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Abstract: The simplest anisotropic model of the early universe is the one with two conformal factors,
which can be identified as the Kantowski–Sachs metric, or the reduced version of the Bianchi-I metric.
To fit the existing observational data, it is important that the anisotropy is washed out in the early
stage of the evolution. We explore the possible effects of the running cosmological constant on the
dynamics of isotropy in the case of space filled by radiation.
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1. Introduction

Two important theoretical challenges for the theoretical background of modern cos-
mology are to construct the basis for a possible variation of the equation of state of dark
energy and to explain the initial conditions of the universe. One of the important aspects of
the last task is to elaborate a mechanism for making the universe isotropic, at least after the
initial stage of its evolution, which leaves observational traces.

The most natural candidate to be dark energy is the cosmological constant Λ (see,
e.g., [1]), which has a fixed equation of state PΛ = −ρΛ between “pressure” and “energy
density” components. If the future observational data show a deviation from this value,
it may be either interpreted as a non-constant cosmological term or as the presence of a
qualitatively new essence filling the universe, which may be a replacement or a complement
to the cosmological constant. The non-constant cosmological term may be a consequence
of the vacuum quantum effects of matter fields (see, e.g., the review [2] for a qualitative
discussion and further references). The corresponding quantum contributions to the action
of gravity are certainly rather complicated (e.g., necessarily non-polynomial) if expressed
via curvature tensors and nonlocal form factors [3]. This explains why these terms have
never been calculated with the existing quantum field theory techniques based on the
weak field expansions. For the same reason, the presence of these quantum contributions
cannot be ruled out. In this situation, one can rely on the phenomenological approaches,
e.g., based on the assumption of quadratic decoupling in the lower-derivative sector of the
gravitational effective action [4,5], or assuming and using the covariance of the effective
action [6]. All these approaches converge to the IR (low-energy) running of the form

ρΛ(µ) = ρ0
Λ +

3ν

8πG
(
µ2 − µ2

0
)
, (1)

where G is the Newton constant and ρ0
Λ is the value of the density of the cosmological

constant at the fiducial value µ0 of the scale parameter µ. The limits on the magnitude
of the phenomenological parameter ν were established in [7,8] in different types of the
cosmological models based on Equation (1). These limits were obtained by analyzing
cosmic perturbations and making comparison with the observational data. In both cases,
this analysis requires an identification of the artificial scale parameter µ of the minimal
subtraction renormalization scheme with a certain physical quantity, as discussed in [3].
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In the cosmological setting, some physical arguments based on quantum field theory
and also the scale-setting procedure [9] hint at the identification of µ with the Hubble
parameter H. On top of this, the covariance-based arguments imply that, under the
derivative expansion, the effective action cannot be odd in metric derivatives. For the
background cosmological metric, this gives Equation (1), and the same result follows from
the assumption of quadratic IR decoupling in the beta function of ρΛ.

The IR running implies that there is an effective action of gravity that can be sepa-
rated into the nonlocal parts responsible for the IR running of the cosmological constant,
the quantum corrections to the Einstein–Hilbert term (the running of the Newton constant),
and the terms which can be attributed to quantum corrections in the higher-derivative
sectors. The last terms can be directly calculated (see, e.g., [10] for review and references),
but are not very relevant for the late cosmology owing to the Planck suppression of the
higher-derivative terms. Thus, the covariance of the effective action assumes that the
lower-energy sector should satisfy certain conservation laws on its own. In this respect,
the cosmological applications of Equation (1) can be separated into the models admitting
the energy exchange between the vacuum and matter sectors and the ones without such
an exchange. It was argued in [11–14] that the models of the first type are physically
inappropriate for the late universe. On the other hand, the phenomenological limits on
the parameter ν in Equation (1) derived from the metric perturbations and LSS data [7]
are much stronger in these models, as was also confirmed in more recent work [15] by
analyzing another set of cosmological observables (see also [16] and references therein).
According to the most recent work, in the early universe (and certainly not in the later
stages of the evolution) there is no suppression of the creation of particles from the vac-
uum [11–13], making the exchange of energy between different parts of the gravitational
action less relevant. In this case, one can use the basic cosmological models based on the
running [17] instead of the more complicated models of the type considered in [14].

