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Abstract: We construct and examine a holonomy-corrected chiral fields model of cosmological
relevance. Specifically, we holonomize the Hamiltonian corresponding to a quintom field scenario
with additional kinetic interaction (governed by the constant chiral metric, mab) on a flat FLRW
background and contrast the resulting model with the corresponding purely classical system. In
particular, it is shown that the single LQC bouncing stage is ensured to be realized, provided the full
chiral kinetic energy function does not change sign during evolution. (As preparation, a particularly
simple k-essence field is examined within the effective LQC scheme; some exact solutions are obtained
in the process.) Additionally, under the said assumption, it is established that the landmark bouncing
mechanism of standard (effective) LQC is still guaranteed to be featured even when taking any finite
number of fields ϕ1, . . . ϕm and mab to be dependent on such fields (the particular zero-potential case
corresponding to a family of simple purely kinetic k-essence multi-field cosmology models).

Keywords: quantum cosmology; chiral fields; k-essence; loop quantum cosmology

1. Introduction

Multi-field cosmology has grown to be a sub-field of its own within theoretical (quan-
tum) cosmology. The gained popularity of such a paradigm is due chiefly to the quite
effective way in which it has managed to accommodate (within a single theoretical frame-
work) such meaningful features as the inflationary scenario, dark matter and dark energy
(see, e.g., [1]). However, it has been shown that, within the standard form of multi-field
cosmology, there are obstructions to the crossing of the phantom divide line (unless the
stability of the model is not considered as a requirement) [2,3]. Partly in order to circumvent
this state of affairs, different types of couplings have been considered within the context of
multi-field cosmology. A particular instance is the so-called standard quintom scenario,
in which a quintessence and a phantom field interact in order to achieve the desired crossing.
Furthermore, in particular instances, the quintom field scenario allows for the avoidance
of the initial singularity by means of a bouncing mechanism (see the review in [2] and the
references therein).

Within the standard multi-field cosmology paradigm, the interaction among the in-
volved scalar fields is assumed to be of a canonical type, i.e., the corresponding Lagrangian
density has the following general form:

Lϕ = −1
2

δabgµν∇µϕa∇νϕb + U(ϕa, ϕb). (1)

A whole new set of possibilities in the multi-field cosmology paradigm is achieved by
generalizing the above Lagrangian in order to include non-canonical interactions among
the scalar fields (the usual quintom field scenario being a very simple particular case),
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where the couplings among the fields are controlled by a symmetric tensor field mab (whose
components, in general, depend on the matter fields, ϕc, although this is usually assumed
to be just a constant symmetric matrix). This new generalized multi-field cosmology
framework is known as chiral cosmology [4,5].

Specifically, the Lagrangian (density) of chiral cosmology is of the following general
form:1

Lch = −1
2

mabgµν∇µϕa∇νϕb + U(ϕa, ϕb). (2)

As can be seen, the chiral cosmology paradigm simply amounts to replacing δab in (1)
with mab (but care should be exercised: as already pointed out, in the most general case, mab
is a tensor field which depends on the fields ϕc—just as gµν depends on the gravitational
potentials defined by the line element). The inclusion of the metric field, mab, of course,
evokes the “internal space”-type frameworks which permeate the gauge theories of particle
physics. This is no coincidence; the chiral cosmology paradigm is indeed inspired by such
theories [4].

An even further generalization was put forward in [6] in order to account for gen-
eral k-essence fields—in which the kinetic term can acquire more general non-canonical
forms [7–9]. The corresponding Lagrangian density has the following general structure:

LG−ch = mabG
(
−1

2
gµν∇µϕa∇νϕb

)
+ U(ϕa, ϕb), (3)

in which G is any function of the following standard kinetic term:

ξab := −1
2

gµν∇µϕa∇νϕb (4)

(note that this idea is reminiscent of f (R) theories, in which the standard gravitational term
R is replaced by an arbitrary function of it; for a review of f (R) theories, see, e.g., [10]).
A multi-field k-essence scenario is achieved by taking mab → δab (whereas the standard
multi-field paradigm is obtained by additionally requiring G to be the identity function).
We will be referring to this more general framework as chiral k-essence cosmology.

On the other hand, it can be shown that certain scalar–tensor theories of gravity (when
viewed in the Einstein frame) give rise to this kind of generalization of standard multi-field
cosmology [11]. Additionally, the use of non-minimal couplings is necessary when scalar
fields are quantized in the presence of non-flat space–time backgrounds [12].

The above remarks provide sufficient motivation for considering the quantum counter-
part of classical theoretical frameworks of the Universe which involve non-canonical fields,
with a focus on describing (at an effective level) its very early stages of evolution. In this
respect, recently, the standard canonical (Wheeler–DeWitt) quantization of some particular
chiral cosmology models has been undertaken (in particular, the flat FLRW (see, e.g., [6,13,14])
and Bianchi type I (see, e.g., [15,16]) backgrounds have been thoroughly studied).

The standard Wheeler–DeWitt quantization program (which dates back to the 1960’s)
has now evolved into the framework known as loop quantum gravity (LQG) [17,18]. This
upgraded Wheeler–DeWitt program has gained considerable attention as a viable candidate
for a quantum theory of gravity. In very succinct terms, LQG is achieved by rewriting
the traditional 1 + 3 ADM formulation of general relativity [19] in terms of a certain type
of connection variables and then quantizing the resulting Hamiltonian framework by
way of techniques akin to gauge theory (rather complete accounts can be found in the
monographs [18,20]).

The implementation of the ideas and methods of LQG in symmetry-reduced min-
isuperspace models is called loop quantum cosmology (LQC) [21,22]. In particular, as a
result of the underlying quantum geometry predicted by LQG, it has been shown that the
loop quantization of the FLRW models leads to an early bouncing stage, which enables
the resolution of the cosmological singularity [21,23]. In order to extract the physics in a
more simple way, an effective scheme (which can be interpreted as a kind of semi-classical
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limit of LQC) has been envisaged [21]. This effective setup has been successfully used to
study the consequences of (a certain type of) loop quantum corrections in cosmological
models. Moreover, it has been shown (via analytical and numerical investigations [24])
that the effective description of the FLRW models reproduces very well the behavior of the
corresponding full-loop quantization of such models.

Given that LQC is in several respects an improvement to traditional Wheeler–DeWitt
quantum cosmology and given the appealing characteristics of the chiral cosmology frame-
work (some of which were highlighted above), it is only natural to attempt to construct a
loop quantum-corrected chiral cosmology paradigm and, of course, to contrast it with its
non-corrected counterparts. A rather direct route to achieve such a comparative investi-
gation in a simple way is to consider only the so-called holonomy corrections, which are
precisely the ones taken into account in the effective scheme of LQC.

The present investigation is therefore chiefly devoted to the implementation of the
effective LQC scheme in the particular chiral cosmology family of models considered
in Ref. [6] (and to performing a corresponding preliminary study of the resulting loop
quantum-corrected framework), which considers quintom fields on a flat FLRW background
(this is carried out in the main part of the manuscript, Section 4). The experience gained
from undertaking such a task will enable us to arrive at a loop quantum correction for any
chiral cosmology modeled on a flat FLRW background and to establish the viability of such
an extended paradigm regarding the landmark feature of LQC—the quantum bounce.

Henceforth, we can assert that the main aim of our investigation is to present a rather
broad and diverse chiral cosmology family consisting of an infinite number of particular
(multi-field) cosmological models, all of which incorporate the celebrated LQC singularity
resolution by means of a bounce. Away from the bounce, the models would rapidly transit,
by construction, to their more standard, non-holonomized counterparts. These features
impart to such a family great potential for addressing issues from (predominantly quantum)
the very early stages to the (highly classical) late epochs.

The manuscript is organized as follows: In Section 2, we recall the loop quantization
effective scheme for the flat FLRW model with a free standard scalar field. As a preparation
for the non-canonical multi-field case, in Section 3, we implement the steps in Section 2
to arrive at an effective formulation for the flat FLRW model in the presence of a simple
k-essence field, obtaining, in passing, some exact solutions. In Section 4, we construct
and study an effective LQC scheme for a certain type of chiral field which the authors
have found to be of sufficient cosmological relevance (and which has been thoroughly
studied in the specialized literature). Aside from discussing the main results obtained,
a general framework which incorporates holonomy corrections to any chiral cosmology
based on a flat FLRW background is presented in Section 5. There, it is established that the
LQC bouncing scenario is ensured to be realized in such an enlarged family, provided a
somewhat mild condition involving the full kinetic energy is satisfied. We consider this
finding to be the main result of our investigation.

