the MBH’s spin. The parameters e0, ν0, ϕ0, γ̃0, and α0 refer to the initial
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eccentricity, the initial orbital frequency, and the initial angles associated with the orbit
rotation, the pericenter procession, and the Lense–Thirring precession, respectively. The
angles θs and ϕs represent the ecliptic colatitude and longitude, respectively, of the sky
location of the source in the SSB frame and θk, ϕk represent the polar and azimuthal angles,
respectively, of the MBH spin in the SSB frame. Finally, D represents the distance between
the source and the SSB center. The polarization angle ψ depends on θs, ϕs, θk, and ϕk and
stays constant in a static source frame [32].

To obtain the AK waveform for a given set of signal parameters, the ordinary differen-
tial equations (ODEs) given below need to be solved for the mean anomaly ϕ, the orbital
frequency ν, the azimuthal angle of the pericenter precession γ̃, the eccentricity of the orbit
e, and the azimuthal angle of the Lense–Thirring precession α.

dϕ

dt
= 2πν , (16)

dν

dt
=

96
10π

(µ/M3)(2πMν)11/3(1 − e2)−9/2{[1 + (73/24)e2 + (37/96)e4
]
(1 − e2)

+(2πMν)2/3
[
(1273/336)− (2561/224)e2 − (3885/128)e4 − (13147/5376)e6

]
−(2πMν)(S/M2) cos λ(1 − e2)−1/2[(73/12) + (1211/24)e2

+(3143/96)e4 + (65/64)e6]} , (17)

dγ̃

dt
= 6πν(2πνM)2/3(1 − e2)−1

[
1 +

1
4
(2πνM)2/3(1 − e2)−1(26 − 15e2)

]
−12πν cos λ(S/M2)(2πMν)(1 − e2)−3/2 , (18)

de
dt

= − e
15

(µ/M2)(1 − e2)−7/2(2πMν)8/3[(304 + 121e2)(1 − e2)
(
1 + 12(2πMν)2/3)

− 1
56

(2πMν)2/3((8)(16705) + (12)(9082)e2 − 25211e4)]
+e(µ/M2)(S/M2) cos λ (2πMν)11/3(1 − e2)−4 [(1364/5) + (5032/15)e2

+(263/10)e4] , (19)

dα

dt
= 4πν(S/M2)(2πMν)(1 − e2)−3/2 . (20)

Since the ODEs generally evolve slowly, we follow the solution described in [58] of
using a fifth-order Cash–Karp Runge–Kutta ODE solver [60] with a cadence of 15,360 s,
corresponding to a timescale of a few hours, followed by interpolating the solution to
a cadence of 15 seconds. Having acquired the solutions to the ODEs, one proceeds to
compute the GW polarization waveforms as described schematically below.

Denoting the combined initial phase of the i-th harmonic as Φi
0 = nϕ0 + 2γ̃0 + mα0,

i = 1, 2, ..., (the map from n and m to i being unimportant here) and absorbing amplitude
factors such as 1/D that are common to all harmonics in an overall parameter A, we obtain

h
i
+,×(Θ) = Asi

+,×(θ
′) = A Re(eiΦi

0 xi
+,×(θ)) , (21)

where Θ is the set of 14 EMRI parameters, θ
′

denotes the 13 parameters other than A,
and θ denotes the 10 parameters excluding A, ϕ0, γ̃0, and α0. Thus, Θ = θ

′ ∪ {A} and
θ′ = θ ∪ {ϕ0, γ̃0, α0}. In agreement with the number of parameters that they depend on, we

call h
i
+,×(Θ), si

+,×(θ
′), and xi

+,×(θ) the 14, 13, and 10-dimensional polarization waveforms,
respectively. (The expression for xi

+,×(θ) is provided in [58].) As with the calculation of
single-arm responses, the calculation of the harmonics is parallelized in our code (using
OpenMP [61]) before they are summed, which speeds up the calculation of the polarization
waveforms substantially.
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3. Generalized Likelihood Ratio Test
3.1. LLR

Under the assumption of Gaussian stationary noise, the log-likelihood (LLR) of the

data, d
I
, I ∈ {A, E}, described in Section 2, is given by

Λ(Θ) = ∑
I∈{A,E}

[
−(h

I
(Θ)|hI

(Θ)) + 2(d
I |hI

(Θ))
]

, (22)

To distinguish the true but unknown signal present in the data from h
I
(Θ), which is

used in the evaluation of the LLR at a given point in the parameter space, the latter is called
a template.