Despite a lot of the relevant information in cosmology being obtained from linear
cosmic perturbations, there is at least one special situation when one needs to perform a
non-perturbative analysis. This concerns the answer to the question of why the initial stage
of the universe can be described by the isotropic metric. To address this problem, one needs
to start with the anisotropic model and see whether and how the isotropy is restored in a
given model of gravity. Since the issue arises for the very early universe, the matter fields
can be described by pure radiation, which is a dominating component in this epoch, even
taking into account the symmetry restoration and the corresponding huge (compared to
the present one) magnitude of the cosmological constant [1,18].

In the present work, we report on the first (at least, up to our knowledge) theoretical
investigation of the effect of the running of the cosmological constant density Equation (1)
on the isotropization of the early universe. For this initial work we use the simplest model
including only radiation and the cosmological constant in the gravity theory based on
Einstein’s GR with the running cosmological constant. It is worthwhile to explain this
point in a more detailed form. Let us remember that we are discussing the very early
universe, where the typical values of the Hubble parameter are greater than the masses,
at least for the lightest massive particles, of the Standard Model. For smaller Hubble
values, the creation of particles from the vacuum is suppressed, as was noted long ago
in [11–13]. On the other hand, even for values of the Hubble parameter of the order of the
electron mass, the Einstein equations tell us that the typical temperature of the CMB is huge
compared to the masses of the heaviest particles of the Standard Model [5] and, probably,
compared to the heaviest possible candidates for the dark matter constituents. Thus, in this
regime, all kinds of matter, including baryonic and dark matter, can be regarded as having
the equation of state of radiation.

The running of the Newton constant and other terms in the action of gravity are not
taken into account, as they are less relevant in the given physical situation in the early
universe, when the energy exchange between the vacuum and matter sectors of the action
are not suppressed [15]. Finally, to explore the anisotropy we use the simplest version of
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the Bianchi type I metric, which is also a version of the Kantowski–Sachs (KS) model [19].
This metric has only two conformal factors and enables one to explore the main qualitative
features of the anisotropic running cosmology in the most economic and explicit way.
It is worth noting that isotropization in the KS cosmological models without running
was previously explored in many papers, including [20–22], where the isotropization of
the metric was first discovered (see also [23–31] for further investigations in different
models and [32,33] for a more complete set of references). It is worth noting the quantum
mechanism of isotropization (see, e.g., [34–36]; there are also many other papers on this
issue and a review in the book [37]).

The rest of this work is organized as follows. In Section 2, we formulate the back-
ground for the anisotropic running cosmology, that includes the identification of scale and
derivation of the main formulas for the dynamics of the conformal factors. Let us note that
the generalization to more complicated metrics, such as the general Bianchi-I, is expected
to be straightforward. Section 3 reports on the numerical results for the dynamics of the
conformal factors. Finally, in Section 4 we draw our first conclusions and discuss possible
extensions of the present work.

2. Theoretical Background of the Anisotropic Running Cosmology

The basis of our investigation will be Einstein’s equations with the cosmological constant,

Gαβ = 8πG Tαβ + Λgαβ, (2)

where gαβ is the metric tensor, the Newton constant G is assumed to be scale-independent,
as explained above, and Λ = 8πGρΛ depends on the scale parameter µ according to
Equation (1). Here, and in what follows, we adopt the units with c = 1 for the speed of
light in a vacuum.

Consider the Kantowski–Sachs metric,

ds2 = − dt2 + a2(t)dr2 + b2(t)
[
dθ2 + sin2 θdϕ2], (3)

where r, θ, and ϕ are spherical coordinates, and a(t) and b(t) are the two scale factors.
The growth of these functions with time characterizes the expansion of the universe. In the
model (3), the radial part can expand differently to the angular parts. Since there are only
two functions, this is one of the simplest possible anisotropic models. The spatial sections
of this model have positive curvature.

The energy–momentum tensor for the perfect fluid is given by

Tαβ =
(
ρ f + p f

)
uαuβ + pgαβ, (4)

where ρ f and p f are, respectively, the energy density and pressure of the fluid and uα is
the four-velocity of the fluid. Since we are interested in the very early universe, the matter
contents may be approximately described by radiation, so the equation of state for our
perfect fluid should be

p f =
ρ f

3
. (5)

One may identify the isotropization of metric (3) in two different ways. In a more
simple way, after some time a(t) would tend to b(t). The second way is to see that the ratio
between the scale factors tends to a constant after some time, showing that the scale factors
would have the same expansion rate.

