
Citation: R, B.; Parai, D.; Harikumar,

E.; Panja, S.K. Neutron Star in

Quantized Space-Tim. Universe 2024,

10, 79. https://doi.org/

10.3390/universe10020079

Academic Editor: Daniela D. Doneva

Received: 29 November 2023

Revised: 1 February 2024

Accepted: 4 February 2024

Published: 6 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Article

Neutron Star in Quantized Space-Time
Bhagya R † , Diganta Parai † , E. Harikumar *,† and Suman Kumar Panja †

School of Physics, University of Hyderabad, Hyderabad 500046, Telangana, India; 22phph03@uohyd.ac.in (B.R.);
diganta_i_pdrf@uohyd.ac.in (D.P.); 19phph17@uohyd.ac.in (S.K.P.)
* Correspondence: eharikumar@uohyd.ac.in
† These authors contributed equally to this work.

Abstract: We construct and analyze a model of a neutron star in a κ-deformed space-time. This
is conducted by first deriving the κ-deformed generalization of the Einstein tensor, starting from
the non-commutative generalization of the metric tensor. By generalizing the energy-momentum
tensor to the non-commutative space-time and exploiting the κ-deformed dispersion relation, we
then set up Einstein’s field equations in the κ-deformed space-time. As we adopt a realization of
the non-commutative coordinates in terms of the commutative coordinates and their derivatives,
our model is constructed in terms of commutative variables. Using this, we derive the κ-deformed
generalization of the Tolman–Oppenheimer–Volkoff equation. Now, by treating the interior of the star
as a perfect fluid as in the commutative space-time, we investigate the modification of the neutron
star’s mass due to the non-commutativity of space-time, valid up to first order in the deformation
parameter. We show that the non-commutativity of space-time enhances the mass limit of the neutron
star. We show that the radius and maximum mass of the neutron star depend on the deformation
parameter. Further, our study shows that the mass increases as the radius increases for fixed values
of the deformation parameter. We show that maximum mass and radius increase as the deformation
parameter increases. We find that the mass varies from 0.26 M⊙ to 3.68 M⊙ as the radius changes
from 8.45 km to 18.66 km. Using the recent observational limits on the upper bound of the mass
of a neutron star, we find the deformation parameter to be |a| ∼ 10−44 m. We also show that the
compactness and surface redshift of the neutron star increase with its mass.

Keywords: κ-deformed space-time; non-commutative space-time; neutron star; mass limit

1. Introduction

Supermassive stars are known to become neutron stars, white dwarfs, or black holes
towards the last stage of their evolution. The typical core density of these stars is of the order
of 1017 kg/m3 and the radius is of the order of 104 m [1–3]. The Tolman–Oppenheimer–
Volkoff (TOV) limit sets an upper bound to the mass of neutron stars. In [4,5], the TOV
limit is estimated to be 2.1 M⊙, but one of the recent measurements shows the existence
of a neutron star of mass 2.16 M⊙ [6]. The most massive neutron star observed, PSR
J0740 + 6620, is about 2.14 M⊙ [7]. In [8], the upper bound on the mass of a neutron star is
shown to be 3.575 M⊙, using a specific model of the space-time metric.

The gravitational force near neutron stars is very high and produces very strong gravi-
tational fields, and thus, it is expected to provide a natural laboratory to test quantum grav-
ity models. One of the approaches in investigating quantum gravity effects advocates that
space-time becomes non-commutative [9] when the gravity is very strong. This approach
also incorporates the fundamental length scale seen in several approaches to microscopic
gravity. Thus, it is of intrinsic interest to investigate the impact of non-commutativity on
neutron stars.

In this study, we examine neutron stars in κ-deformed space-time, which is a Lie-
algebra type non-commutative space-time (see Equation (1) and Section 2 for details).
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Here, we follow the generalization of the approach given in [8] to non-commutative space-
time. Non-commutativity has been introduced in our study through the deformed metric
and non-commutative generalization of the energy-momentum tensor. In this way, we
formulate the non-commutative version of Einstein’s field and TOV equations. Then, by
solving this field equation, we estimate the maximum possible mass a neutron star can
have in κ-deformed space-time.

Understanding the nature of gravity at the quantum regime is one of the most intrigu-
ing topics in physics. Different paradigms are being employed to model and study gravity
at microscopic scales [9–19]. One characteristic property brought out by all these studies
is the defining role of a fundamental length scale in the context of Plank scale gravity.
Since the framework of non-commutative geometry has a length scale associated with it,
it serves as an environment to construct a model of Plank scale gravity. Thus, modifying
general relativity and cosmological models by taking into account the non-commutativity
of space-time is of paramount interest.

In the last couple of decades, extensive studies have been reported on the construction
and analysis of different types of non-commutative models [15,16,20–31]. κ-deformed
space-time is one among these non-commutative space-times where the time and space
coordinates obey a Lie algebraic type relation. The associated symmetry algebra has been
defined using the Hopf algebra [24–27]. The κ-space-time coordinates satisfy the following
commutation relations

[x̂i, x̂j] = 0, [x̂0, x̂i] = iax̂i, a =
1
κ

. (1)

In the above, the deformation parameter a has the dimension of length. The non-
commutative deformation parameter a encodes the fundamental length scale associated
with the quantum gravity effect. The value of a is expected to be close to the Plank length
(10−35 m). From the above equation, we recover the commutative space-time in the limit
a → 0.