In both the Generalized Likelihood Ratio Test (GLRT) and Maximum Likelihood
Estimation (MLE), the LLR is maximized over Θ,

LG = Λ(Θ̂) , (23)

Θ̂ = argmax
Θ

Λ(Θ) , (24)

with the value, LG, of the global maximum serving as the detection statistic, and its location,
Θ̂, providing the estimated values of the parameters. The parameter A can always be
maximized over analytically by solving for ∂Λ(θ′, A)/∂A = 0, which gives

LG = max
θ′

ρ(θ′) , (25)

ρ(θ
′
) = max

A
Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ
′
))
]2[

∑I∈{A,E}(s
I(θ′)|sI(θ′))

] , (26)

with the maximizer being

Â = argmax
A

Λ(Θ) =

[
∑I∈{A,E}(d

I |sI(θ
′
))
][

∑I∈{A,E}(s
I(θ′)|sI(θ′))

] . (27)

In the following, we call ρ(θ′) the 13-dimensional log-likelihood, with further layers
of maximization producing functions that will be referred to by the corresponding number
of parameters that are not maximized over. The search for the global maximum of ρ(θ′)
over the 13 parameters, θ′, in Equation (25) is the main challenge in EMRI data analysis,
since the number of evaluation points required in a grid-based search is incredibly large.

A dimensionality reduction method was proposed in [32] that attempts to split the
maximization of ρ(θ′) into a nested analytical inner maximization over the three initial
angles, ϕ0, γ̃0, α0, and an outer numerical maximization over the remaining parameters
θ. Briefly, this method is based on the fact that by combining the antenna patterns F+,×

l
of a given arm l with the 13-dimensional polarization waveform (c.f., Equation (21)),
the corresponding 13-dimensional single-arm strain response si

l(θ
′
) arising from the i-th

harmonic is expressed as

si
l(θ

′
) =F+

l si
+(θ

′
) + F×

l si
×(θ

′
) ,

= cos(Φi
0)
[

F+
l Re(xi

+(θ)) + F×
l Re(xi

×(θ))
]

− sin(Φi
0)
[

F+
l Im(xi

+(θ)) + F×
l Im(xi

×(θ))
]

,

= cos(Φi
0)xi

l,1(θ)− sin(Φi
0)xi

l,2(θ),

=
2

∑
p=1

ai
pxi

l,p(θ) .

(28)
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Due to linearity, it follows that the TDI signal generated by the i-th harmonic for
combination I is given by

sI,i(θ
′
) = cos(Φi

0)xI,i
1 (θ)− sin(Φi

0)xI,i
2 (θ),

=
2

∑
p=1

ai
pxI,i

p (θ) , (29)

(ai
1)

2 + (ai
2)

2 = 1 , (30)

where the time delays involved in the generation of TDI combinations appear only in the
time-dependent xI,i

p (θ) above. Thus, the initial angles are absorbed in the set of linear
coefficients ai

p, much like the set of 4 linear coefficients that appear in the consideration of
a single continuous wave source [62]. In the latter, these linear parameters are mutually
independent and can easily be maximized analytically, which considerably simplifies
the subsequent maximization of the resultant function, called the F-statistic, over the
remaining parameters.

It is apparent from simply counting the degrees of freedom that implementing the
same method for EMRI requires the number of harmonics to be restricted to 3 in order
to treat the 6 linear coefficients ai

j, i = 1, 2, 3, subject to the 3 equality constraints (c.f.,
Equation (30)), as mutually independent and to invert the 3 initial angles from them. In [32],
this restriction is used to perform the maximization over the ai

j, i = 1, 2, 3 analytically,
producing a 10-dimensional fitness function that is then maximized numerically. To fix
the three harmonics, a physically motivated assumption about the dominance of their
contribution to the total SNR of the signal is used. However, as illustrated in Table 1, the
restriction to 3 harmonics has the shortcoming that (a) the dominant harmonics depend on
the true parameters of a signal, (b) the SNR contributions of the top three harmonics can
fluctuate significantly, and (c) the estimated Â, and hence the estimated D, depends on the
choice of the three harmonics, and different choices of harmonics may yield inconsistent
estimates of D. Hence, it is not safe to assume that the same reduced set of 3 harmonics
will work the best for every EMRI source.