Using the KS metric (3) in the Einstein tensor on the left-hand side of Equation (2), we
arrive at a system of three ordinary differential equations:
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2ȧḃ
ab

+
ḃ2

b2 +
1
b2 = 8πGρt, (6)

2bb̈ + ḃ2 + 1 = − 8πGb2 pt, (7)

ä
a
+

ȧḃ
ab

+
b̈
b

= − 8πGpt. (8)

In these equations, ρt and pt are the total energy density and pressure, as will be detailed below.
Since there are only two variables, a(t) and b(t), we can restrict the consideration by

Equation (6) and the difference between Equation (8) multiplied by ab2 and Equation (7)
multiplied by a. Thus, the equations which we will work with are1

2bȧḃ + aḃ2 + a = 8πGab2ρt, (9)

b2 ä − abb̈ + bȧḃ − aḃ2 − a = 0. (10)

To simplify notation, in what follows we use units with 8πG/3 = 1. Together with
c = 1, this means physical time t is measured in Planck units. This is certainly a very small
unit, but for the very early universe this may be a useful choice. Concerning the right-hand
side of Equation (2), we meet the sum of the radiation and the contribution of the variable
cosmological constant Equation (1). A useful representation is using “energy density” and
“pressure” of the vacuum. Then, we may arrive at the total energy density and pressure of
the model, in the forms

ρt = ρ f + ρΛ, pt =
1
3

ρ f − ρΛ, (11)

where we used the relation (5) for the radiation and the relation pΛ = −ρΛ. Let us note that
this relation between the “energy density” and “pressure” of the vacuum corresponds to
the natural separation of the effective action of the vacuum into the cosmological constant
sector, Einstein–Hilbert sector, and higher-derivative part. In the isotropic metric case,
this separation, which was already mentioned in the Introduction, can be performed
using global scaling. The cosmological constant and the corresponding nonlocal quantum
corrections should have the same scaling, and this means the equation of state pΛ = −ρΛ.
The interested reader may find more details in [38].

The next problem is an identification of µ that would enable us to use the result in
Equation (1) and then in Equation (11). We shall use the usual choice of µ ∼ H, and the
definition of an average H suggested in [29],

H =
1
3

( ȧ
a
+ 2

ḃ
b

)
. (12)

This choice has several advantages. In the QFT framework, the running of vacuum param-
eters, including the cosmological constant, corresponds to the effect of quantum matter
fields on the external (classical) gravitational background. This means (see, e.g., [10] for the
introduction) that one has to deal with the Feynman diagrams with external gravitational
lines. As was discussed in [4,5], and numerous subsequent publications, the phenomeno-
logically acceptable running presumes that in the cosmological constant sector there is a
quadratic decoupling. Let us stress that this is a phenomenological assumption since such
a decoupling was verified only in the higher-derivative sectors of the vacuum action [10]
(see further references to the original works therein). In our case of an isotropic metric,
there may be lines corresponding to different conformal factors. In case the magnitudes in
the two terms are of the same order, it boils down to the usual identification from [4,5,9].
On the other hand, if the ratios ȧ/a and ḃ/b are very different, the choice Equation (12)
guarantees that the larger version of the Hubble parameter gives a greater contribution,
as required. From the phenomenological side, this definition looks natural and enables one
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to implement the running Equation (1) in the anisotropic setting. The generalization to the
Bianchi-I model is straightforward.

The energy conservation condition gives the equation

ρ̇ f + ˙ρΛ + 3H(p f + ρ f + pΛ + ρΛ) = 0. (13)

In the units we use, the running corresponds to the relation

ρΛ = ρ0
Λ + ν(H2 − H2

0). (14)

Taking in account Equation (5), the equation of state for the cosmological constant, and
the definition of the Hubble parameter (12), after some calculations we find the following
energy conservation Equation (13):

ρ̇ f a3b3 +
4
3

ρ f
(
ȧa2b3 + 2ḃa3b2) +

2ν

9

[
ȧäab3 − ȧ3b3 − 4a3ḃ3

+ 4a3bḃb̈ + 2a2b2(ȧb̈ + äḃ)− 2a2bȧḃ2 − 2ab2 ȧ2ḃ
]
= 0. (15)

For the total energy density of ρt, and using Equation (9), we arrive at the equation

(18 − 4ν)abȧḃ + (9 − 4ν)a2ḃ2 − νb2 ȧ2 + 9a2 = 9a2b2(ρ f + ρ0
Λ − νH2

0
)
. (16)

It is worth noting that here ρ f is the energy density of radiation, which is one of the variables
that has the dynamics to be defined from the equations, and ρ0

Λ is the initial point of the
renormalization group flow.