Recently, various aspects of non-commutative gravity and corresponding physics have
been investigated. The effects of the κ-deformed non-commutativity in cosmology and
astrophysics have been analyzed in [32–35]. In [32], κ-deformed corrections to Hawking
radiation are derived using the method of Bogoliubov coefficients. Using κ-deformed de-
generate pressure, compact stars have been studied [33]. In [34], the core-envelope model
describing superdense stars is constructed using Einstein’s field equation in κ-deformed
space-time. From the κ-deformed strong energy condition, a bound on the deformation
parameter has been obtained. In [35], considering space-time to be non-commutative, a
detailed investigation of the evolution of the universe within the Newtonian cosmology
framework has been discussed. The physics of black holes in non-commutative space-time
was analyzed in [36,37]. κ-deformed corrections to the entropy of the BTZ black hole have
been calculated using the brick wall method as well as using the quasinormal mode fre-
quency of the κ-scalar field (in the background of BTZ black hole) [36,37]. Non-commutative
correction to Bekenstein–Hawking entropy is obtained in [38]. Using a squashed fuzzy
sphere, the super Chandrasekhar limit was calculated in [39]. Investigating the models
built upon the framework of general relativity and cosmology in non-commutative space-
time will be a good testing ground to see quantum gravity effects and help us understand
its nature.

In [8], the energy-momentum tensor for perfect fluid distribution in space-time is
defined by

ds2 = eν(r)dt2 −
1 − K r2

R2

1 − r2

R2

dr2 − r2
(

dα2 + sin2αdβ2
)

. (2)

The space part of space-time is a 3-spheroid embedded in a four-dimensional Euclidean
space. Here, K = 1 − l2

R2 , where R is the equatorial radius of the spheroid, and l is the
distance from the center to the north pole along the symmetry axis. In [8], the space-time
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metric associated with a neutron star is derived to be Equation (2). Einstein’s equation,
energy-momentum tensor, and TOV equations are derived and solved for this space-time.
Using this, it was shown that the upper limit of the mass of the neutron star is 3.575 M⊙
having a radius of 18.37 km. It was shown in [40] that the maximum possible mass of a
neutron star is 3.2 M⊙. This is obtained by a functional maximization procedure, subjected
to physical constraints. In the present study, we analyze neutron stars in κ-deformed
space-time by generalizing the approach of [8]. We construct the κ-deformed Einstein’s
equation by deriving the Ricci tensor and Ricci scalar. This is conducted by using the
κ-deformed metric. By generalizing the energy-momentum tensor to κ-deformed space-
time, we then derive the κ-deformed equation of state for the neutron star by solving
κ-deformed Einstein’s equation, valid up to the first-order in a. Using this, we deduce
TOV equations appropriate for κ-deformed space-time. We show that the κ-deformation
enhances the mass limit of the neutron star. We show that the upper bound of the neutron
star’s mass is larger in the non-commutative setting compared to the values obtained for
the commutative space-time in [8,40]. We also observe that the radius of a neutron star is
slightly larger in the κ-deformed non-commutative space-time compared to the result of
the commutative space-time. In particular, the radius of the neutron star is increased by
106 m for the minimum allowed value of the boundary-to-core density ratio.

In [41], the modification of the TOV equations due to rainbow gravity is analyzed by
considering different possible relations between pressure and energy density. Hydrostatic
equilibrium conditions for compact stars using the rainbow gravity approach were studied
in [42]. Here, both radius and mass are functions of the rainbow parameter. It was shown
that as maximum mass increases, the radius of the star also increases. But for a fixed value
of the rainbow parameter, mass increases as the radius decreases. The effect of the magnetic
field on the mass and radius of neutron stars in the rainbow scenario was analyzed in [43].
It was shown that the maximum mass and radius of the neutron star increase with the
magnetic field. In this approach, the maximum mass of the neutron star is argued to be
more than 3.2M⊙. It is shown that the maximum mass increases when the radius increases.
But as in the case of [42], for a fixed value of the rainbow parameter, mass increases as
the radius decreases. Incorporating the rainbow functions and non-conserved energy-
momentum tensor, the modification of the TOV equations for neutron stars was derived
in [44]. The effect of various equations of states on the mass was analyzed. In all these
cases, mass-radius relations were also obtained. Here, the variation in the mass and radius
of the neutron star is derived by fixing the rainbow parameter or the Rastall parameter.
For both of these situations, it was shown that the mass decreases as the radius increases.
The mass and radius of the dark energy star are investigated in [45] using the rainbow
gravity framework. In this work, the hydrostatic equilibrium condition was implemented
through the Chaplygin equation. By varying rainbow function, it was shown that the
mass of the star can vary between 2.64 M⊙ and 3.7 M⊙, which is in tune with various
observations [7,46–50]. Here, it was shown that as the mass increases from 2.64 M⊙ to
3.70 M⊙, the radius of the dark star increases from 12.63 km to 17.69 km.

The organization of this paper is as follows. Section 2 represents the essential details
of κ-deformed space-time. In Section 3, we show Einstein’s equations for the κ-deformed
generalization of space-time defined by the metric given in Equation (2). Using the κ-
deformed dispersion relation, we then construct the energy-momentum tensor in the
deformed space-time. Using these, we set up the κ-deformed TOV equations. In Section 4,
we solve these field equations explicitly by considering various physical assumptions. Here,
we find the bound on the mass of a neutron star in the κ-deformed background. In Section 5,
we present the concluding remarks.