Figure 1. Cumulative SNR fractions over harmonics in descending order for the 5 signal parameters
in Table 1.
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Table 1. Illustration of variation in the order of contributions of harmonics to the total SNR of an
EMRI signal as a function of its parameters. The harmonics are labeled by a single index i, varying
from 1 to 25 in LDC, with the mapping of i to n and m given by n = floor((i − 1)/5) + 1 and
m = mod(i − 1, 5)− 2. Each column, besides the leftmost, corresponds to one set of EMRI signal
parameters and lists the indices of harmonics in descending order of their contribution to the total
signal SNR (comprising 25 harmonics). Each entry in the table is of the form C/F, where C is the
index based on the SNR defined in Equation (14) and F is the index based on a computationally
cheaper surrogate defined as the SNR of the strain signal [27], Φ1 − Φ2, in the long-wavelength
approximation where Φl is defined in Equation (4). (The noise PSD used in the latter is given in [63].)
The two means of computing the SNR order of the harmonics agree well with each other, especially
for the moderately eccentric (∼0.228) systems in columns 2, 3, and 4. The column labeled “LDC
Parameters” corresponds to the EMRI parameters given as non-blind injection in LDC-1.2 [58] and
also listed in Table 2. For each of the other columns, only one parameter was changed and this is
noted in the heading of the column. We also provide the total SNR contributed by the top 3 and
the top 10 harmonics, as fractions of the total SNR contributed by 25 harmonics, in the rows labeled
“SNR fraction”.

SNR Order
(Descend-

ing)

LDC
Parameters µ = 10M⊙ µ = 100M⊙ e0 = 0.5 e0 = 0.6

1 7/7 7/7 7/7 7/7 17/12
2 8/8 8/8 8/8 12/12 22/17
3 12/12 12/12 12/12 8/8 18/22

SNR fraction 0.849/0.887 0.826/0.876 0.906/0.904 0.702/0.736 0.673/0.746

4 13/13 13/13 6/6 13/13 23/7
5 6/6 17/6 9/9 17/17 12/2
6 9/9 6/9 13/13 18/2 13/12
7 17/17 9/17 10/17 22/18 7/18
8 18/11 18/11 17/10 23/22 16/23
9 11/14 11/14 11/14 6/6 21/8

10 14/2 14/18 14/11 11/3 8/3
SNR fraction 0.985/0.987 0.981/0.985 0.992/0.991 0.945/0.943 0.945/0.943

Table 2. The injected source parameters and range width used in our search. Currently, the location
of the injected signal is set at the center of the given range. We leave a more general search, with
injected signals placed non-centrally in the search space, to future work.

Parameters Values Search Range

µ(M⊙) 29.490000 10σ
M(M⊙) 1.1349449 ×106 10σ
λ(rad) 2.1422000 10σ
S/M2 0.96970000 10σ

e0 0.22865665 10σ
ν0(Hz) 7.3804631 ×10−4 200σ
θs(rad) 0.4989445 π
ϕs(rad) 2.232797 2π
θk(rad) 1.522100 π
ϕk(rad) 3.946698 2π

3.2. The Ten-Dimensional Search

In our method, we avoid the above issues associated with restricting the number of
harmonics to 3 by keeping a larger number of harmonics in the templates and carrying
out the inner maximization over the initial angles numerically. Switching to numerical
maximization over the initial angles not only obviates the need to restrict the harmonics but
also confers some benefits. This is illustrated in Table 1 and Figure 1, where we compare
the effect of retaining the top 10 harmonics with the top 3 on the SNR. First, retaining the
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top 10 harmonics in the templates considerably stabilizes their fractional SNR contributions
compared to 3 harmonics. Secondly, considering the case of high eccentricity, the set
of top 10 harmonics, unlike the top 3, remains almost the same across a wider range of
signal parameters, despite variations in the order of their SNR contributions. For a given
location in the 13-dimensional parameter space, the 10 loudest harmonics are obtained in
our method using the computationally cheap SNR calculation, as outlined in the caption of
Table 1. We see that this agrees quite well with the exact SNR calculation (c.f., Equation (14))
as far as identifying the dominant harmonics is concerned.