2. Effective LQC Dynamics

This brief part is intended only as a quick guide to arriving at an effective formulation
of LQC. Full comprehensive accounts can be found in Refs. [21,22,25].

Recall first that in the ADM formulation of general relativity, it is established that
the full Hamiltonian, H, can be written as the combination H =

∫
Σ

(
NH+ NiHi

)
d3x

(i = 1, 2, 3), where N and Ni are Lagrange multipliers (called lapse and shift, respectively),
which enforce the fulfillment of H = 0 and Hi = 0 (so that the full Hamiltonian, H, is
constrained to vanish), and Σ is the spacelike slice (see, e.g., §1 of Ref. [18]).

Now, when specializing to the flat FLRW spacetime,

ds2 = −N2(t)dt2 + a2(t)
[
dr2 + r2

(
dϑ2 + sin2 ϑdφ2

)]
, (5)
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the Einstein–Hilbert gravitational action,

Sg =
∫
R

∫
Σ

R
√
−g d3x dt =:

∫
R

Lg dt, (6)

leads to the full (particle-like) Lagrangian,

Lg = − 3a3

8πGN

(
ȧ
a

)2
, (7)

where the spatial integration has been carried over a region V of a unit spatial coordinate
volume.

The implementation of a standard canonical analysis to the above Lagrangian frame-
work results in a Hamiltonian system specified by the full Hamiltonian function (see,
e.g., §2 of Ref. [26]),

H = Hg + Hm = −2πGNp2
a

3a
+ Hm, (8)

(where a matter contribution has been added) and the Hamiltonian constraint equation:

−2πGp2
a

3a
+

∂Hm

∂N
= 0 (9)

On the other hand, the Ashtekar–Barbero variables cast general relativity into the
form of a gauge theory, in which phase space is described not by the four metric and its
conjugate momentum but by an SU(2) gauge connection (the so-called Ashtekar–Barbero
connection), Ai

a, and its canonical conjugate field, the densitized triad Ea
i . The canonical

pair has the following Poisson structure:

{Aa
i (x), Ej

b(y)} = 8πGγδ
j
i δ

a
bδ(x, y), (10)

with δ(x, y), the Dirac delta distribution, on the spacelike hypersurface Σ.
When imposing spatial homogeneity and isotropy, the connection and triad fields can

be written as
Ai

a = cV0
oei

a, Ei
a = pV0

√
oq oea

i , (11)

with
{c, p} =

8πGγ

3
, (12)

where oqab is a (auxiliary) flat metric and oea
i and oei

a are a constant triad and co-triad
compatible with oqab, with V0 denoting the volume—with respect to oqab—of the region V
of the spacelike slice in which the variational principle is well defined2.

These connection triad variables and the usual geometrodynamical ones are related via

c = V1/3
0 γȧ, p = V2/3

0 a2. (13)

In an effective description, it is customary to work with the following variables:

β =
c√
|p|

, V = p
3
2 , {β, V} = 4πGγ. (14)

Taking a free standard homogeneous field as matter content, the Hamiltonian above
can be written in terms of these variables as

H(β, V, ϕ, pϕ) = N

[
− 3

8πGγ2 β2V +
p2

ϕ

2V

]
. (15)
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We stress that this is the usual classical Hamiltonian of the flat FLRW in the presence of
a free standard scalar field (as can be readily seen by using relations (13) and (14)), the only
difference being that it is written in terms of the canonical pair (connection triad variables)
(β, V).

Now, the holonomy correction due to the loop quantization is encoded by making the
replacement [21]

β → sin(λβ)

λ
, (16)

in the Hamiltonian (15), where λ2 = 4
√

3πγℓ2
p (with ℓp being the Planck length) is the

smallest eigenvalue of the area operator (consistent with the imposed symmetries) in the
full LQG [18]. The resulting effective Hamiltonian is thus given by

Heff(β, V, ϕ, pϕ) = N

[
− 3

8πGγ2λ2 sin2(λβ)V +
p2

ϕ

2V

]
. (17)

The corresponding equations of motion are (N = 1)

β̇ = 4πGγ
∂Heff
∂V

= − 3
γλ2 sin2(λβ)− 4πGγ

p2
ϕ

2V2 , (18)

V̇ = −4πGγ
∂Heff

∂β
=

3
γλ

V sin(λβ) cos(λβ), (19)

ϕ̇ =
∂Heff
∂pϕ

=
pϕ

V
, (20)

ṗϕ = −∂Heff
∂ϕ

= 0. (21)

Taking into account the corresponding Hamiltonian constraint (i.e., the counterpart of
Equation (9)) and the equation of motion for V, the Friedmann equation is updated to [21]

H2 =

(
V̇

3V

)2

=
8πG

3
ρ

(
1 − ρ

ρc

)
, (22)

where

H :=
ȧ
a
=

V̇
3V

, (23)

is the Hubble parameter, with

ρ =
(ϕ̇)2

2
=

p2
ϕ

2V2 =
3

8πGγ2λ2 sin2(λβ), (24)

and ρc is the maximum value that ρ can take in view of the effective Hamiltonian constraint, i.e.,

ρc =
3

8πGγ2λ2 . (25)

In the loop quantum cosmology of the flat FLRW model with a free standard scalar
field, it is established that

• Range(ρ) = (0, ρc];
• Range(β) =

(
0, π

λ

)
;

• The volume, V, reaches a minimum at β = π
2λ ;

• β is monotonic (in particular, decreasing).

As a consequence of the above statements, a single “Big Bounce” takes place during
the evolution (for details, see, e.g., [21,27]).
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Additionally, the usual Friedmann equation,

H2 =
8πG

3
ρ, (26)

can intuitively be seen as the limiting case λ → 0 (which amounts to ρc → ∞) of the above
modified Friedmann Equation (22).

Note also that in this simplistic view of effective LQC, such a framework is attained
just by making the replacement (16) within the corresponding minisuperspace classical
Hamiltonian (itself written in terms of symmetry-reduced connection variables). As already
stated, the relevance of this simplified avenue to the effective scheme has been supported
time and again in several (analytic and numerical) investigations.

To implement the effective LQC scheme in the chiral cosmology setup, it is therefore
sufficient to first write the minisuperspace Hamiltonian (corresponding to a flat FLRW
background) in terms of the symmetry-reduced holonomy variables with the help of (13)
and then directly carry out the replacement (16) within this Hamiltonian. This will be the
route that is exploited in the present investigation. We will exemplify such a route by first
considering a single k-essence field. In passing, this intermediate step will additionally
serve to (i) view this simple k-essence field as a kind of precursor to the chiral cosmology
paradigm and (ii) aid in interpreting the crucial ingredient of the chiral cosmology paradigm
(the symmetric field mab) as conforming to a specific part of the metric arising in the full
configuration manifold (i.e., full minisuperspace). This last point (ii) has a certain relevance
on its own, since by interpreting mab as a part of the configuration manifold metric, we
are implicitly further geometrizing the chiral cosmology scenario—thus prompting the
use of additional geometric tools perhaps not readily available before. However, this last
treatment will not be carried out in the holonomy-corrected case since the inverse problem
(Hamiltonian framework → Lagrangian framework) is of a quite intricate nature (see,
for instance, [28,29]).

3. Effective Dynamics with a Simple k-Essence Field

Below, in one of the main parts of this section, we consider the particular case of the
effective dynamics of a simple k-essence field with a non-canonical kinetic term of the form
f (ϕ)ϕ̇2/2. Some aspects of this particular kind of family of fields have been studied in [30].