2. Kappa Deformed Space-Time

On κ-deformed space-time, the field theoretical models were constructed by em-
ploying star product formalism [25,26]. Alternatively, one could use the realization of non-
commutative coordinates. The realization allows one to express non-commutative coordinates
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in terms of commutative variables [27,28]. These two approaches are equivalent [29]. We
adopt the realization approach. We write the κ-deformed coordinate x̂µ as [27]

x̂0 =x0ψ(A) + iaxj∂jγ(A)

x̂i =xi φ(A).
(3)

here A = ia∂0 = ap0, and ψ, γ, and φ are functions of A, obeying condition

ψ(0) = 1, φ(0) = 1. (4)

Note, that Equation (3) is consistent with Equation (1) if φ(A), φ′(A), ψ(A), γ(A) satisfy

φ′(A)

φ(A)
ψ(A) = γ(A)− 1, (5)

where prime denotes differentiation with respect to A. Possible values of ψ(A) are 1 and
1 + 2A [27]. In the present study, we choose ψ(A) = 1. Thus, Equations (3) and (5) become

x̂0 =x0 + iaxj∂jγ(A)

x̂i =xi φ(A),
(6)

and
φ′(A)

φ(A)
= γ(A)− 1. (7)

Here, the allowed choices of φ are e−A, e−
A
2 , 1, A

eA−1 , etc. [27]. In [27], it is shown that
different choices of φ lead to different ordering. For this realization, the generic form of the
free particle dispersion relation is [27]

4
a2 sinh2

(
A
2

)
− pi pi

e−A

φ2(A)
− m2c2 +

a2

4

[
4
a2 sinh2

(
A
2

)
− pi pi

e−A

φ2(A)

]2

= 0. (8)

The above pi is the component of the commutative 3-momenta of the particle. Note, that in
the commutative limit is, i.e., lim a → 0, the above equation reduces to (p0)2 − p2

i − m2c2 = 0,
which is the energy-momentum relation in the commutative space-time. Using realization
φ(A) = e−A, we expand Equation (8) in the powers of the deformation parameter and
keeping terms up to first order in a, we find

(p0)2 − p2
i (1 + ap0)− m2c2 = 0, (9)

which we write as
p0 = p0

c + ap̃0. (10)

Here, p0
c is the commutative part and p̃0 is the non-commutative correction. Using this

in the Equation (9) and comparing the coefficient of the deformation parameter, we obtain

(p0
c )

2 = p2
i + m2c2 i.e., E2 = p2

i c2 + m2c4

p̃0 =
1
2

p2
i . (11)

Thus, we write

p0 = p0
c +

1
2

ap2
i

i.e.,
Ê
c
=

E
c

(
1 +

1
2

a
p2

i c
E

)
. (12)
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where Ê is the non-commutative energy.

3. Einstein’s Field Equation in the κ-Deformed Space-Time

In this section, we first construct the κ-deformed metric using the generalized commu-
tation relation between the κ-deformed phase-space coordinates [32]. We next obtain the
κ-deformed energy-momentum tensor appropriate for the neutron star. In the κ-deformed
space-time, we find Einstein’s field equation by promoting commutative quantities to
corresponding κ-deformed quantities. We start with the generalized commutation relation
for the κ-deformed phase space coordinates [51] as

[x̂µ, P̂ν] = iĝµν, (13)

where ĝµν(x̂α) is the κ-deformed metric. We choose the κ-deformed phase-space coordinates
as [51],

x̂µ = xα φα
µ, P̂µ = gαβ(ŷ)pβ φα

µ, (14)

where P̂µ is the κ-deformed generalized momenta corresponding to the non-commutative
coordinate x̂µ and pµ is the conjugate momenta corresponding to the commutative coordi-
nate xµ. Note, that in the commutative limit, i.e., a → 0, we find x̂µ → xµ and P̂µ → pµ.

Note, that in the above equation, we have introduced another set of κ-deformed
space-time coordinates ŷµ. The coordinates ŷµ are also assumed to satisfy the κ-deformed
space-time commutation relations

[ŷ0, ŷi] = iaŷi, [ŷi, ŷj] = 0. (15)

Further this ŷµ is assumed to commute with x̂µ, i.e., [ŷµ, x̂ν] = 0. These new coor-
dinates are introduced only for calculational simplification [51]. The functional form of
gαβ(ŷ) in Equation (14) is the same as the metric in the commutative coordinate, but xµ

replaced with non-commutative coordinate ŷµ.
Next, we substitute Equation (14) in the κ-deformed space-time commutation relation,

i.e., in Equation (1) and find a particular realization for φα
µ as

φ0
0 = 1, φ0

i = 0, φi
0 = 0, φi

j = δi
je
−ap0

. (16)

Now ŷµ can be expressed in terms of the commutative coordinates and conjugate
momenta as

ŷµ = xαϕα
µ. (17)

Using Equation (15) and [x̂µ, ŷν] = 0, one obtains ϕα
µ as (see [32,51] for details)

ϕ0
0 = 1, ϕ0

i = 0, ϕi
0 = −api, ϕ

j
i = δ

j
i . (18)

Thus, the explicit forms of ŷµ are

ŷ0 = x0 − axj pj, ŷi = xi. (19)

Using the above in Equation (14) and substituting x̂µ and P̂µ in Equation (13), the
κ-deformed metric is obtained as [32]

[x̂µ, P̂ν] ≡ iĝµν = igαβ(ŷ)
(

pβ ∂φα
ν

∂pσ
φσ

µ + φα
µ φ

β
ν

)
. (20)

Note, that gµν(ŷ) in the above equation has the same functional form as the commuta-
tive metric but is a function of non-commutative coordinates ŷµ.
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Substituting Equation (16) in Equation (20), we find the explicit form of the components
of ĝµν as

ĝ00 = g00(ŷ),

ĝ0i = g0i(ŷ)
(
1 − ap0)e−ap0 − agim(ŷ)pme−ap0

,

ĝi0 = gi0(ŷ)e−ap0
,

ĝij = gij(ŷ)e−2ap0
.