The nested inner maximization over the initial angles, ϕ0, γ̃0, α0, is carried out using
the Simplex algorithm of Nelder and Mead [64], which has guaranteed convergence to a
local maximum. This is found to be quite effective because the 13-dimensional LLR varies
much more slowly over the initial angles compared to, for example, the six parameters
related to the ODEs. Consequently, as illustrated in Figure 2, the 13-dimensional LLR
usually contains only a few peaks over the 3-dimensional space of the initial angles that
are, moreover, equal or comparable in magnitude to the highest peak. Thus, to find the
maximum value over the initial angles, it is sufficient to use a local maximizer to converge
to any one of these local peaks. To ensure that we obtain the value of the global maximum
within the 3-dimensional space, we use a grid of 32 different starting points for the local
maximization (e.g., ([0, 0.5π, 1.0π, 1.5π] for ϕ0, α0 and [0, 0.25π] for γ̃0) and select the
best solution.

Figure 2. Illustrations of the peak structure of the function ρ(θ′) using two 2-dimensional planar
cross-sections of the 3-dimensional space formed by the three initial angles. The plane on the left is
2ϕ0 + 2γ̃0 − α0 = 5.1051 and the plane on the right is 2ϕ0 + 2γ̃0 = 1.9635. The X and Y axes lie in
these planes and the range along both is [−π, π]. Other planes exhibit similar patterns as above. The
figure is produced using the noise realization in LDC-1.2 [58] data and an arbitrary injected signal.

Although numerical maximization over the initial angles incurs additional computa-
tion compared to the more restrictive analytical approach outlined in Section 3, its cost is
reduced considerably by optimizing the code implementation as follows. The key idea is to
apply the TDI linear decomposition in Equation (29) to separate the parameters ϕ0, γ̃0, α0

from the inner product (d
I |sI(θ

′
)) and (sI(θ

′
)|sI(θ

′
)). Thus, we have

(d
I
(θ

′
)|sI(θ

′
)) =

N

∑
i=1

2

∑
p=1

ai
p(d

I ∣∣xI,i
p (θ)) ,

(sI(θ
′
)|sI(θ

′
)) =

N

∑
i=1

N

∑
j=1

2

∑
p=1

2

∑
q=1

ai
paj

q(xI,i
p (θ)

∣∣xI,j
q (θ)) .

(31)
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where N is the number of harmonics involved and the parameters ϕ0, γ̃0, α0 are absorbed

in the linear coefficients ai
p, aj

q. For a given θ, precomputing the inner products (d
I ∣∣xI,i

p (θ))

and (xI,i
p (θ)

∣∣xI,j
q (θ)) in the above expressions allows significant savings in computational

cost when using a local maximizer over the three initial angles, since they appear only in the
set of coefficients {ai

p}. Further savings are obtained by neglecting the off-diagonal inner
products above between different harmonics, which tend to be very small. In addition,
OpenMP is used to parallelize and speed up the evaluation of the inner products. As a result
of the above optimizations, the computational cost of each run of the local maximization is
on the millisecond scale using a 1.6 GHz 8-core processor, which is negligible compared to
the time (on the order of seconds) taken by the other steps in the algorithm.

4. Particle Swarm Optimization

The maximization of the LLR over the 10 parameters left over after (a) analytical
maximization over A and (b) local maximization over the initial angles must be carried
out numerically. As discussed earlier, we use PSO for this step. A brief review of the PSO
algorithm is provided below.

PSO is a nature-inspired optimization algorithm inspired by the social behavior of
birds and fish, where individuals in a group coordinate their movements to find the best
solution to an optimization problem. PSO has been successfully applied in various fields,
including engineering, finance, and machine learning.