Consider, therefore, a single homogeneous scalar field, ϕ1 = ϕ(t), with a Lagrangian
density (recall (3))

Lk
ϕ = −1

2
m11gµν∇µϕ1∇νϕ1, (27)

where m11 = f (ϕ) in a flat FLRW background.
Then, the corresponding Einstein–Hilbert action,

Sk[g, ϕ] =
1

16πG

∫
dt d3x

√
−g
(

R + Lϕ

)
, (28)

leads (after integration over a finite region of the spacelike slice of unit volume) to the
Lagrangian

Lk(a, ϕ, ȧ, ϕ̇) = − 3a3

8πGN

(
ȧ
a

)2
+

a3 f (ϕ)ϕ̇2

2N
=

1
2

αAB q̇A q̇B, (29)

with q1 = a and q2 = ϕ, where the minisuperspace metric 1
2 αAB is defined by

[αAB] = diag
(
− 3a

4πGN
,

a3 f (ϕ)
N

)
. (30)

We note that (recall that
√−g contains terms which are set equal to unity upon spatial

integration)
1
2

α22 ϕ̇1ϕ̇1 =
√
−gm11ξ11,
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where ξ11 is the standard kinetic term − 1
2 gµν∇µϕ1∇νϕ1 = ϕ̇2/

(
2N2).

We will need below the corresponding Hamiltonian, which is

Hk(a, ϕ, pa, pϕ) = −2πGNp2
a

3a
+

Np2
ϕ

2a3 f (ϕ)
=

1
2

αAB pA pB, (31)

where αAB is the inverse of αAB and is given by

[αAB] = diag
(
−4πGN

3a
,

N
a3 f (ϕ)

)
. (32)

We now look at some more general situations.

3.1. A Further Geometrical Interpretation of the (k-Essence) Chiral Cosmology Scenario

Consider a single homogeneous free field, ϕ1 = ϕ(t), with the Lagrangian density
given by (generalized kinetic term)

LG
ϕ = m11G

(
−1

2
gµν∇µϕ1∇νϕ1

)
. (33)

In the presence of a homogeneous background arising from a diagonal spacetime metric
(not necessarily in the FLRW family),

ds2 = −N2(t)dt2 + A2(t)dx2 + B2(t)dy2 + C2(t)dz2. (34)

The corresponding Einstein–Hilbert action,

SG [g, ϕ] =
1

16πG

∫
dt d3x

√
−g
(

R + LG
ϕ

)
, (35)

leads (after spatial integration) to the Lagrangian

LG(A, B, C, Ȧ, Ḃ, Ċ) = − 3ABC
8πGN

[(
Ȧ
A

)2

+

(
Ḃ
B

)2

+

(
Ċ
C

)2]

+ m11 ABCN G
(

1
2N2 ϕ̇2

)
, (36)

with q1 = A, q2 = B, q3 = C, and q4 = ϕ. We observe that in this more general situation,
a quadratic form is well defined (in coordinates qA) only for qi with i = 1, 2, 3. The “metric”
in minisuperspace would be given by 1

2 αAB, where

[αAB] = diag
(
− 3BC

4πGAN
, − 3AC

4πGBN
, − 3AB

4πGCN
, 0
)

, (37)

which is degenerate.
In a more conventional situation, in order to keep a Riemannian structure for minisu-

perspace, we could just focus on the reduced system defined by the configuration variables
q1, q2, and q3 and set up the Lagrangian framework from there [31,32]. Then, one would
go on to the Hamiltonian framework by implementing the Dirac–Bergmann algorithm
(see, e.g., [33,34])—along with the gauge variable N. However, in the case at hand, it
is not immediately clear how such an algorithm is to be carried out due to the velocity-
dependent term G(ξ11). We can bypass this position (while at the same time retaining the
Riemannian structure) by considering the following. In the context of ordinary classical me-
chanics, m11

√−g G(ξ11) cannot be considered part of the kinetic energy; instead, it should
be viewed as a velocity-dependent potential. Now, in order to have a well-defined (i.e.,
non-degenerate) metric structure in minisuperspace (coordinatized by all four configuration
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variables), we can simply assume G to be analytic and interpret the first-order term, ξ11, in
its Taylor expansion as completing the standard kinetic energy part while at the same time
considering the remaining series term, m11Γ(ξ11), as an additional non-canonical kinetic
component. One could then work with the approximated model resulting from keeping
just some low-degree polynomial of the remaining series. In this case, we would have

[αAB] = diag
(
− 3BC

4πGAN
, − 3AC

4πGBN
, − 3AB

4πGCN
,

ABC
N

)
. (38)

We should state that even by keeping a small polynomial in the aforementioned
remaining series, the inversion of momenta, pA, in terms of velocities, q̇A, could prove to
be impossible.

In the case of several fields, ϕ1, ..., ϕm, the situation is the same. In order to have a
well-defined metric structure, we consider the linear term in ξab of the Taylor expansion
of G(ξab) as completing the quadratic form 1

2 αAB q̇A q̇B while taking the remaining part,
mabΓ(ξab), as a velocity-dependent potential function. The minisuperspace metric is then
given by 1

2 αAB, where

[αAB] =



− 3BC
4πGAN 0 0 0 0 . . . 0

0 − 3AC
4πGBN 0 0 0 . . . 0

0 0 − 3AB
4πGCN 0 0 . . . 0

0 0 0 ABC
N

√−g m11
ABC

N
√−g m12 . . . ABC

N
√−g m1m

0 0 0 ABC
N

√−g m21
ABC

N
√−g m22 . . . ABC

N
√−g m2m

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .
0 0 0 ABC

N
√−g mm1

ABC
N

√−g mm2 . . . ABC
N

√−g mmm


(39)

Observe that mab enters the minisuperspace metric, 1
2 αAB, to satisfy

α3+a 3+bϕ̇aϕ̇b = 2mab
√
−g ξab (no sum). (40)

The situation is unaltered if we let the metric gµν be homogeneous but not necessarily
diagonal. We would simply have

αl+a l+bϕ̇aϕ̇b = 2mab
√
−g ξab (no sum). (41)

where l could take values from one to three, according to the size of the gravitational part
of the metric structure.

To summarize, the consideration of the generalized non-canonical kinetic term mabG(ξab)
in the Lagrangian density (3) has the undesired consequence of heavily modifying the
Riemannian structure of the corresponding minisuperspace (e.g., (36)). In general, such a
modification renders the metric degenerate, and so the associated minisuperspace is no longer
a (pseudo-)Riemannian manifold (if we are to consider the standard minisuperspace variables
as defining a coordinate patch). In order to keep the Riemannian structure, a rewriting of
the Lagrangian framework could be attempted, which in turn could lead to an ordinary
Hamiltonian framework which incorporates a metric structure—which is very desirable
if a standard quantization is to be attempted. A path towards fulfilling this goal in an
approximated way, applicable for all analytic G(ξab), has been delineated above.

For the rest of the paper, we will not have to worry about this issue since we assume G
to be the identity function. In this more restricted case, note that (39) still applies.

On the other hand, by identifying the chiral metric mab as conforming to the part of the
minisuperspace metric αAB consistent with (41), we are purporting a further geometrical
interpretation of mab which always arises within the minisuperspace approximation. It is
evident from (127) that mab plays an important role in the (infinite-dimensional) geometry
of the full gravity–matter configuration space, but it is not straight forward to anticipate
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specifically in what way one should interpret mab in the finite-dimensional geometry
defined by the minisuperspace approximation. Once realizing the very specific block in
which mab enters the minisuperspace metric 1

2 αAB, it is, in principle, possible to extract
valuable information regarding the behavior of the gravitational potentials and chiral
fields simply by further studying the metric structure 1

2 αAB on its own. For instance, one
could implement tools of global differential geometry specially tailored to (constrained)
mechanical systems in order to arrive at meaningful conclusions about the general behavior
of solution curves (see, e.g., [35]).

3.2. Classical Solutions in Connection Variables

Before addressing the effective scheme of LQC, we obtain purely classical exact solu-
tions but using the connection triad variables defined by (13) and (14).