(21)

Thus, the explicit form of the κ-deformed line element will be [32]

dŝ2 = g00(ŷ)dx0dx0 +
(

g0i(ŷ)
(
1 − ap0)− agim(ŷ)pm

)
e−2ap0

dx0dxi

+ gi0(ŷ)e−2ap0
dxidx0 + gij(ŷ)e−4ap0

dxidxj.
(22)

From Equations (19) and (22), we observe that the metric components have an explicit
dependency on spatial coordinates only. Thus, we find gµν(ŷi) = gµν(xi). Since the
cross terms in the metric tensor given in Equation (2) are zero (i.e., g0i = 0, gim = 0), the
κ-deformed metric given in Equation (22) becomes1

dŝ2 = g00(ŷ)dx0dx0 + gij(ŷ)e−4ap0
dxidxj. (23)

The κ-deformed space-time metric corresponding to Equation (2) is

dŝ2 = eν(r)dt2 − e−4ap0

[
1 − K r2

R2

1 − r2

R2

dr2 + r2
(

dα2 + sin2αdβ2
)]

. (24)

Using this, we construct the components of the κ-deformed Ricci tensor(R̂µν) and Ricci
scalar(R̂) as follows

R̂11 =
e4ap0+ν(r)

4r
(

1 − K r2

R2

)2

[{
4(1 + K

r4

R4 )− 2(K + 3)
r2

R2

}
ν′(r) +

r
(

1 − r2

R2

)(
1 − K

r2

R2

){
ν′2(r) + 2ν′′(r)

}]
(25)

R̂22 =
2(1 − K)

R2
1 + 1

4 rν′(r)(
1 − r2

R2

)(
1 − K r2

R2

) − 1
4

{
ν′2(r) + 2ν′′(r)

}
(26)

R̂33 =
r

2
(

1 − K r2

R2

)2

[
4r
(

1 − K
R2

)(
1 − K

r2

2R2

)
−
(

1 − r2

R2

)(
1 − K

r2

R2

)
ν′(r)

]
(27)

R̂44 =
rsin2α

2
(

1 − K r2

R2

)2

[
4r
(

1 − K
R2

)(
1 − K

r2

2R2

)
−
(

1 − r2

R2

)(
1 − K

r2

R2

)
ν′(r)

]
(28)

R̂ =
e4ap0

2r
(

1 − K r2

R2

)2

[
2r
(

1 − r2

R2

)(
1 − K

r2

R2

)
ν′′(r) +

{
4

(
1 + K

r4

R4

)
− 2(K + 3)

r2

R2

}
ν′(r)

+ r
(

1 − r2

R2

)(
1 − K

r2

R2

)
ν′2(r)− 12(1 − K)

R2 r
(

1 − K
r2

3R2

)]
(29)

where ν′(r) denotes dν(r)
dr and K is the parameter appearing in Equation (2). Using

the Equation (24) and components of R̂µν and R̂ we set up Einstein’s tensor in the κ-
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deformed space-time. To derive Einstein’s field equation, we also need a κ-deformed
energy-momentum tensor. For this, we start with the energy-momentum relation valid up
to the first order in a (from Equation (12)), i.e.,

Ê = E

[
1 +

1
2

ap0

{
1 −

(
mc2

E

)2}]
≡ Eg(E). (30)

The κ-deformed generalization of the energy-momentum tensor is2

T̂αβ =
p̂α p̂β

Ê
δ3
(

ˆ⃗X − ˆ⃗Y(t̂)
)

, (31)

where p̂α = m dx̂α

dτ̂ . For consistency, we demand that p̂0 = Ê
c . This condition gives

dτ

dτ̂
= g(E), p̂α = g(E)φα

σ pσ. (32)

Using Equation (31), Equations (32) and (16) we obtain

T̂αβ = e3ap0
g(E)φα

σ φ
β
δ Tσδ. (33)

It is known that in the proper frame, T is diag(ρc2, P, P, P), where ρ and P are the den-
sity and pressure of the fluid, respectively. Now, using this form of the energy-momentum
tensor on the RHS of Equation (33), we obtain

T̂00 = e3ap0
g(E)ρc2 ≡ ρ̂c2

T̂ij = eap0
g(E)δijP ≡ P̂δij. (34)

Thus, we find the deformed density and pressure to be ρ̂ = e3ap0
g(E)ρ and

P̂ = eap0
g(E)P, respectively. Using these, we obtain the general form of the κ-deformed

energy-momentum tensor for a fluid as

T̂µν =

(
ρ̂ +

P̂
c2

)
ûµûν − P̂ĝµν (35)

where ûµ = dx̂µ

dτ̂ . We derive the explicit form of T̂µν. Here, we consider the interior of
the star to be a static perfect fluid, and hence, we take ûµ = (ce−ν(r)/2, 0, 0, 0). Thus, only
diagonal components of Equation (35) will survive and these are