The PSO algorithm solves the optimization problem

x∗ = argmax
x∈D⊂RM

f (x) , (32)

f (x∗) ≥ f (x) , ∀x ∈ D , (33)

where the function f (x) to be maximized is called the fitness function and the space D is
called the search space. (The fitness function in our case is the 10-dimensional LLR.) This is
accomplished in PSO using a set of particles exploring the search space iteratively, where
a particle is simply a location in RM. Each particle represents a potential solution to the
optimization problem, and its movement is influenced by both its own experience and the
experiences of its neighboring particles.

The dynamics of a particle in PSO is governed by the following equations (with t
representing an iteration). The position of a particle is updated following the rule

xi(t + 1) = xi(t) + vi(t + 1) , (34)

where xi(t) is the position of particle i at time t, and vi(t + 1) is the displacement (called
velocity in PSO) update at time t + 1. The starting positions and velocities of the particles
are commonly picked randomly from a uniform distribution over D. Using xj to denote
the j-th component of a vector x = (xo, x1, . . . , xM−1), the velocity is updated following
the rule

vj
i(t + 1) = wvj

i(t) + c1r1(pj
i(t)− xj

i(t)) + c2r2(gj(t)− xj
i(t)) , (35)

where w is the inertia weight, c1 and c2 are acceleration coefficients, r1 and r2 are uniformly
distributed random variables between 0 and 1, pi(t) is the best position of particle i so
far (called its personal best or pbest), and g(t) is the best position in the entire swarm so far
(called the global best or gbest). Here, a position is better than another if its corresponding
fitness value is higher. The inertia weight determines the influence of the previous velocity
on the current velocity. The corresponding term in the dynamical equation promotes the
exploration of the search space by a particle. A common choice is to use a linearly decreasing
inertia weight over iterations. The acceleration coefficients control the attraction strengths
of the personal best (c1) and global best (c2) on the movement of the particle. A typical
setting is c1 = c2 = 2.0. These terms promote the convergence of the algorithm towards
previously identified good solutions. In addition to these parameters, it is necessary to
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constrain the velocities of particles in order to prevent the entire swarm from quickly
leaving the search space. The velocity is commonly constrained by a parameter called the
maximum velocity, Vmax, with −Vmax ≤ vj

i(t) ≤ Vmax enforced for all iterations.
Before updating the velocity of a particle, the pbest of all particles and the gbest are

updated following

if f (xi(t)) > f (pi(t)), then pi(t + 1) = xi(t + 1) , (36)

and
if f (xi(t)) > f (g(t)), then g(t + 1) = xi(t + 1) . (37)

In addition to the parameters listed above, one must set some hyperparameters in
the PSO algorithm. These include the number of particles Np and the form of the initial
and boundary conditions. We use the so-called let-them-fly boundary condition, in which
no changes are made to the position or velocity of a particle that leaves the search space
but its fitness is set to −∞. Gradually, since the pbest and gbest are always located inside
the search space, the particle is drawn back in by their attractive forces. The number of
particles in the swarm influences the algorithm’s exploration and convergence. A small
swarm cannot efficiently explore a high-dimensional space, while a larger swarm size
may prematurely converge to a local maximum before the particles have had time to fully
explore the search space. Empirical evidence suggests that having about 40 particles works
well in most cases, and this is the number adopted in this paper to obtain our main results.
Finally, one must set up a termination criterion, and a common one that is also adopted in
this paper is reaching a predefined number, Niter, of iterations.

There are several variations around the basic PSO algorithm described above that seek
to achieve different trade-offs between the exploration and exploitation (i.e., convergence)
phases of the search. Delaying the onset of the exploitation phase leads to a higher compu-
tational cost for the search but also improves the chances of finding the global maximum
due to a more thorough exploration of the search space. One such variant of PSO, and
the one that is used in this paper, is Local Best PSO, which introduces the concept of local
best (lbest) positions, plocal,i(t), to replace gbest in the velocity update equation. The lbest
position is defined by

f (plocal,i(t)) = max
j∈Ni

f (pj(t)) , (38)

where Ni is a set of particle indices called the neighborhood of particle i. The scheme used
to set up Ni is called the swarm topology. Note that if Ni is set to be the entire swarm for
each i, one recovers the gbest PSO described earlier. In this paper, we use the so-called ring
topology, in which the particle indices are arranged on a closed circle and the neighborhood
of each particle is the set of adjacent indices on both sides. For example, in our case, we
set the neighborhood size to 3, which means that only the particles immediately adjacent
on either side constitute the neighborhood of a given particle. By using lbest instead of
gbest in the velocity update equation, the information about the latter propagates only
indirectly, through neighbors, and more slowly through the swarm. This extends the
exploration phase of the search, generally leading to better performance for more rugged
fitness functions.