The Hamiltonian (31) can then be rewritten as (N = 1)

Hk(β, ϕ, V, pϕ) = − 3Vβ2

8πGγ2 +
p2

ϕ

2V f (ϕ)
. (42)

The corresponding Hamilton equations are

β̇ = 4πGγ
∂Hk
∂V

= −3β2

γ
, (43)

V̇ = −4πGγ
∂Hk
∂β

=
3Vβ

γ
, (44)

ϕ̇ =
∂Hk
∂pϕ

=
pϕ

V f (ϕ)
, (45)

ṗϕ = −∂Hk
∂ϕ

=
p2

ϕ

2V
f ′(ϕ)
f 2(ϕ)

, (46)

where we have made use of the Hamiltonian constraint in writing the equation for β. Using
Equations (44) and (45) and the Hamiltonian constraint, we can arrive at the Friedmann
equation

H2 =

(
V̇

3V

)2

=
8πG

3
ρk, (47)

where ρk = f (ϕ)ϕ̇2/2.
The Klein–Gordon equation for this non-canonical scalar field is given by

f (ϕ)
(

ϕ̈ +
V̇
V

ϕ̇

)
+

f ′(ϕ)
2

ϕ̇2 = 0, (48)

where a prime denotes differentiation with respect to ϕ.
The solutions for the gravitational variables are (with A being an integration constant)

β(t) =
γ

3t
, (49)

V(t) = At, (50)

where we have fixed the initial condition so that the singularity is reached at t = 0.
From Equations (45) and (46), we have

ṗϕ

pϕ
=

f ′(ϕ)
2 f (ϕ)

ϕ̇, (51)
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so that

pϕ = B
√

f (ϕ), (52)√
f (ϕ)ϕ̇ =

B
V

, (53)

where B is an integration constant. These relations will enable us to obtain solutions for ϕ
and pϕ for particular forms of f (ϕ).

3.2.1. f (ϕ) = wϕm (Sáez–Ballester)

For this case (see [36] for the cosmological significance of this particular model),
Equation (53) is

√
wϕ

m
2 ϕ̇ =

B
At

, (54)

which gives (for m ̸= −2)

ϕ(t) =
[

m + 2
2

(
B

A
√

w
ln |t|+ C√

w

)] 2
m+2

, (55)

with C being an integration constant. Figure 1 shows the behavior of the scalar field for dif-
ferent values of the parameters, while Figure 2 shows the corresponding volume function.
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0.0
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0 2 4 6 8 10

0.00
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0.10

0.15

0.20

0.25

t

ϕ

Figure 1. Behavior of the scalar field (Equation (55)) for different values of m. For the left top panel,
m = 1; for the right top panel, m = 0; and for the bottom panel, m = −1.
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0.01

0.02

0.03

0.04

t

ρ
k

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5
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t
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Figure 2. Behavior of the energy density, ρk, and the volume function, V, (Equation (55)). We can
immediately spot the cosmological singularity.

For m = −2, we obtain

ϕ(t) =
(

2√
w

(
B
A ln |t|+ C

)) 1
2
, (56)

where C is an integration constant. In Figure 3, we depict the scalar field given by
Equation (56).

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

1.2

t

ϕ

Figure 3. Behavior of the scalar field given by Equation (56).

3.2.2. f (ϕ) = emϕ

In this case, the relation (53) is given by

e
m
2 ϕϕ̇ =

B
At

, (57)

which gives (for m ̸= 0)

ϕ(t) =
2
m

ln
(

mB
2A ln |t|+ mC

2

)
, (58)

where C is an integration constant. The behavior of this scalar field is shown in Figure 4.
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0 2 4 6 8 10
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-1.0

-0.5

t

ϕ

Figure 4. Plot of the scalar field specified by Equation (58) for a given set of values.

For completeness, we consider the m = 0 case (standard free homogenous field).
We obtain

ϕ(t) =
B
A ln |t|+ C, (59)

with C being a constant arising from the integration. In Figure 5, we show how the scalar
field evolves as a function of t, as given by Equation (59).

0 2 4 6 8 10
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

t

ϕ

Figure 5. We can see how the scalar field given by Equation (59) evolves as a function of t.

3.3. Holonomized Hamiltonian

By implementing the replacement (16) within the Hamiltonian (42), we obtain (fixing
N = 1)

Heff
k (β, ϕ, V, pϕ) =

p2
ϕ

2V f (ϕ)
− 3V sin2(λβ)

8πGγ2λ2 . (60)

The corresponding Hamilton equations are

β̇ = 4πGγ
∂Hk
∂V

= − 3
γλ2 sin2(λβ), (61)

V̇ = −4πGγ
∂Hk
∂β

=
3V
γλ

sin(λβ) cos(λβ), (62)

ϕ̇ =
∂Hk
∂pϕ

=
pϕ

V f (ϕ)
, (63)

ṗϕ = −∂Hk
∂ϕ

=
p2

ϕ

2V
f ′(ϕ)
f 2(ϕ)

, (64)

where we have used the Hamiltonian constraint in writing Equation (61).
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From Equation (63) and the Hamiltonian constraint, we can observe that the energy
density function ρk = f (ϕ)ϕ̇2/2 is bounded; its maximum value is ρc (the same as for a
standard field).

The corresponding Friedmann equation is

V̇
3V

=
ȧ
a
= H2 =

8πG
3

ρk

(
1 − ρk

ρc

)
. (65)

We observe from Equation (62) that a minimum in the volume function is reached at
the time, tc, at which ρk(tc) = ρc (the bounce takes place at tc). We also note that for the
k-essence field considered here, the critical value, ρc, corresponds to a maximum in the
effective density function, ρk, as in the usual canonical case.

In a recent work [37], a more general k-essence model than the one presented in this
part is studied from a qualitative point of view by directly replacing ρ in (22) with the (highly
exotic) energy density of the k-essence field, obtaining an equation analogous to (65). Recall,
however, that (22) is obtained in effective LQC from the corresponding (holonomized) Hamil-
tonian framework. But, as already discussed, an “out-of-the-box” ordinary Hamiltonian
framework is not available for more general forms of k-essence, so additional care should
be taken in those cases. In any case, it would be safer to arrive at the modified Friedmann
equation from the (previously constructed) holonomized Hamiltonian framework.

We now proceed to solve the equations of motion (61)–(64). The equation for β is
decoupled from the system and is the same as in the standard case. We have

β(t) =
1
λ

arccot
(

3t
γλ

)
, (66)

where we have set β(0) = π
2λ so that V̇(β = π

2λ ) = 0 (which corresponds to a minimum in
the volume function); that is, the bounce takes place at t0 = 0.

The equation for the volume function is also the same as in the standard case. By
substituting the solution for β into Equation (62), we obtain

V(t) =
V0

γλ

√
9t2 + γ2λ2. (67)

where V0 > 0 is the volume at the bounce.
We observe that Equations (63) and (64) are the same as in the classical case, so we have

ṗϕ

pϕ
=

f ′(ϕ)
2 f (ϕ)

ϕ̇; (68)

pϕ = B
√

f (ϕ); (69)√
f (ϕ)ϕ̇ =

B
V

. (70)

where B is an integration constant.
In the remaining part of this section, we exemplify our general findings regarding the

initial bouncing scenario by considering the two specific forms for the function f (ϕ) which
were dealt with in the purely classical case and make a depiction of such a mechanism with
the help of some simple plots in arbitrary units. No additional study will be carried out
since, as already stated, the main aim of this brief part was just to warm up for the more
demanding chiral case—which will be tackled in the next section.
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3.3.1. f (ϕ) = wϕm (Sáez–Ballester)

For this case, Equation (70) takes the form

√
wϕm ϕ̇ =

Bγλ

V0
√

9t2 + γ2λ2
, (71)

which can be integrated to give (for m ̸= −2)

ϕ(t) =

γλ(m + 2)
(

3 V0
γλ

√
wC + B ln

∣∣∣3t +
√

9t2 + γ2λ2
∣∣∣)

6V0
√

w


2

m+2

, (72)

with C being an integration constant. The corresponding volume function is depicted In
Figure 6. In Figure 7, we show the behavior of the energy density for the solution given in
Equation (72).
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t

ρ

-1.0 -0.5 0.0 0.5 1.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

t

V

Figure 6. Energy density for the scalar field given by Equation (72). Also, the volume function is
depicted. Notice the bouncing scenario.

Figure 7. Overall behavior of the energy density for the scalar field given by Equation (72)
(arbitrary units).

For m = −2, we obtain

ϕ(t) = eiC

(
1 − 3t√

9t2 + γ2λ2

) iγλB√
26V0
(

1 +
3t√

9t2 + γ2λ2

)− iγλB√
26V0

. (73)
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In Figure 8, we have plotted the energy density corresponding to the solution for the scalar
field given by Equation (73).