3. Numerical Results for the Anisotropic Metric

Solving the system of Equations (10), (15), and (16), one can explore the dynamics
of the relevant functions a(t), b(t), and ρ f (t). Let us report on the corresponding numeri-
cal analysis.

Differently from previous work [7], we do not consider cosmic perturbations; however,
the background geometry is more complicated owing to anisotropy. On the other hand, we
know that the metric in the universe filled by radiation becomes isotropic in a very short
time; hence, our interest concerns the very early universe. In this case, the limitations on
the sign and magnitude of the parameter ν, which were established in [7] (also in [8] for
another model with running cosmological constant), do not apply anymore, and hence, we
can assume much greater values of ν, both positive and negative. Following this logic, we
studied different cases, varying the values of the parameters, including ν, in the first place.
One of our targets is the isotropization of metric (3), i.e., evaluation of the ratio b/a.

The results of the numerical analysis can be seen in the figures. Let us first summarize
the general features of different models, characterized by different values of the parameter
ν and different initial data. We found that for the physically relevant solutions, i.e., when
the value of ν is small, both a(t) and b(t) always expand and that ρ f (t) always tends to
zero, starting from a given initial value.

Consider the case when initially the model is strongly anisotropic, that is, we choose
b(t = 0) = 100 and a(t = 0) = 1. For the numerical analysis, we used the initial values

ρ0
Λ = H0 = 1, ȧ(t = 0) = 1, ρ f (t = 0) = 2, (17)

while the value of ḃ(t = 0) varied. In Figures 1 and 2, we show some plots obtained by the
variation of ν. One can see both a(t) and b(t) are rapidly growing with time, and it looks
like the anisotropy does not change significantly, for all values of ν. Let us note that we
took much greater values of |ν| compared to the upper bounds derived in [7,8]. There were
two reasons for this. The first one was that for values of the order 10−6, which are typical
for models of the first type (with the exchange of energy between vacuum and matter [7]),
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the plots are not visually distinguishable from the one for ν = 0. The second reason was
that the isotropization occurs very fast when the values of the Hubble parameter are very
large. Obviously, this makes sense only assuming that the isotropization takes place in
the very early universe, where typical energies are very high. This means, there is no
decoupling of the highest-mass particles, providing small values of ν [4,5] and, therefore,
there is no contradiction in assuming the values of order one. The same thinking concerns
the sign, which was advocated as being positive in [7]. In the effective decoupling-based
framework formulated in [5] (see also [2,3]), this sign is defined by the spin of the highest-
mass particles in the spectrum beyond the Minimal Standard Model. And if the scale of
decoupling dramatically changes, we have to take into account the possibility of fermion
domination and, therefore, consider also the negative values of ν.

Following these arguments, we chose the values for the parameters, initial conditions,
and the values of ν to produce the graphs demonstrating qualitative properties of the
solutions. Figures 1, 2, 3 and 4 show, respectively, the time dependencies a(t), b(t), ρ f (t),
and the ratio b(t)/a(t) for four different large positive values of ν. Similarly, Figures 5–8
show the time variations of the same quantities a(t), b(t), ρ f (t) and b(t)/a(t) for four
different negative values of ν. Furthermore, Figures 9–12, illustrate the behavior of a(t),
b(t), ρ f (t), and b(t)/a(t) for four different positive and negative values of ν. Observing
these plots we can see the general situation, i.e., how the running of the cosmological
constant density may affect the process of isotropization. These general features are
formulated in the next section.

Figure 1. Variation in a(t) for four different positive values of ν.
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Figure 2. Variation in b(t) for four different positive values of ν.

Figure 3. Variation in ρ f (t) for four different positive values of ν.
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Figure 4. Variation in b(t)/a(t) for four different positive values of ν.

Figure 5. Variation in a(t) for four different negative values of ν.



Universe 2024, 10, 83 9 of 17

Figure 6. Variation in b(t) for four different negative values of ν.

Figure 7. Variation in ρ f (t) for four different negative values of ν.
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Figure 8. Variation in b(t)/a(t) for four different negative values of ν.

Figure 9. Variation in a(t) for seven different positive and negative values of ν.
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Figure 10. Variation in b(t) for seven different positive and negative values of ν.

Figure 11. Variation in ρ f (t) for seven different positive and negative values of ν.
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Figure 12. Variation in b(t)/a(t) for seven different positive and negative values of ν.