T̂00 = c2eν(r)ρ̂

T̂11 = P̂
1 − K r2

R2

1 − r2

R2

e−4ap0

T̂22 = P̂r2e−4ap0

T̂33 = P̂r2sin2αe−4ap0
. (36)

The κ-deformed Einstein’s field equation is given as

8πG
c4 T̂µν = R̂µν −

1
2

R̂ĝµν (37)
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where R̂µν and R̂ are the κ-deformed Ricci tensor and Ricci scalar, respectively. Using
Equations (25)–(29) and T̂µν given in Equation (36) in Equation (37) we find

8πG
c2 ρ̂e−4ap0

=
3(1 − K)

R2

(
1 − K r2

3R2

)
(

1 − K r2

R2

)2 (38)

8πG
c4 P̂e−4ap0

=

{
1 − r2

R2

1 − K r2

R2

}[
ν′(r)

r
+

1
r2

]
− 1

r2 (39)

(
1 − r2

R2

)(
1 − K

r2

R2

){
ν′′(r) +

1
2
[
ν′(r)

]2 − ν′(r)
r

}
−2(1 − K)

R2 r
[

ν′(r)
2

+
1
r

]
+

2(1 − K)
R2

(
1 − K

r2

R2

)
= 0. (40)

Here, ν′(r) = dν
dr and ν′′(r) = d2ν

dr2 . The Equations (38)–(40) are the generalization of
the TOV equations to the κ-deformed space-time with the equation of state given as in
Equation (36). These equations reduce to the corresponding commutative equations ob-
tained in [8] in the limit a → 0. At r = 0 from Equation (38) we obtain

8πG
c2 ρ̂0e−4ap0

=
3(1 − K)

R2 (41)

and taking the radius of the star to be b, i.e., on the boundary, where r = b, we find

8πG
c2 ρ̂be−4ap0

=
3(1 − K)

R2

(
1 − K b2

3R2

)
(

1 − K b2

R2

)2 . (42)

Taking the derivative with respect to r of Equation (38) and with the help of Equation (34)
we obtain

8πG
c2 g[E]e−ap0 dρ

dr
=

10K(1 − K)r
R4

(
1 − Kr2

5R2

)
(

1 − K r2

R2

)3 . (43)

From the above expression, it is clear that if we choose K < 0, then ρ will be a
decreasing function of r and always positive. So, from now on, we will consider K to
be negative.

Since the ratio of the density of the star at the boundary to that at the center (λ = ρb
ρ0

)
is less than one, we find from Equations (41) and (42)

λ =
ρb
ρ0

=
1 − K b2

3R2(
1 − K b2

R2

)2 < 1. (44)

Using the above, we also find

b2

R2 =
1

6Kλ

[
6λ − 1 −

√
1 + 24λ

]
. (45)

We assume the metric of the exterior region (r ⩾ b) of the star to be the κ-deformed
Schwarzschild metric given by

ds2 =

(
1 − 2M

r

)
dt2 − e−4ap0

[
dr2

1 − 2M
r

+ r2
(

dα2 + sin2αdβ2
)]

. (46)
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Note, that in the notation used, M and r have the same dimension. Now, using the
continuity of g11 (see Equations (24) and (46) at r = b) we obtain

(
1 − 2M

b

)−1
=

1 − K b2

R2

1 − b2

R2

and M =
(1 − K)b3

2R2
(

1 − K b2

R2

) . (47)

From Equation (41) we obtain

R =

√
3(1 − K)c2

8πGρ0g(E)
eap0 . (48)

Now, by specifying ρb, λ, K, ap0, mc2

E , we obtain the mass and radius of the star
from Equations (45) and (47) with the help of Equation (48). In order to set the physical
conditions in κ-deformed space-time such as 0 < P̂ < 1

3 ρ̂c2 and 0 < 1
c2

dP̂
dρ̂ < 1 throughout

the configuration, we need to solve Equations (39) and (40).

4. The Solution of the Field Equations

To find the explicit form of the following metric in Equation (24), we need to solve the
Equation (40) for ν(r). For this, we make the change of variables

ψ = eν/2; u =

√
K

K − 1

√
1 − r2

R2 . (49)

In these new variables, Equation (40) reduces to

(1 − u2)
d2ψ

du2 + u
dψ

du
+ (1 − K)ψ = 0. (50)

We seek a solution in the series form and substitute ψ = ∑∞
n−0 anun in the Equation (50).

Thus, we obtain the recursion relation between the coefficients as

(n + 1)(n + 2)an+2 = (n2 − 2n + K − 1)an. (51)

For terminating the series, we choose K which satisfies

n2 − 2n + K − 1 = 0, which gives n = 1 ±
√

2 − K. (52)

Since K is negative, the simplest solution is for K = −2, i.e., n = 3. The corresponding
solution is

e
ν
2 = ψ(z) = Bz

(
1 − 4

9
z2
)
+ C

(
1 − 2

3
z2
) 3

2
(53)

where we have defined z =
√

1 − r2

R2 . Note, that when r ( the distance of a point from the
center of a neutron star) is equal to the equatorial radius R of 3-spheroid, z vanishes. z
increases from 0 to 1 as r decreases to zero (this z is not a redshift parameter). Thus, the
final form of the deformed metric is

dŝ2 =

{
Bz
(

1 − 4
9

z2
)
+ C

(
1 − 2

3
z2
) 3

2
}2

dt2

− e−4ap0
[

3 − 2z2

z2 dr2 + r2
(

dα2 + sin2αdβ2
)]