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

t

ρ
k

Figure 8. Energy density for the scalar field given by Equation (73). We have choosen B and C to
be imaginary.

3.3.2. f (ϕ) = emϕ

Here, relation (70) takes the form

e
m
2 ϕϕ̇ =

γλB
V0
√

9t2 + γ2λ2
, (74)

which, upon integration, gives

ϕ(t) =
2
m

{
ln
[

γλmB
6V0

ln
∣∣∣∣3t +

√
9t2 + γ2λ2

∣∣∣∣+ mC
2

]}
, (75)

where C is an integration constant. In Figure 9 below, the general behavior of the en-
ergy density function is portrayed (with the help of the exact solutions obtained above).
As already emphasized in the general analysis of the equations of motion, the bouncing
mechanism is featured.

We obviate the case m = 0 since it corresponds to the free standard one, which has
been extensively studied within the LQC community.

Figure 9. Generic behavior of the energy density for the scalar field given by Equation (75)
(arbitrary units).
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4. Chiral Fields in Effective LQC
4.1. Standard (Semi-)Classical and Quantum Treatments

We consider now a chiral cosmology model defined by two homogeneous scalar fields,
ϕ1 = ϕ and ϕ2 = ψ, interacting on a flat FLRW background according to the Lagrangian density

Lq
ϕ,ψ = −1

2
mabgµν∇µϕa∇νϕb + V1e−λ1ϕ + V2e−λ2ψ, (76)

with V1, V2 ∈ R, λ1, λ2 being strictly positive numbers and (m12 ∈ R)

[mab] =

[
1 m12

m12 −1

]
. (77)

We also consider a barotropic equation of state for the chiral fields,

P = ωρ, (78)

where (recall that some quantities in
√−g are to be set equal to unity upon integration of

the spatial slice)

P =
√
−g
(

mabξab − U(ϕ, ψ)
)

(79)

is the pressure and
ρ =

√
−g
(

mabξab + U(ϕ, ψ)
)

(80)

is the energy density (with ξab being the standard kinetic term (4)). Note that both quantities
are the natural generalizations to chiral fields of the standard scalar field pressure and
energy density.

The usual Einstein–Hilbert action,

Sq[g, ϕ, ψ] =
1

16πG

∫
dt d3x

√
−g
(

R + Lq
ϕ

)
, (81)

leads (after spatial integration) to the particle-like Lagrangian

Lq(a, ϕ, ψ, ȧ, ϕ̇, ψ̇) = − 3a3

8πGN

(
ȧ
a

)2
+

a3

2N

[
ϕ̇2 − ψ̇2 + 2m12ϕ̇ψ̇

]
− a3N

(
V1e−λ1ϕ + V2e−λ2ψ

)
(82)

=
1
2

αAB q̇A q̇B − U(qA),

where q1 = a, q2 = ϕ, q3 = ψ, and

[αAB] =

−
3a

4πGN 0 0
0 a3

N m12
a3

N
0 m12

a3

N − a3

N

. (83)

We observe that, in accordance with (41), the chiral ingredient mab enters the minisuper-
space metric 1

2 αAB as (recall that
√−g contains terms which are set equal to unity upon

spatial integration)

1
2

α1+a 1+b ϕ̇aϕ̇b = mab
√
−g ξab (no sum).

The (particle-like) Hamiltonian corresponding to (82) is therefore given by
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Hq(a, ϕ, ψ, pa, pϕ, pψ) =
N

2a3

{
−4πGa2 p2

a
3

+
p2

ϕ − p2
ψ + 2m12 pϕ pψ

(1 + m2
12)

+ 2a6
(

V1e−λ1ϕ + V2e−λ2ψ
)}

(84)

=
1
2

αAB pA pB + U(qA),

with

[αAB] =


− 4πGN

3a 0 0
0 N

a3(1+m2
12)

Nm12
a3(1+m12)2

0 Nm12
a3(1+m12)2 − N

a3(1+m12)2

. (85)

Three somewhat large classes of model families associated with both the classical and
quantum scenarios given by this Hamiltonian system have been carefully examined in [6].
There, the relation

m12 =
λ1λ2

6

1 ±

√
1 −

(
6

λ1λ2

)2
 (86)

was imposed so that some families of classical solutions could be found in a closed, ex-
act form. Although we will not be primarily concerned with purely classical analytical
solutions in the rest of this paper, we will comply with such relations when generating
numerical solutions, exemplifying the behavior regarding the bouncing mechanism of the
corresponding holonomized framework.

The Hamilton equations for the phase-space dynamical variables (a, ϕ, ψ, pa, pϕ, pψ)
are (N = 1)

ȧ = −4πG
3

pa

a
, (87)

ϕ̇ =
1

a3
(
1 + m2

12
) (pϕ + m12 pψ

)
, (88)

ψ̇ =
1

a3
(
1 + m2

12
) (pψ − m12 pψ

)
, (89)

ṗa = −4πGp2
a

3a2 − 6a2
(

V1e−λ1ϕ + V2e−λ2ψ
)

, (90)

ṗϕ = λ1V1a3e−λ1ϕ, (91)

ṗψ = λ1V2a3e−λ2ψ. (92)

For completeness, we present the starting point of the standard quantum and semi-
classical dynamics associated with this Hamiltonian system.

The usual replacement pA → −i∂qA (h̄ = 1) leads to the (naive-factor-ordered)
Wheeler–DeWitt equation:

ĤqΨ(a, ϕ, ψ) =
1
2

[
4πGa2

3a
∂2

a +
−∂2

ϕ + ∂2
ψ − 2m12∂ϕ∂ψ

(1 + m2
12)a3

+ 2a3
(

V1e−λ1ϕ + V2e−λ2ψ
)]

Ψ(a, ϕ, ψ) = 0. (93)

In ordinary quantum mechanics, it is well known that this usual prescription can lead
to incorrect results if the coordinates used are not ones in which the configuration space
metric takes the flat form 1

2 αAB = δAB. In a not necessarily flat configuration space, using
a general coordinate system, it is safest to quantize using the Laplace–Beltrami operator
directly (see, e.g., [38]) ∆LB, which is defined by

∆LB =
1√
|g|

∂

∂uA

(√
|g|gAB ∂

∂uB

)
, g = det(gAB) (94)



Universe 2024, 10, 88 18 of 31

where gAB is the metric field on the considered (pseudo-)Riemannian manifold (in a chart
with local coordinates uA). The use of the Laplace–Beltrami operator in connection with
the quantization of the gravitational field can be traced back to [39] (a recent discussion on
the matter can be found in [40]). Note the prominent role played by the metric structure of
the configuration manifold regarding quantization (this is quite often overlooked). If no
metric structure is available in minisuperspace, one would run into serious difficulties
when trying to setup the associated standard quantization scheme.

Specifically, the quantization is achieved by the following replacement (which reduces
to the usual formula for 1

2 αAB = δAB):

H = K + U → Ĥ = −∆LB + U. (95)

The corresponding Wheeler–DeWitt equation associated with the Hamiltonian (84)
takes the slightly more general form

ĤqΨ(a, ϕ, ψ) =
1
2

[
4πG

3a
∂2

a +
1

(1 + m2
12)a3

[
−∂2

ϕ + ∂2
ψ − 2m12∂ϕ∂ψ

]
+

10πG
3a2 ∂a

+2a3
(

V1e−λ1ϕ + V2e−λ2ψ
)]

Ψ(a, ϕ, ψ) = 0. (96)

As we can notice, the only difference from the naive quantum prescription lies in the
additional ∂a-term.