To boost the performance of PSO, or any stochastic optimization algorithm, a straight-
forward approach is to carry out Nruns ≥ 1 parallel runs of PSO with independent pseu-
dorandom number streams, where Nruns depends on the specific computational resources
at hand, and to choose the final solution to be the one from the run that finds the best
fitness value. If the probability of any one run succeeding in a specified region around
the global maximum is p, the probability that all independent runs will fail to converge,
(1 − p)Nruns , drops exponentially quickly with increasing Nruns. Thus, one can tune PSO to
perform moderately well in any one run and simply use the parallel runs strategy to obtain
significantly better overall performance.
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For parametric inference problems, such as the one being considered here, there
exists [44] an objective strategy for the tuning of PSO. This is carried out using simulated
data realizations, each containing the same true signal. If PSO is successful in locating
the global maximum of the fitness function in a given realization, the fitness value that it
finds must be higher than the value at the location of the true signal in the search space.
Hence, one can measure the fraction of realizations in which this condition is satisfied. The
higher this fraction, the better tuned the PSO is. In most cases, the tuning process involves
searching over combinations of Niter and Nruns alone, keeping all other PSO parameters
fixed. We provide more details about the choice of Niter and Nruns in Section 5.

5. Results

Given the computational resources available to us and the current level of paralleliza-
tion used in our code, we have limited our analysis to 0.5 year data in this paper. For similar
reasons, the same duration has been used widely in other studies [36,65,66] for the explo-
ration of EMRI data analysis methods. We have used the LDC-1.2 [58] signal as our injected
signal but adjust the SNR to have three different values, SNR ∈ {50, 40, 30}, by setting the
distance D to 1.535300 Gpc, 1.919125 Gpc, and 2.558834 Gpc, respectively. As a result, our
injected signal has the same source parameters, given in Table 2, as used in LDC-1.2 [58],
except the distance. The noise realization in the data analyzed here was obtained as the
difference between the data and the signal provided in LDC-1.2 [58]. Thus, both our in-
jected signal and the noise realization are identical to the ones used in LDC-1.2 [58], except
for (a) distance scaling and (b) the reduction of the data duration from 2 years to 6 months.
Figure 3 shows the data and the injected signal with SNR = 30 in the Fourier domain for
the TDI A and E combinations. We see that, at this SNR, the signal is quite weak in the
Fourier domain relative to the noise.

Figure 3. Magnitudes of the FFTs of the injected signal with SNR = 30 in blue and the corresponding
data in red, where the TDI A combination is illustrated in the left panel and the TDI E combination is
displayed in the right panel. See their definitions in Equation (1).

We carry out the 10-dimensional PSO search with the search ranges for the signal
parameters set to the values given in Table 2. The search range for a given parameter is
expressed as a multiple of σ, where σ is the CRLB on the estimation error for that parameter
at the specified signal SNR. Thus, it is important to note that the search range expands with
the lowering of the SNR since this increases σ. In effect, since a lower SNR and larger search
range make it more difficult to locate the global maximum, the strength of the challenge
posed to the data analysis method is controlled in this study using the SNR as a parameter.
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Following the strategy outlined in Section 4, there are two primary tunable hyperpa-
rameters for our PSO-based search, the number Nruns of independent runs of PSO and the
number of iterations, Niter, per run. However, due to the limitations of the computational
resources, we carried out the very coarse tuning of these parameters based on a small set of
runs and set Niter = 10,000 and Nruns = 6. Moreover, we were unable to run all 6 runs in
parallel and had to carry them out serially. In order to save computational resources, we
terminated the sequence of runs once, as explained in Section 4; a successful one appeared
in which the fitness value exceeded that at the true location. As a result, the actual Nruns
was 3, 1, 3 for SNR ∈ {50, 40, 30}, respectively. It is important to note that since we did not
choose the best of 6 runs, we may not have obtained the best possible fitness values.