. (54)
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Using solutions for K and ν(r) in Equations (38) and (39), we find

8πG
3c2 ρ̂ = e4ap0 5 − 2z2

R2(3 − 2z2)
2 (55)

8πG
c4 P̂ = e4ap0 3

R2


C(2z2 − 1)

(
1 − 2

3 z2) 1
2 − 1

3 Bz(5 − 4z2)

(3 − 2z2)

[
C
(
1 − 2

3 z2
) 3

2 + Bz
(

1 − 4
9 z2
)]
 (56)

Note, that Equations (54)–(56) are valid in the interior of the neutron star. Matching
Equations (46) and (54) at the boundary (i.e., at r = b) we obtain

(
1 − 2M

b

)
=

1 − b2

R2

1 + 2 b2

R2

(57)

B
(

1 − b2

R2

)(
5 + 4

b2

R2

)
+ C

√
3
(

1 + 2
b2

R2

) 3
2

= 9
(

1 − 2M
b

) 1
2
. (58)

Now we demand that the fluid pressure must vanish at the boundary [8] and using
the definition of z in Equation (56), we obtain

B
(

1 − b2

R2

) 1
2
(

1 + 4
b2

R2

)
= C

√
3
(

1 − 2
b2

R2

)(
1 + 2

b2

R2

) 1
2

. (59)

By solving Equations (57)–(59) we find

B =
3
2

1 − 2 b2

R2(
1 + 2 b2

R2

) 1
2

C =

√
3

2

√
1 − b2

R2

{
1 + 4 b2

R2

1 + 2 b2

R2

}
(60)

By dividing Equation (56) by Equation (55) we obtain

P̂
1
3 ρ̂c2

=
3
(
3 − 2z2)
5 − 2z2

C(2z2 − 1)
(
1 − 2

3 z2) 1
2 − 1

3 Bz(5 − 4z2)

C
(
1 − 2

3 z2
) 3

2 + Bz
(

1 − 4
9 z2
)

. (61)

By generalizing the requirement of strong energy conditions to the κ-deformed situa-
tion, we set

P̂ <
1
3

ρ̂c2. (62)

Using the above condition (i.e., 0 < P̂
1
3 ρ̂c2 < 1) and with the help of Equations (60) and (61)

we obtain a bound on the value of b2

R2 (see the Table 1). We emphasize that the z used here
is not the redshift parameter. z ranges from 1 to 0 as one moves out from the center of the
neutron star to the edge of the 3-spheroid. By choosing different values of z and imposing
the strong energy condition given (in Equations (61) and (62)), we find the allowed values
of b2

R2 , where b is the radius of the neutron star.
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Table 1. Condition on b2

R2 for different values of z =
√

1 − r2

R2 satisfying strong energy condition.

z =
√

1 − r2

R2 Condition on the Value of b2

R2 Due to Constraint 0 < P̂
1
3 ρ̂c2 < 1

1 0 < b2

R2 < 0.3167
0.95 0.0975 < b2

R2 < 0.3708
0.9 0.19 < b2

R2 < 0.4278
0.85 0.2775 < b2

R2 < 0.485√
1 − 0.3167 = 0.8266 0.3167 < b2

R2 < 0.5113
0.8 0.36 < b2

R2 < 0.5407

From Table 1, it is evident that to satisfy the strong energy condition at every point
inside the star, the upper bound on b2

R2 is 0.3167. We see from Equation (60) that within this

bound on b2

R2 , B and C cannot be negative. So, for physical configurations, B
C will always

be positive. Another condition is that the speed of sound should be less than the speed of
light within the configuration (as required by causality). By definition, dP

dρ is the square of
sound velocity. Thus, in κ-deformed space-time the causality condition will be

dP̂
dρ̂

< c2. (63)

By taking the derivatives of Equations (55) and (56) with respect to z, and using them
we obtain

1
c2

dP̂
dρ̂

=
1

d
dz

{
5−2z2

(3−2z2)
2

} d
dz


(2z2 − 1)

(
1 − 2

3 z2) 1
2 − 1

3
B
C z(5 − 4z2)

(3 − 2z2)

[(
1 − 2

3 z2
) 3

2 + B
C z
(

1 − 4
9 z2
)]
 (64)

From Table 2, we observe that to satisfy the causality condition, the lower bound on B
C

should be 0.1762. Now, we find the expression for the mass of the neutron star valid up
to the first order in the deformation parameter. Using Equation (30) in Equation (48) we
obtain the expression of R

R = R0

[
1 +

1
2

αap0
]

where R0 =

√
9c2

8πGρ0
, and α ≡

[
1 − 1

2

{
1 −

(
mc2

E

)2}]
. (65)

Note, that we have taken the correction term valid up to the first order in the deforma-
tion parameter. From Equation (45) we obtain the radius of the star to be

b = b0

[
1 +

1
2

αap0
]

, where b0 =

√
R2

0
12λ

[
1 +

√
1 + 24λ − 6λ

]
, (66)

and the expression of λ is given in Equation (44). Using Equations (47), (65) and (66) we
obtain

M =
3b3

0

2R2
0

(
1 + 2 b2

0
R2

0

)(1 +
1
2

αap0
)
= M0

(
1 +

1
2

αap0
)