As is well known [41], the semi-classical scheme of standard quantum mechanics
can be achieved by implementing the so-called eikonal approximation, i.e., by assuming
Ψ(qA) = exp

(
iS(qA)/h̄

)
, with S(qA) = S0(qA) + i/h̄S1(qA) + (i/h̄)2S2(qA) + ..., and keep-

ing terms up to a desired order in h̄. The zeroth-order approximation of (93) is given by

(∇S0)
2 + U(qA) =

1
2

αAB(∂AS0)(∂BS0) + U(qA) = 0 (97)

1
2

[
−4πG

3a
(∂aS0)

2 +
1

(1 + m2
12)a3

[
(∂ϕS0)

2 − (∂ψS0)
2 + 2m12(∂ϕS0)(∂ψS0)

]
+2a3

(
V1e−λ1ϕ + V2e−λ2ψ

)
S0

]
= 0, (98)

whereas the more general case (96) is approximated as

1
2

[
−4πG

3a
(∂aS0)

2 +
1

(1 + m2
12)a3

[
(∂ϕS0)

2 − (∂ψS0)
2 + 2m12(∂ϕS0)(∂ψS0)

]
− 10πG

3a2 ∂aS0

+2a3
(

V1e−λ1ϕ + V2e−λ2ψ
)

S0

]
= 0. (99)

Needless to say, these Hamilton–Jacobi-like equations are extremely difficult to solve ana-
lytically.

A standard quantum and semi-classical analysis of the chiral model under considera-
tion can be achieved by studying Equations (96) and (99), respectively. As already stated,
some quantum versions of the present model have already been considered in some recent
investigations, so we proceed directly with the inclusion of holonomy corrections due
to LQC.

4.2. Holonomized Chiral Cosmology

In the connection triad variables defined by (13) and (14), the Hamiltonian (84) is
written as (N = 1)

Hq(β, ϕ, ψ, V, pϕ, pψ) = − 3Vβ2

8πGγ2 +
p2

ϕ − p2
ψ + 2m12 pϕ pψ

2V(1 + m2
12)

+ V
(

V1e−λ1ϕ + V2e−λ2ψ
)

. (100)
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For ease of comparison with the holonomy-corrected case, we embark on studying the
classical dynamics associated with this Hamiltonian (with these connection triad variables).

The associated equations of motion are

β̇ = 4πGγ
∂Hq

∂V
= 4πGγ

[
− 3β2

8πGγ2 −
p2

ϕ − p2
ψ + 2m12 pϕ pψ

2V2(1 + m2
12)

+ V1e−λ1ϕ + V2e−λ2ψ

]
, (101)

V̇ = −4πGγ
∂Hq

∂β
=

3Vβ

γ
, (102)

ϕ̇ =
∂Hq

∂pϕ
=

pϕ + m12 pψ

V(1 + m2
12)

, (103)

ṗϕ = −
∂Hq

∂ϕ
= λ1V1Ve−λ1ϕ, (104)

ψ̇ =
∂Hq

∂pψ
=

−pψ + m12 pϕ

V(1 + m2
12)

, (105)

ṗψ = −
∂Hq

∂ϕ
= λ2V2Ve−λ2ψ. (106)

Recall that these equations are to be solved by additionally taking into consideration the
corresponding Hamiltonian constraint equation.

From the above equations and the Hamiltonian constraint equation, follow the follow-
ing general remarks:

1. The energy density function,

ρq =
1
2

(
ϕ̇2 − ψ̇2 + 2m12ϕ̇ψ̇

)
+ U(ϕ, ψ)

=
1

2V2(1 + m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
+ V1e−λ1ϕ + V2e−λ2ψ (107)

=
3β2

8πGγ2 , (108)

is only bounded from below, and it is bounded from above provided β is itself bounded
(here, β is not restricted to take values in the interval (0, π/λ) since no holonomization
has been implemented);

2. V → 0 is not forbidden; in fact, it is observed that at V = 0, ρq → ∞ (this is, of course,
a cosmological singularity);

3. β = 0 corresponds to either a maximum of V or a minimum of V, according to whether
the full chiral kinetic term is positive or negative at β = 0, respectively;

4. If the potential function, U(ϕ, ψ), is negative at β = 0, then the volume function
reaches a maximum at β = 0.

The above statements can be summarized by asserting that the cosmological singular-
ity is not generically resolved. However, given that β is not definitely a monotonic function
of time, several bouncing scenarios could occur for specific forms of the potential functions
(since the equations of motion for the fields and their momenta crucially depend on the
potential term). Indeed, in Ref. [6], particular bouncing models were spotted.

The Friedmann equation is the expected one,

H2 =
8πG

3
ρq. (109)
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The equation-of-state parameter ωq is

ωq =
Pq

ρq
(110)

=

1
2V2(1+m2

12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
−
(
V1e−λ1ϕ + V2e−λ2ψ

)
1

2V2(1+m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
+ V1e−λ1ϕ + V2e−λ2ψ

(111)

=

(
1

2V2(1 + m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
−
(

V1e−λ1ϕ + V2e−λ2ψ
))8πGγ2

3β2 . (112)

In the following, we accentuate some characteristics of the dynamics of this Hamil-
tonian system via some numerical solutions (see Figure 10). Figure 11 shows the energy
density, ρq(t), which at t = 0 takes the value ρc = 3π/(32Gγ2).
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Figure 10. Numerical solution of the Hamilton Equations (101)–(106): (a) β(t), (b) V(t), (c) ϕ(t), (d) pϕ(t),
(e) ψ(t), and (f) pψ(t). We use arbitrary units, namely λ = 1, V1 = 0.1, V2 = 1 × 10−5, λ1 = 100, and
λ2 = 50, and the initial condition β(0) = V(0) = π/2λ, ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.



Universe 2024, 10, 88 21 of 31

0.00 0.02 0.04 0.06 0.08 0.10

0.15

0.20

0.25

0.30

t

ρ
(t
)

Figure 11. Numerical solution for the energy density, ρq(t) (Equation (108)). We use arbitrary
units, namely λ = 1, V1 = 0.1, V2 = 1 × 10−5, λ1 = 100, and λ2 = 50, and the initial condition
β(0) = V(0) = π/2λ, ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.

Using the numerical solutions (101)–(106) and the equation of state (110), we find the
behavior of ωq; see Figure 12. In Figure 12, we can see that there is an evolution dominated
by the kinetic energy density, and then it moves to a domain of the potential energy density.
This gives us indications of the existence of an inflationary stage, which will not be analyzed
here. For completeness, Figure 13 shows the number of e-folds, which, for the given time,
does not reach the minimum required limit N ≥ 60.
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Figure 12. Numerical solution for the equation-of-state variable, ωq(t), (Equation (112)). We use
arbitrary units, namely λ = 1, V1 = 0.1, V2 = 1 × 10−5, λ1 = 100, and λ2 = 50, and the initial
condition β(0) = V(0) = π/2λ, ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.
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Figure 13. Numerical solution for the e-folds, N(t) = ln V(t)1/3. We use arbitrary units, namely
λ = 1, V1 = 0.1, V2 = 1× 10−5, λ1 = 100, and λ2 = 50, and the initial condition β(0) = V(0) = π/2λ,
ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.
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The upgraded version of the Hamiltonian (84), which includes holonomy corrections
due to loop quantum gravity, is achieved by implementing the replacement (16). The
holonomy-corrected Hamiltonian is

Heff
q (β, ϕ, ψ, V, pϕ, pψ) = −3V sin2(λβ)

8πGγ2λ2 +
p2

ϕ − p2
ψ + 2m12 pϕ pψ

2V(1 + m2
12)

+ V
(

V1e−λ1ϕ + V2e−λ2ψ
)

. (113)

We proceed now to study the corrected dynamics emanating from this holonomized
Hamiltonian, taking into consideration the two cases which were studied above from
standard perspectives.