The results obtained from the 10-dimensional search applied to the three data real-
izations described above are summarized in Table 3. We also report the square root of the
fitness values, which provide the estimated SNRs, at the true signal location for both the
13-dimensional fitness function, given by Equation (26) and the 10-dimensional one (c.f.,
Section 3.2), in which the three initial angles are maximized over numerically using the
Nelder–Mead method. Since the global maximum over the three initial angles always shifts
from their true values due to noise in the data, the 10-dimensional search always finds a
better estimated SNR, as observed. Further details regarding Table 3 are noted below.

1. As noted above, one expects a successful PSO search to find a 10-dimensional fitness
value that is larger than the one at the true location. We show the corresponding
estimated SNR from the successful run in bold.

2. The parameter estimation errors listed in the table are evaluated based on the best-fit
locations of the successful PSO search. For the parameters µ, M, λ, S/M2, e0, and
ν0, we show their estimation errors, defined as the difference between the true and
best-fit values, relative to their respective CRLB errors (evaluated at the true location),
while the error is shown relative to its true value for D. For the parameters θs, ϕs, θk,
and ϕk, we simply show the error itself.

3. Having obtained the 10-dimensional best-fit location of the successful PSO search,
which uses templates restricted to the 10 loudest harmonics, we rerun the 3-dimensional
local maximization at this location using all 25 harmonics to estimate the three initial
angles, ϕ0, γ̃0, α0. This is done to reveal the influence of the weak harmonics beyond
the loudest 10 on the initial angles. The estimated initial angles are then used in the
estimation of the distance D using Equation (27).

4. With the 14-dimensional recovered parameters in hand, the estimated TDI A and E
signals can be obtained by rerunning Equations (2) and (1). The overlap between the
estimated A and E signals and the corresponding true signals, computed separately
and in combination as defined in Equation (15), are reported as the quantities ffA, ffE,
and ffAE.

Table 3. Outputs from the PSO searches for different injected signal SNRs. For each of the 6 ODE-
related parameters, we show two numbers (with σ denoting the standard deviation): (top) the
difference between the estimated and true parameter values relative to the 1σ FIM error for that
parameter, and (bottom) the corresponding 1σ FIM error. Further details regarding the table are
discussed in Section 5.

SNR 50 SNR 40 SNR 30

Square root of fitness values

True 13-dimensional
location 48.737520 38.994759 29.251997

True 10-dimensional
location 48.794305 39.02358 29.260434

mBest location from
PSO

47.468231
39.266858
48.888190

39.176120 24.556344
29.525760
23.467734
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Table 3. Cont.

SNR 50 SNR 40 SNR 30

Parameter estimation errors

µ(M⊙) −1.060
4.872139 ×10−2

1.048
6.090174 ×10−2

0.311
8.120229 ×10−2

M(M⊙) 0.875
3.582834 ×103

−1.406
4.478545 ×103

−0.376
5.971391 ×103

λ(rad) −0.905
9.471417 ×10−3

1.349
1.183927 ×10−2

0.368
1.578570 ×10−2

S/M2 −0.915
3.153740 ×10−3

1.334
3.942175 ×10−3

0.363
5.256233 ×10−3

e0
1.534

1.842612 ×10−4
0.604

2.303266 ×10−4
−0.057

3.071021 ×10−4

ν0(mHz) 0.117
3.202842 ×10−6

−2.215
4.003554 ×10−6

−0.150
5.338071 ×10−6

D(Gpc) −0.015 −0.008 −0.006
θs(rad) 0.059 0.045 0.065
ϕs(rad) 0.037 0.093 0.137
θk(rad) 0.004 −0.186 0.983
ϕk(rad) 0.044 3.426 −1.482