, (67)

where M0 is the mass of the neutron star in the commutative case. As we expect the
deformation parameter to be of the order of Planck length, we set a = 10−35 meter and
consider the value of ap0 = 0.01. Considering p0(= E

c ) to be 106M⊙ (the mass of the black
hole) we find mc2

E ∼ 10−63. Using this in Equation (65) we obtain α ≈ 0.5, where m is
the mass of the neutron. We take ρb = 2 × 1017 kg m−3 [8] to calculate R for different
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choices of λ. Below, we present the ratios of the masses of neutron stars to the sun for
various values of the parameter. In our calculations, we use the mass of the sun (M⊙) to be
1475 m (in natural units). The compactness of an object is defined as the ratio of its mass to
radius [34,53,54]3

u =
M
b

. (68)

Compactness is an indicator of the gravitational strength of objects. From Equations
(66) and (67) we find that the u defined in the above equation is independent of the
deformation parameter (up to first order). Explicitly, we obtain

u =
M
b

=
3b2

2R2
(

1 + 2b2

R2

) . (69)

Using the compactness, one calculates the surface redshift [53,54] as

Zredshi f t =
1√

1 − 2u
− 1 =

√√√√1 + 2 b2

u2

1 − b2

R2

− 1. (70)

which is also a good indicator of the strength of the gravitational field produced by objects.
Note, here that the surface redshift is also independent of the non-commutative parameter
(up to the first order). For different values of λ, we have calculated compactness and surface
redshift (see Table 3).

Table 2. Condition on the value of B
C for different values of z =

√
1 − r2

R2 to satisfy the causality
condition.

z =
√

1 − r2

R2 Condition on the Value of B
C ≡ x Due to Constraint 0 < 1

c2
dP̂
dρ̂ < 1

1 x > 0.1762
0.98 x > 0.1765
0.96 x > 0.1741
0.94 x > 0.1691
0.92 x > 0.1619
0.90 x > 0.1527
0.88 x > 0.1417

Table 3. The mass and radius of neutron star.

λ
(

b
R

)2
b (Radius of Star) (km) M

M⊙
Compactness Zredshi f t

0.9 0.0327 8.45 0.2644 0.046 0.0495
0.8 0.0723 11.84 0.7610 0.0947 0.1107
0.7 0.1213 14.34 1.4241 0.1464 0.1892
0.6 0.1839 16.35 2.2361 0.2017 0.2946
0.5 0.2676 18.01 3.1917 0.2615 0.4478

0.4539 0.3167 18.66 3.6805 0.2908 0.5461
0.4 0.3866 19.35 4.2921 0.3270 0.7

Note, that the compactness and surface redshift are increasing with the mass of the neutron star. Similar feature
was reported for neutron stars in rainbow gravity also [42]. From the mass-radius plot given below (Figure 1), we
see that the radius of the star increases with its mass.
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Figure 1. M/M⊙ vs b(radius).

Note, that λ ≤ 0.4 is ruled out by the condition on
(

b
R

)2
(see Table 1). From

Equation (67), we observe that, due to the κ-deformed correction, the mass of the neu-
tron star is larger than the result reported in [8] for the commutative case. For fixed
ap0 = 0.01, we find that as the radius of the neutron star increases, mass also increases. We
tabulate the maximum of the M

M⊙
ratio as a function of ap0 in Table 4 below. From Table 4,

we see that, as we increase the value of ap0, the maximum mass of the neutron star (in solar
mass unit) and radius increase. The plot below (Figure 2) makes it clear that the maximum
value of M

M⊙
increases linearly with the deformation function ap0.

Table 4. Maximum mass of neutron star for different values of ap0 .

ap0 Maximum Value of
M

M⊙
for Neutron Star b (Radius in km) Zredshi f t

0.01 3.6805 18.665 0.5461
0.02 3.6897 18.711 0.5461
0.03 3.6988 18.758 0.5461
0.04 3.7080 18.804 0.5461
0.05 3.7172 18.851 0.5461
0.06 3.7264 18.897 0.5461
0.07 3.7356 18.944 0.5461
0.08 3.7447 18.991 0.5461
0.09 3.7539 19.037 0.5461
0.1 3.7631 19.084 0.5461

Note, that b and M are scaled due to the non-commutativity by the same factor (see
Equations (66) and (67)). Therefore, the compactness factor (u), which is the ratio of M
and b is not dependent on the non-commutative factor ap0. Hence, the surface redshift
(Zredshi f t), which is defined in terms of compactness factor (u) (see Equation (70)), is also
independent of the factor ap0. We show this explicitly by calculating the value of the
surface redshift for various values of ap0 (see Table 4).



Universe 2024, 10, 79 14 of 17

M
a
x
i
m
u
m
o
f
M
/
M
⊙

0.00 0.02 0.04 0.06 0.08 0.10

3.68

3.70

3.72

3.74

3.76

ap0

Figure 2. Mmax/M⊙ vs ap0.

Recent observations of PSR J0740 + 6620 set the bound on the mass of a neutron star
to be 2.14 M⊙ [7]. Analysis of mass-tidal deformation data from PSR J0030 + 0451 put this
value to be 2.25+0.08

−0.07 M⊙. Using these values on the left-hand side of Equation (67), we find
|αap0| to be 0.8 and 0.7, respectively, (or |a| ∼ 10−44 m).