The equations of motion associated with the Hamiltonian (113) (to be complemented
with the corresponding Hamiltonian constraint equation) are given by

β̇ = 4πGγ
∂Heff

q

∂V
= 4πGγ

[
−3 sin2(λβ)

8πGγ2λ2 −
p2

ϕ − p2
ψ + 2m12 pϕ pψ

2V2(1 + m2
12)

+ V1e−λ1ϕ + V2e−λ2ψ

]
(114)

V̇ = −4πGγ
∂Heff

q

∂β
=

3V
γλ

sin(λβ) cos(λβ) (115)

ϕ̇ =
∂Heff

q

∂pϕ
=

pϕ + m12 pψ

V(1 + m2
12)

(116)

ṗϕ = −
∂Heff

q

∂ϕ
= λ1V1Ve−λ1ϕ (117)

ψ̇ =
∂Heff

q

∂pψ
=

−pψ + m12 pϕ

V(1 + m2
12)

(118)

ṗψ = −
∂Heff

q

∂ψ
= λ2V2Ve−λ2ψ (119)

From the above equations and the Hamiltonian constraint equation, it follows that:

1. The energy density function,

ρeff
q =

1
2

(
ϕ̇2 − ψ̇2 + 2m12ϕ̇ψ̇

)
+ U(ϕ, ψ)

=
1

2V2(1 + m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
+ V1e−λ1ϕ + V2e−λ2ψ (120)

=
3 sin2(λβ)

8πGγ2λ2 , (121)

takes values in the range [0, ρc], with ρc = 3/(8πGγ2λ2) (the same critical density
featured in (22) in the standard case);

2. The function β is a monotonic function of time provided that

p2
ϕ − p2

ψ + 2m12 pϕ pψ ≥ 0 or p2
ϕ − p2

ψ + 2m12 pϕ pψ ≤ 0 (122)

is fulfilled, in which case, the maximum ρc is attained only once for solution curves
lying at the surface of phase space defined by a specific condition;

3. In the case at hand, a simple sufficient condition for the first relation in (122) to be
satisfied is V1, V2 < 0;

4. Provided (122) is fulfilled during evolution, the volume function reaches a minimum
at β = π

2λ —which corresponds to ρc—and it is attained only once, given that the image
of β is in the interval (0, π/λ).

These remarks can be summarized by stating that, if (122) is guaranteed, the initial
singularity is removed by means of a bouncing scenario unfolding at t = tc, with β(tc) =

π
2λ

and ρeff
q (tc) = ρc. This conclusion is still valid in the free case. We note that a negative
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definite potential ensures the first inequality in (122) (whereas the fulfillment of the second
inequality in (122) implies that the potential energy is positive during evolution).

We highlight that if (122) is not fulfilled during evolution, it is still the case that the
energy density function takes values in the interval [0, ρc] (so V cannot take the value zero
during evolution) and that the critical points of V are the ones for which β = π/(2λ). How-
ever, since in this situation β is not ensured to be monotonic, several bouncing scenarios
could arise.

The modified Friedmann equation is now given by

H2 =
8πG

3
ρeff

q

(
1 −

ρeff
q

ρc

)
. (123)

We observe that this equation incorporates, in a simple way, the observations stated above
regarding the occurrence of bouncing stages (which are always associated with the attain-
ment of the maximum energy density, ρeff = ρc).

The equation-of-state parameter ωeff
q is given by

ωeff
q =

Peff
q

ρeff
q

(124)

=

1
2V2(1+m2

12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
−
(
V1e−λ1ϕ + V2e−λ2ψ

)
1

2V2(1+m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
+ V1e−λ1ϕ + V2e−λ2ψ

(125)

=

(
1

2V2(1 + m2
12)

[
p2

ϕ − p2
ψ + 2m12 pϕ pψ

]
−
(

V1e−λ1ϕ + V2e−λ2ψ
)) 8πGγ2λ2

3 sin2(λβ)
. (126)

4.2.1. The First Case

In this case, we will take λ1, λ2 >
√

6, in addition to taking the following initial condi-
tions: β(0) = π/2λ, v(0) = π/2λ, ϕ(0) = Pϕ(0) = ψ(0) = Pψ(0) = 0.1. Figure 14 shows
some numerical solutions for the dynamical variables (β(t), v(t), ϕ(t), Pϕ(t), ψ(t), Pψ(t)).
These solutions exemplify the points mentioned above. It is shown that β(t) is a monotonic
function (in this case, a decreasing function). The bounce is given for t = 0 and corresponds
to the maximum value, ρc, of the energy density; see Figure 15a.
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Figure 14. Cont.
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Figure 14. Numerical solution of the Hamilton Equations (114)–(119): (a) β(t), (b) v(t), (c) ϕ(t),
(d) pϕ(t), (e) ψ(t), and (f) pψ(t). The bounce is clearly noticeable in the behavior of the volume
function. It was set to take place at tc = 0. We use arbitrary units, namely λ = 1, V1 = 0.1,
V2 = 1 × 10−5, λ1 = 100, and λ2 = 50, and the initial condition β(0) = V(0) = π/2λ,
ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.
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Figure 15. Numerical solution for (a) energy density, ρeff
q (t) (Equation (121)), and (b) the equation-of-

state parameter, ωeff
q (Equation (126)). We use arbitrary units, namely λ = 1, V1 = 0.1, V2 = 1 × 10−5,

λ1 = 100, and λ2 = 50, and the initial condition β(0) = V(0) = π/2λ, ϕ(0) = pϕ(0) = ψ(0) =

pψ(0) = 0.1. Observe that the energy density function is bounded, with its maximum value being
achieved precisely at the bounce.

For completeness, we also depict the behavior of the equation-of-state parameter.
Unlike in the case without holonomy corrections, the equation-of-state parameter, ωq,
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(see Figure 15b) indicates that the kinetic energy density dominates the evolution for the
particular numerical solution considered.

4.2.2. The Second Case

In the second case, we will analyze V1, V2 < 0 while complying with the restriction
λ1λ2 >

√
6. Figure 16 shows the numerical solutions (Vi < 0). We can notice that the

behavior of the fields is similar to that in the first case. The bounce was set to take place at
t = 0; β(t) is a monotonic function; and the energy density takes its maximum value, ρc,
precisely at the bounce.
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Figure 16. Numerical solution of the Hamilton Equations (114)–(119): (a) β(t), (b) v(t), (c) ϕ(t), (d) pϕ(t),
(e) ψ(t), and (f) pψ(t). The bounce is clearly noticeable in the behavior of the volume function. It was set
to take place at tc = 0. We use arbitrary units, namely λ = 1, V1 = −0.1, V2 = −1 × 10−5, λ1 = 100,
and λ2 = 50, and the initial condition β(0) = V(0) = π/2λ, ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1.
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Regarding the equation-of-state parameter, ωq, we note that the evolution is also
dominated by the kinetic energy for the particular numerical solution considered (see
Figure 17).
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Figure 17. Numerical solution for (a) energy density, ρeff
q (t) (Equation (121)), and (b) the equation-

of-state parameter, ωeff
q (Equation (126)). We use arbitrary units, namely λ = 1, V1 = −0.1,

V2 = −1 × 10−5, λ1 = 100, and λ2 = 50, and the initial condition β(0) = V(0) = π/2λ,
ϕ(0) = pϕ(0) = ψ(0) = pψ(0) = 0.1. Observe that the energy density function is bounded,
with its maximum value being achieved precisely at the bounce.

5. Summary and Discussion

As a summary of the present work, we make the following remarks.

1. As Section 2 shows, the k-essence paradigm can be viewed as a very particular instance
of the general chiral framework defined by the Lagrangian (127). Also, the chiral
metric, mab, naturally conforms to a very specific part of the full minisuperspace
metric, as (41) shows.

2. In preparation for the main parts of the manuscript, in Section 3, a holonomization
of a FLRW background with a particularly simple k-essence field was performed,
and some exact solutions were found (which were shown to reduce to the standard
classical ones in the limit of a vanishing area gap).

3. In Section 4.2, we constructed a family of holonomy-corrected chiral quintom cos-
mology models. We established that the key single big bounce in the standard LQC
paradigm is achieved provided the full chiral kinetic energy does note change sign
during its evolution (which is ensured, in particular, by taking parameters V1, V2 < 0).
We also analyzed the corresponding equation-of-state parameter.

4. The main objective of Sections 4.2.1 and 4.2.2 was to exemplify the general remarks
given for the holonomy-corrected Hamiltonian system in Section 4.2 via particular
numerical solutions.

A Larger Family of Loop Quantum-Corrected Chiral Models

The experience gained in Sections 3 and 4 allows us to arrive at meaningful general con-
clusions regarding the bouncing scenario for an even broader chiral cosmology paradigm.