Overlap between the estimated and true signals

ffA −0.991000 0.983481 −0.982155
ffE −0.981498 0.968413 −0.954917

ffAE −0.987463 0.977902 −0.972034

We see from Table 3 that the estimated errors of the parameters µ, M, λ, S/M2, e0,
ν0 are within ∼ 1σ level, parameter D within ∼ %1 level, and the angles of sky locations
θs, ϕs are within ∼10−2 radians level for all three SNRs. The errors in the parameters θk,
ϕk for SNR ∈ {40, 30} are larger, which may result from secondary peaks in the fitness,
as described in Section 1. As a complementary measure of the performance, we see that
the overlaps, both individual and combined, between the estimated and injected signals
are ≳97%, which indicates that the signal waveform was estimated well. We observe
that the errors in the parameters related to the ODEs are smaller for the SNR 30 case,
despite the higher difficulty of this search, compared to SNR ∈ {50, 40}. If this is not a
random fluctuation specific to the data realization used, it either indicates the effect of
degenerate secondary peaks in the fitness function, which may be more prominent for
higher SNR signals and could have attracted PSO, or indicates that our current settings for
PSO, governed mainly by computational constraints, may need to be changed to a higher
Niter or Nruns to stabilize its performance.

6. Discussion

We have demonstrated the first application of PSO to the EMRI search problem and
shown that, in the context of a limited search space and reduced data length, it performs
well at reasonable SNR levels. Using three different SNRs ({50, 40, 30}) and a search space
with coordinate ranges limited to 10σ for all parameters except 200σ for ν0, with σ being
the CRLB standard deviation, PSO was able to successfully find the signal, as shown by the
small estimation errors for the parameters that affect the intrinsic phase evolution of the
GW signal and the overlaps between the estimated and true signals. This sets the stage for
the further exploration of the EMRI search problem using PSO-based strategies. Our study,
which is ongoing, also provides useful guidance for hierarchical strategies in terms of the
coordinate ranges to which they should seek to constrain the main search.
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The main innovation in our approach is the lifting of several restrictions and ap-
proximations adopted in other proposed strategies. In particular, we use local numerical
maximization over the three initial angles ϕ0, γ̃0, α0, which obviates the need to severely
restrict the number of harmonics used in the templates and avoids the issues associated
with such restrictions. We only make the reasonable restriction of keeping the 10 loudest
harmonics based on their contribution to the total SNR. Allowing 10 harmonics in the
templates leads to a more stable SNR contribution, as well as the order of the dominant
harmonics across a wider range of parameter values. Implementing certain optimizations
in the implementation of the local maximization makes its computational cost insignificant
compared to the rest of the code.

Besides the high dimensionality of the search space, the main challenge in the EMRI
search is the high degeneracy of the fitness function, with many comparable secondary
peaks due to the superposition of multiple harmonics in the waveform. As discussed in [39],
characterizing this degeneracy is quite challenging and it is difficult to exploit in a search.
One possible approach is to design less degenerate fitness functions by employing [36]
surrogate phenomenological EMRI waveforms [34]. Another approach would be to use
the fact that, like the initial angles, the parameters θk and ϕk only contribute to the time-
independent amplitude of the waveform and use local maximization over them also,
following the code optimization discussed in Section 3.2, leaving a potentially easier 8-
dimensional search for PSO. Such a lower-dimensional search will be considered in our
future work.

A key limitation of our study was the inability to test a much larger number of
PSO iterations or runs due to computational resource constraints. While successful in all
the cases tested here, PSO exhibited somewhat unstable performance by showing better
performance at the lowest SNR that was used. While this could have also been caused by
degeneracies in the EMRI fitness function, a better understanding requires much larger
PSO runs. The computational resources also limited us from studying the case of signals
with weaker SNRs. We have conducted preliminary studies for a much lower SNR of 20
in 0.5 year of data and found that PSO can still detect the signal by obtaining the square
roots of the fitness values (e.g., ≈17), which are well above the ones obtained for pure noise
(e.g., ≈10). However, due to the lack of a sufficient number of iterations and runs, PSO
tends to converge to secondary maxima most of the time and incurs very large parameter
estimation errors. In the future, we will include GPU-based hardware acceleration in our
code to alleviate this problem and push the PSO-based search further, using larger runs.
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