On the basis of the numerical analysis one notes that there may be a value of ν where
the tendencies related to the running stop working. As an illustration, we show this
situation in Figures 13–16, corresponding to ρ0

Λ = 1 and a huge unphysical value ν = 8. In
this case, the term with ν in the Friedmann Equation (16) dominates over the basic term
ρ0

Λ. We included these plots just to illustrate the general situation that may happen in the
region of “quantum dominance”, where the running becomes very strong.

Figure 13. Variation in a(t) for a large positive value of ν.
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Figure 14. Variation in b(t) for a large positive value of ν.

Figure 15. Variation in ρ f (t) for a large positive value of ν.
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Figure 16. Variation in b(t)/a(t) for a large positive value of ν.

In Figure 13, the scale factor a(t) expands slowly and then the universe starts to
contract. When the time gets close to t = 4, an exponential expansion starts and continues
until it abruptly stops the expansion due to a final singularity at t ≈ 3.93. Figure 14 shows
the behavior of the second scale factor b(t), which also slowly expands until it reaches a
maximum value at approximately t = 0.5. After that, a contraction begins until it reaches a
zero value and gives rise to a singularity, similar to a big crunch, at the same value of time
t ≈ 3.93. Figure 15 demonstrates ρ(t) with the same values of the parameters. It is easy to
see that we meet (quite naturally) a singularity at the same point. To complete this part,
in Figure 16 one can observe that the ratio b(t)/a(t) remains approximately constant and
then begins to decrease at some point. This stage lasts until the same point, t ≈ 3.93, when
b(t) goes to zero.

4. Conclusions

We have considered the effect of the running cosmological constant in the early
universe on the isotropization of the KS metric. As was argued in previous publications on
the running cosmology models [15] (based on the previous ideas and restrictions of [11–14]),
in the early universe the running of the Newton constant is a sub-dominating effect, which
can be neglected, in the leading approximation. Thus, we treated the Newton constant G as
a non-running quantity.

The most important qualitative result of our work is that, different from the cosmic
perturbations [7], small values of the phenomenological parameter ν do not affect the
dynamics of the anisotropic conformal factors, at least in the framework of the KS metric
model [19]. Taking into account the bound for ν derived from the perturbations, one
could conclude that the possible running of the cosmological constant is irrelevant for the
dynamics of anisotropic parameters, but this would be a misleading statement. The reason
is that in the very early universe the metric becomes isotropic very fast and, therefore,
the two kinds of deviation from the homogeneous and isotropic cosmology occur at distinct
epochs. And, in the very early universe we can assume that the values of ν do not satisfy
the aforementioned bound. Assuming that this parameter is of the order one, we can see
how the running of Λ affects the isotropization.
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Concerning the anisotropic model and the role of the running in isotropization of the
metric, we can see that the model tends towards an isotropic configuration in the course of
evolution for all values of ν which are considered. Also, one notes that for smaller values of
ν, the ratio b(t)/a(t) tends to a constant value quicker. On top of this, the aforementioned
constant value is greater for smaller values of ν. It is worth noting that since both conformal
factors depend only on time, these results do not depend on the choice of coordinates.
Another conclusion one can draw from the plots in Figures 1–12 is that the smaller the value
of ν, the faster the expansion of the scale factors a(t) and b(t). Furthermore, independent of
the isotropy, the fluid density ρ f goes to zero faster for smaller values of ν. Both tendencies
hold for both positive and negative values of the parameter ν.

Finally, we conclude that the running of the cosmological constant in the model with
energy exchange between the vacuum and matter (radiation, in our case) sectors describes
the accelerated expansion and, for a moderate value of the phenomenological parameter ν,
does not contradict very fast isotropization of the initially anisotropic model. After that,
the evolution occurs in the isotropic way, except the dynamics of the cosmic perturbations,
which were analyzed in detail in [8].

The last observation concerns the possible extensions and continuations of this work.
Despite the KS metric results looking convincing, it would be interesting to perform the
same, or maybe a more detailed analysis, for the Bianchi type I, or even more general,
metric. In this respect, we note that the previous investigations of Wald [26] showed that
the qualitative difference, in the case of a constant vacuum energy, is expected only starting
from the Bianchi type IX metric. It would be interesting to see whether this feature holds
for the running cosmological constant, maybe using the dynamical systems approach as
suggested in [27].

On the other hand, since the anisotropy under discussion concerns only the very early
universe, when typical energies are extremely high, it would certainly be interesting to
include a consideration of the effects of higher-derivative terms, starting from R2. We hope
to address this issue in future work.
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