5. Conclusions

Compact objects such as white dwarfs, neutron stars, and black holes have high mass
density and produce extremely strong gravitational fields. Since very strong gravitational
fields are expected to modify the space-time structure, neutron stars provide testing grounds
to study signals for quantum gravity. Here, we constructed a model of a neutron star in
κ-deformed space-time, a non-commutative space-time that is relevant for quantum gravity
models. We showed that the non-commutativity of space-time increases the upper bound
on the mass of a neutron star. For ap0 = 0.01, we have found that the upper limit of neutron
star mass is 3.6805 M⊙. Recent analysis of observational data set this bound as 2.14 M⊙ [7]
and mass-tidal deformation data sets it as 2.25+0.08

−0.07 M⊙ [55]. We find that these values set
the values of the deformation parameter a to be −0.27 × 10−44 m and −0.25 × 10−44 m,
respectively. We found that for ap0 = 0.01, the change in radius of the maximum mass
neutron star is around 3 percent larger than the commutative result. For the astronomical
length scale, this change is small.

After generalizing the metric Equation (2) to the non-commutative space-time and
deriving a deformed energy-momentum tensor, we constructed the modified Einstein’s
equation describing the neutron star. The solution of deformed TOV equations is derived
and valid up to the first order in the deformation parameter. We have exploited the κ-
deformed strong energy condition and causality condition in obtaining the solution of the
modified TOV equation.

Various studies related to the upper bound on the mass of a neutron star have been
reported in literature [4–8,40,55]. In [4,5], the upper bound on the mass of a neutron star is
found to be 2.1 M⊙. It is estimated to be 2.16 M⊙ in a recent paper [6]. Using observational
data, the maximum mass of a neutron star is found to be 2.14 M⊙ for PSR J0740 + 6620
in [7]. The maximum gravitational mass of a neutron star is found to be 2.25+0.08

−0.07 M⊙
using the mass-tidal de-formability data of GW170817 and the mass-radius data of PSR
J0030 + 0451 and PSR J0740 + 6620 [55]. From a purely geometrical point of view, the
upper bound on the mass of a neutron star is found to be 3.575 M⊙ [8]. In [5], it has been
concluded that the true maximum mass of a neutron star is between 2M⊙ and 3M⊙. In [40],
it is argued that the mass of a neutron star with zero angular momentum can not be more
than 3.2 M⊙ for any equation of state at nuclear density.
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In our study, we find that the upper bound for the mass of a neutron star varies
with the non-commutative scale. Here, we have considered the matter density on the star
boundary (i.e., r = b) to be ρ = 2 × 1017 kg m−3 [8]. Various possible values for the ratio
λ = ρb

ρ0
have been considered (where ρ0 is the density at the center of the star). By specifying

ap0 from Equation (65) we find R. Using R, from Equation (66) we find the radius of the star
(b). Finally, from Equation (67) the mass of the star is found. For a fixed value of ap0 = 0.01
and various values of λ, we present the radius and mass of the neutron star (as a multiple
of solar mass M⊙) in Table 3. κ-deformed strong energy condition indicates that the ratio
of the boundary density to the core density of a neutron star (λ) cannot be less than 0.4539
for a neutron star model. The first six values of λ in Table 3 correspond to the physically
viable star model. For our specific choice of ap0 = 0.01, we found that the maximum mass
of a neutron star is 3.6805 M⊙, having a radius of 18.66 km, which is higher than the result
reported in [8,40]. We have shown that the compactness and surface redshift increase with
the mass of the neutron star in κ-deformed space-time. It is seen from Table 4 that if we
increase the value of the deformation parameter, the mass limit will be enhanced. Thus, we
see that the effect of space-time non-commutativity increases the limiting mass of a neutron
star. In [45], it was shown that as the mass of the neutron star increases, the radius also
increases. This feature is the same when the rainbow function is fixed or varied. In [42–44],
as the maximum mass increases, the radius also increases when the rainbow parameter is
varied. But in all these studies for a fixed value of the rainbow parameter, it is shown that
the radius decreases as the mass increases. Our study exhibits the feature that the mass
of the neutron star increases as the radius increases. This behavior is the same for fixed
deformation parameters and when the deformation parameter increases. This behavior of
mass-radius relation in the κ-deformed space-time is similar to the one reported in [45]. But
the feature of increase in the radius as a mass of neutron star increases for fixed deformation
parameter is in contrast to the result obtained for the fixed rainbow parameter in [42–44].
It is reported from the observation that the average radius of the neutron star is around
10 km [56]. There is a theoretical prediction that the mass of a neutron star can be above
3 M⊙. In the κ-deformed space-time, the neutron star mass is 3.5 M⊙ and radius (b)
is 10 km with ap0 = 0.01; we find the density of the center of the neutron star to be
5.28 × 1018 kg m−3.

Our study shows that the maximum mass of the neutron star is enhanced by the
non-commutativity of the space-time. This provides us with a possible way to account
for neutron stars with larger masses. We also see that the Planck scale modification of
the structure of the space-time fabric can have observable signals at large length scales.
Different frameworks of studying quantum gravity effects in analyzing neutron stars have
been reported [41–45]. It is fascinating to see whether the observed values of the neutron
star parameters can be used to select the preferred quantum gravity model from these.
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Notes
1 Since κ-deformed space-time is rotational invariant, the κ-deformed metric is taken to be symmetric in its indices.
2 Energy-momentum tensor for a single particle is defined as [52]

Tαβ(t, X⃗) =
pα pβ

E
δ3
(

X⃗ − Y⃗(t)
)

where pα is the four momentum and Y⃗(t) is the position of the particle at time t. We extend this definition to non-commutative
space-time by replacing all the commutative variables with the corresponding non-commutative variables.

3 Note, that this definition differs from the one used in [42] by an overall multiplicative factor of 2.
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