Consider a more general family of chiral fields defined by taking the Lagrangian (82)
but with several scalar fields ϕ1, . . . , ϕm and assume additionally that the non-degenerate
chiral metric, mab, is dependent on the scalar fields (i.e., take mab → mab(φ), where φ stands
for the set {ϕ1, . . . , ϕm}). This gives

Lch(a, φ, ȧ, φ̇) = − 3a3

8πGN

(
ȧ
a

)2
+

a3

2N
mab(φ)ϕ̇aϕ̇b − a3NU(φ). (127)
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In this case, the 1
2 αAB is given by particularizing (39)—which is still valid for a general

mab(φ)—to the flat FLRW case, and so the corresponding Hamiltonian framework is well
defined. The Hamiltonian takes the following specific form (for N = 1):

Hch(a, φ, pa, pφ) =
N

2a3

{
−4πGa2 p2

a
3

+ mab(φ)pϕa pϕb + 2a6U(φ)

}
, (128)

where mab(φ) is such that mac(φ)mcb(φ) = δa
b . In terms of connection triad variables, this

Hamiltonian is written as

Hch(β, V, φ, pφ) = − 3Vβ2

8πGγ2 +
mab(φ)

2V
pϕa pϕb + VU(φ). (129)

The holonomy-corrected version of the above Hamiltonian is hence

Heff
ch (β, φ, V, pφ) = −3V sin2(λβ)

8πGγ2λ2 +
mab(φ)

2V
pϕa pϕb + VU(φ), (130)

=: V
[
Ag(β) + Kch(φ, pφ) + U(φ)

]
,

where in the last line we have defined the phase space functions Ag, Kch, and U.
Since we are assuming a well-defined Hamiltonian system (in particular, mab(φ) is a

non-degenerate metric field for the matter sector of the configuration manifold) the energy
density will be given by ρeff

chi = Kch(φ, pφ) +U(φ), so the associated Hamiltonian constraint
equation leads to

0 ≤ ρeff
ch = −Ag =≤ ρc. (131)

Now, the equation of motion for β can be rewritten (with the help of the Hamiltonian
constraint) as

β̇ = 4πG
(

Ag + 2U − ρeff
ch

)
= −8πGKch. (132)

Therefore, β is monotonic provided that, during its evolution, either Kch ≥ 0 or
Kch ≤ 0. Under such an assumption and from the equation of motion for V (which is
the same as in the more restricted case of (84)), it hence follows that the volume function
reaches its minimum at β = π/(2λ) only once. That is to say, the single initial bounce of
standard LQC (the “big bounce”) takes place.

We have thus established the following result.
Regarding the family of holonomy-corrected chiral models defined by (130), if Kch does not

change sign during evolution, then the big bounce of standard LQC is ensured to occur.
Here are some additional remarks directly related to the above result.

1. A negative definite K together with an identically zero U is not consistent with (131),
and such a situation is therefore forbidden.

2. If U is identically zero, K ≥ 0 must be satisfied during evolution, and hence the single
big bounce takes place.

3. The more restrictive situation in which K is positive and definite is, of course, a
particular case of the result established above.

4. If U ≤ 0 is satisfied during evolution, then the big bounce occurs. This includes the
more restrictive situation in which U is negative and definite. Indeed, if U ≤ 0, then
from (131), it follows that K ≥ 0 during evolution.

5. The more restrictive situation in which K is negative and definite (in which case it is
necessary that U > 0 during evolution) is, of course, a particular case of the result
established above.

These remarks should help in the building of sensible cosmological models which
ensure the occurrence of the LQC bounce within the considered larger family of holonomy-
corrected chiral cosmology models.
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The corresponding modified Friedmann equation for such a family of chiral models is

H2 =
8πG

3
ρeff

ch

(
1 −

ρeff
ch
ρc

)
, (133)

which, of course, reduces to the standard one in the limit of a vanishing area gap.
The equation-of-state parameter is given by

ωeff
ch =

peff
ch

ρeff
ch

=
Kch − U
Kch + U

=
Kch − U
−Ag

. (134)

We stress that the construction of the modified Friedmann equation heavily relies on
the underlying Hamiltonian framework (if the Hamiltonian framework is to be avoided,
then one should start from a well-defined Lagrangian framework for effective LQC), and in
general, it is not safe to pretend that such an equation is obtained just by inserting any
desired ultra-exotic multi-field energy density into (22). (In the more conventional case of
the family of chiral field cosmology models defined by (127), we have just shown that this
replacement can be safely carried out). In particular, care should be taken when dealing
with general k-essence chiral cosmology models since, in this case, an ordinary Hamiltonian
framework might not be immediately available.

Nonetheless, it should be kept in mind that the family put forward here is to be viewed
as only an effective framework—built directly upon the standard LQC effective scheme.
In particular, we remark that this family was not obtained as a certain continuum limit of a
full-loop quantized scenario. Serious issues and drawbacks are expected to be encountered
along this more fundamental avenue. In fact, the usual (effective) LQC framework (which
relies on just a single free standard homogeneous field) has been recently subject to scrutiny due
to some serious caveats regarding, in particular, the evolution of the volume semiclassical
states (see, e.g., [42]).

To sum up, it is concluded that, for the more general family of loop quantum-corrected
chiral models defined by (130) (assuming Kch does not change sign during evolution),
the characteristic LQC single bouncing stage associated with the maximum, ρc, of the
energy density (and with the minimum of the volume function) is always realized. Note
that the particular case U = 0 corresponds to a family of purely kinetic k-essence multi-field
theories whose kinetic term can be written in the form K(φ, φ̇) = V

2N mab(φ)ϕ̇aϕ̇b (which,
in view of the Hamiltonian constraint, must evolve as −Ag).

The importance of the above conclusion relies mostly on the large number of models
contained in the family defined by (130) (since the finite number of homogeneous fields
and the dependence of mab on such fields are left otherwise to be arbitrary). A bit away from
the initial bounce, the family would rapidly transit to the set of standard chiral cosmological
models defined by (128) (since most effects due to quantum gravity would dilute away
during the inflationary epoch [21]). This implies that the inclusion of inflation, dark matter,
and dark energy (and other features like the crossing of the phantom divide line) that has
been achieved by particular multi-field cosmology scenarios (see, e.g., [43–52]) consistent
with (128) can be “glued” to its singularity-free loop quantum-corrected counterpart given
by (130). This gluing would, therefore, comprise a rather robust and considerably diverse
paradigm to study the evolution of the universe from the very early quantum-dominated
epochs up to the late stages.

Therefore, the main feature of the presented broad family of models is the possibility of
addressing issues/tensions pertaining to any of the Universe’s stages of evolution within a
single theoretical framework, with the benefit of automatically incorporating the avoidance
of the initial singularity.

In relation to the remark above, it is instructive to emphasize the way in which this
wide family of holonomy-corrected chiral cosmology models reduces to specific, more
standard cosmological models:
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• Standard models with holonomy corrections:

– A standard quintom scenario in effective LQC is obtained by considering two
scalar fields, φ and ψ, with mab = diag(1,−1) (see, e.g., [53]);

– Inflationary scenarios within effective LQC are obtained by considering one scalar
field, φ, with m11 = 1 and suitable forms for U(φ) (see, e.g., [54]);

– The original effective scheme of LQC is achieved by considering one free scalar
field, φ, with m11 = 1.

• Standard models without holonomy corrections: The replacement sin(λβ) → λβ is
to be performed in the Hamiltonian (130), and β is no longer restricted to take values
only in the range (0, π/λ).

– The standard quintom scenario is obtained by considering only two scalar fields,
φ and ψ, and taking [mab] = diag(1,−1) with suitable potentials, U(φ) and V(ψ).
Relevant potentials are reported in [1].

– The standard quintessence scenario is obtained by considering only one scalar
field, φ, and taking m11 = 1 with a suitable potential, U(φ). Relevant potentials
are reported in [1,55]. The standard ΛCDM model can, of course, be regarded as
a limiting case of the quintessence scenario.

An interesting further widening of the family (130) would be achieved by considering
anisotropic backgrounds, in particular the Bianchi type I and IX models (given their
isotropic limit, their importance in the BKL conjecture [56], and the possible meaningful
role of anisotropies in the very early universe). This could, in principle, be achieved with a
similar method to the one followed here (the effective LQC scheme of some anisotropic
models is already available and has been substantially studied; see, e.g., [57–60]).
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Notes
1 In cosmology, one is usually restricted to homogenous (metric and scalar) fields.
2 The spatial integration featured in the action, when carried over the whole spacelike slice, diverges in the flat case. Due to

homogeneity, we can restrict the action to a compact region V of the spacelike slice.
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